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Preface

This monograph came out of my thesis work under the supervision of my Ph.D.
advisor Mario Bonk during my graduate studies at the University of Michigan, Ann
Arbor, and later at the University of California, Los Angeles. It focuses on the
dynamics, more specifically ergodic theory, of some continuous branched covering
maps on the 2-sphere, called expanding Thurston maps.

More than 15 years ago, Mario Bonk and Daniel Meyer became independently
interested in some basic problems on quasisymmetric parametrization of 2-spheres,
related to the dynamics of rational maps. They joined forces during their time
together at the University of Michigan and started their investigation of a class of
continuous (but not necessarily holomorphic) maps modeling a subclass of rational
maps. These maps belong to a bigger class of continuous maps on the 2-sphere
studied by William P. Thurston in his famous characterization theorem of rational
maps (see [DH93]). As a result, Mario Bonk and Daniel Meyer called their maps
expanding Thurston maps. Related studies were carried out by other researchers
around the same time, notably Peter Haïssinsky and Kevin Pilgrim [HP09], and
James W. Cannon, William J. Floyd, and Walter R. Parry [CFP07].

By late 2010, Mario Bonk and Daniel Meyer had summarized their findings in a
reader-friendly arXiv draft [BM10] entitled Expanding Thurston maps, which they
initially intended to publish in the AMS Mathematical Surveys and Monographs
series. In order to make the material even more accessible, they decided later to
expand their draft. This led to a long delay for the final published version [BM17]
with almost twice the size of [BM10].

I was introduced to expanding Thurston maps by Mario Bonk soon after I joined
in the graduate program at the University of Michigan. I quickly got deeply fas-
cinated by this subject due to the connections to geometry, analysis, combinatorics,
and dynamical systems.

I finished my first project on the periodic points and properties of the measures
of maximal entropy of expanding Thurston maps under the supervision of Mario
Bonk (later appeared in [Li13], see Chap. 4) after we moved to Los Angeles. I then
decided to continue working on the ergodic theory of expanding Thurston maps, on
which I eventually wrote my thesis.
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This monograph covers investigations on the measures of maximal entropy, and
more generally, equilibrium states of expanding Thurston maps, and their relations
to the periodic points and the preimage points. In order to study the equilibrium
states, the theory of thermodynamical formalism for Hölder continuous potentials is
established in our context (see Chap. 5). The study of equidistribution results also
leads to a close investigation on the expansion properties of our dynamical systems
(see Chap. 6) and the discovery of some large deviation results (see Chap. 7).

This monograph is also intended to serve as a basic reference for the theory
of thermodynamical formalism in our context. The applications to the study of the
dynamical zeta functions were also kept in mind when this monograph was being
prepared. As such, complex-valued function spaces are used whenever they do not
introduce too much complication.
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patient support and helpful comments. I want to acknowledge the partial supports
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Notation

Let C be the complex plane and bC be the Riemann sphere. We use the convention

that N ¼ f1; 2; 3; . . .g, N0 ¼ f0g[N, and bN ¼ N[fþ1g, with the order rela-
tions \, � , [,� defined in the obvious way. As usual, the symbol log denotes
the logarithm to the base e, and logb the logarithm to the base b for b[ 0.

The cardinality of a set A is denoted by cardA. For x 2 R, we define bXc as the
greatest integer � x, and bXc the smallest integer � x.

Let g : X ! Y be a function between two sets X and Y . We denote the restriction
of g to a subset Z of X by gjZ .

Let ðX; dÞ be a metric space. For subsets A;B�X, we set dðA;BÞ ¼
inffdðx; yÞ jx 2 A; y 2 Bg, and dðA; xÞ ¼ dðx;AÞ ¼ dðA; fxgÞ for x 2 X. For each
subset Y �X, we denote the diameter of Y by diamdðYÞ ¼ supfdðx; yÞ jx; y 2 Yg,
the interior of Y by int Y , and the characteristic function of Y by 1Y , which maps
each x 2 Y to 1 2 R. We use the convention that 1 ¼ 1X when the space X is clear
from the context. The identity map idX : X ! X sends each x 2 X to x itself. For
each r[ 0, we define Nr

dðAÞ to be the open r-neighborhood fy 2 X jdðy;AÞ\rg of
A, and Nr

dðAÞ the closed r-neighborhood fy 2 X jdðy;AÞ� rg of A. For x 2 X, we
denote the open (resp. closed) ball of radius r centered at x by Bdðx; rÞ
(resp. Bdðx; rÞ).

We set CðXÞ (resp. BðXÞ) to be the space of continuous (resp. bounded Borel)
functions from X to R, by MðXÞ the set of finite signed Borel measures, and PðXÞ
the set of Borel probability measures on X. We denote by CðX;CÞ (resp. BðX;CÞ)
the space of continuous (resp. bounded Borel) functions from X to C. Obviously
CðXÞ�CðX;CÞ and BðXÞ�BðX;CÞ. We will adopt the convention that unless
specifically referring to C, we only consider real-valued functions.

For l 2 MðXÞ, we use lk k to denote the total variation norm of l, suppl the
support of l, and

hl; ui ¼
Z

udl

xi



for each u 2 CðS2Þ. If we do not specify otherwise, we equip CðXÞ and CðX;CÞ
with the uniform norm �k k1. For a point x 2 X, we define dx as the Dirac measure
supported on fxg. For g 2 CðXÞ we set MðX; gÞ to be the set of g-invariant Borel
probability measures on X. Unless otherwise specified, we equip MðXÞ, PðXÞ, and
MðX; gÞ with the weak� topology.

The space of real-valued (resp. complex-valued) Hölder continuous functions
with an exponent a 2 ð0; 1� on a compact metric space ðX; dÞ is denoted as
C0;aðX; dÞ (resp. C0;aððX; dÞ;CÞ). For each w 2 C0;aððX; dÞ;CÞ,

wj ja¼ sup
� jwðxÞ � wðyÞj

dðx; yÞa
����x; y 2 X; x 6¼ y

�
; ð0:1Þ

and the Hölder norm is defined as

wk kC0;a¼ wj ja þ wk k1: ð0:2Þ

For given f : X ! X and u 2 CðX;CÞ, we define

SnuðxÞ ¼
Xn�1

j¼0

uðf jðxÞÞ ð0:3Þ

and

WnðxÞ ¼ 1
n

Xn�1

j¼0

df jðxÞ ð0:4Þ

for x 2 X and n 2 N0. Note that when n ¼ 0, by definition we always have
S0u ¼ 0, and by convention W0 ¼ 0.

xii Notation



Chapter 1
Introduction

Self-similar fractals have fascinated laymen and mathematicians alike due to their
intrinsic beauty as well as mathematical sophistication. They appear naturally in
mathematics and play important roles in the investigation of the corresponding areas
of research. One particularly abundant source of self-similar fractals is the study of
holomorphic dynamics, where they arise as Julia sets of rational functions and limit
sets of Kleinian groups.

A powerful and fruitful point of view in the study of self-similar fractals is to
look at them as metric spaces. On the other hand, due to their natural appearance
in dynamics, self-similar fractals lie in the center of the interplay of dynamics and
geometry. The investigation of metric and measure-theoretic properties of various
self-similar fractals and their relation to dynamics and geometry has been actively
carried out in different areas of mathematics.

Various tools in the study of general metric spaces become indispensable in the
investigation of fractal spaces. Thanks to the new developments in the theory of
quasiconformal geometry in recent years, more powerful tools become available and
new perspectives become natural.

The classical theory of quasiconformal maps between Euclidean spaces dates
back to the works of H. Grötzsch and L.V. Ahlfors in the early 20th century [Kü97,
Ah82]. Since the groundbreaking work of O. Teichmüller on the classical moduli
problem for Riemann surfaces around 1940 and later D.P. Sullivan’s no-wandering-
domain theorem in complex dynamics in the 1980s [Su85], nowadays the theory of
planar quasiconformal maps is considered a standard tool in many areas of complex
analysis such as Techmüller theory and holomorphic dynamics. Many such appli-
cations rely on an existence theorem for planar quasiconformal maps known as the
Measurable Riemann Mapping Theorem. In higher dimensions, though, there is no
counterpart for such an existence theorem. However, the importance of the theory
of quasiconformal maps in higher dimensions became evident when G.D. Mostow
used it in his celebrated rigidity theorems for rank-one symmetric spaces in the early

© Atlantis Press and the author(s) 2017
Z. Li, Ergodic Theory of Expanding Thurston Maps, Atlantis Studies
in Dynamical Systems 4, DOI 10.2991/978-94-6239-174-1_1
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2 1 Introduction

1970s [Mos73]. This also inspired the generalization of the theory fromR
n to metric

spaces (see for example, [KR95,Pan89,HK98]).
We recall that in a metric space context, a homeomorphism f : X → Y between

metric spaces (X, dX ) and (Y, dY ) is quasiconformal if there exists a constant H ≥ 1
such that

Hf (x): = lim sup
r→0+

sup{dY ( f (x ′), f (x)) | dX (x ′, x) ≤ r}
inf{dY ( f (x ′), f (x)) | dX (x ′, x) ≥ r} ≤ H

for all x ∈ X . This definition is equivalent to the classical definition of a quasiconfor-
mal map in the context of Euclidean spaces, which we refer the reader to [Bon06]. In
a context of a Euclidean space, it means, roughly speaking, that infinitesimal balls are
mapped to infinitesimal ellipsoids with uniformly controlled eccentricity. In general
the above definition is too weak to be useful.

A stronger and much more useful concept in the study of general metric spaces is
the notion of a quasisymmetric map [TV80]. A homeomorphism f : X → Y is called
quasisymmetric if there exists a homeomorphism η: [0,+∞) → [0,+∞) such that

dY ( f (x), f (y))

dY ( f (x), f (z))
≤ η

(
dX (x, y)

dX (x, z)

)
,

for all x, y, z ∈ X with x �= z. Roughly speaking, the above definition requires that
balls to be mapped to “round” sets with quantitative control for their “eccentricity”.
This is a global version of the geometric property of a quasiconformal map. These
two notions coincide in the context of Euclidean spaces.

The notion of quasisymmetry has been proved to be central in the study of var-
ious fractal metric spaces (see for example, [BM17,Bon11,BKM09]) and metric
uniformization problems (see for example, [TV80,DS97,BonK02,Wi07]).

We now draw our attention back to the Riemann sphere.
Through the introduction of quasiconformal geometry techniques in his proof of

the no-wandering-domain theorem in the 1980s [Su85], D.P. Sullivan revolutionized
the field of complex dynamics. Originally, the theory of complex dynamics dates
back to the work of G. Kœnigs, E. Schröder, and others in the 19th century. This sub-
ject, concentrating on the study of iterated rational maps on the Riemann sphere, was
developed into an active and fascinating area of research, thanks to the remarkable
works of S. Lattès, C. Carathéodory, P. Fatou, G. Julia, P. Koebe, L. Ahlfors, L. Bers,
M. Herman, A. Douady, D.P. Sullivan, J.H. Hubbard, W.P. Thurston, J.C. Yoccoz,
C. McMullen, J. Milnor, M. Lyubich, M. Shishikura, and many others. Modern
research in complex dynamics centers at the study of fractals appearing in the dynam-
ical space, namely the Julia sets, as well as ones in the parameter space such as the
well-known Mandelbrot set.

In the early 1980s, D.P. Sullivan introduced a “dictionary”, known as Sullivan’s
dictionary nowadays, linking the theory of complex dynamics with another classi-
cal area of conformal dynamical systems, namely, geometric group theory, mainly
concerning the study ofKleinian groups acting on theRiemann sphere.Many dynam-
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ical objects in both areas can be similarly defined and results similarly proven, yet
essential and important differences remain.

Sullivan’s dictionary provides many connections and guiding intuitions between
Kleinian groups and iterated rational maps on the Riemann sphere. AKleinian group
G is a discrete subgroup of the conformal automorphism group Aut

(
Ĉ

)
of the Rie-

mann sphere Ĉ and a rational map is a quotient of two polynomails on Ĉ. For both
subjects, there are common themes in deformation theories [MS98], and combinato-
rial classification theories [Mc95, Pi03]. The geometric structures of the associated
fractals in both subjects are also closely related [Mc98,Mc00, SU00,SU02]. For
more detailed discussions of the correspondence between these two subjects, we
refer the reader to [Mc95,Mc08,HP09] and references therein.

One natural question to ask when one investigates the essential features of these
two subjects is the following: “What is special about conformal dynamical systems
in a wider class of dynamical systems characterized by suitable metric-topological
conditions?”

This general questionhas inspiredmuch research in both subjects (see for example,
[DH93, HSS09, ZJ09, CT11, CT15, BonK02, BonK05, KK00, BM17, HP09, HP14,
Th16]). Often certain combinatorial information of the dynamical systems and the
metric geometry of the associated fractal spaces play an important role in such
investigations.

In geometric group theory, the abovequestion is related to awell-knownconjecture
by J.W. Cannon [Ca94]. Recall that a Kleinian group G extends isometrically to
the hyperbolic 3-space H

3. Cannon’s Conjecture predicts that for every Gromov
hyperbolic group G whose boundary at infinity ∂∞G is homeomorphic to the 2-
sphere S2, there should exist a discrete, cocompact, and isometric action of G on
the hyperbolic 3-spaceH3. Here we can consider Gromov hyperbolic groups G with
2-sphere boundary ∂∞G as metric-topological systems generalizing the conformal
dynamical systems in this context, namely, certain Kleinian groups. Recall that there
are natural metrics dvis on ∂∞G called visual metrics. These metrics are unique
up to snowflake equivalence. From the point of view of metric properties, one can
formulate Cannon’s Conjecture in the following way: LetG be a Gromov hyperbolic
group, then ∂∞G is homeomorphic to the 2-sphere if and only if the metric space
(∂∞, dvis) is quasisymmetrically equivalent to the Riemann sphere Ĉ. Note that two
metric spaces are quasisymmetrically equivalent if there exists a quasisymmetric
homeomorphism between them. Considerable amount of efforts have been made to
establish Cannon’s Conjecture, leading to various partial results (see for example,
[BonK05,BouK13,Mar13]), but the conjecture still remains open.

Cannon’s Conjecture translates via Sullivan’s dictionary to the celebrated char-
acterization theorem of rational maps in complex dynamics by W.P. Thurston
[DH93]. In this context, the metric-topological dynamical systems that generalize
postcritially-finite rational maps on the Riemann sphere are called Thurston maps.
These are (non-homeomorphic) branched covering maps on the 2-sphere S2 whose
finitely many critical points are all preperiodic. Thurston’s combinatorial character-
ization of rational maps asserts that a Thurston map is essentially a rational map if
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and only if there does not exist so-called Thurston obstruction, i.e., a collection of
simple closed curves on S2 subject to certain conditions [DH93].

By imposing some additional condition of expansion, thus restricting to a subclass
of Thurston maps, a characterization theorem of rational maps from a metric space
point of view has been established in this context byM. Bonk and D.Meyer [BM17],
and P. Haïssinsky and K. Pilgrim [HP09]. Roughly speaking, we say that a Thurston
map is expanding if for each pair of points x, y ∈ S2, their preimages under iterations
of the map get closer and closer. See Definition 2.10 for a precise formulation. We
also refer to [BM17, Proposition 6.3] for a list of equivalent definitions. For each
expanding Thurstonmap, we can equip the 2-sphere S2 with a natural class ofmetrics
d, called visual metrics, that are quasisymmetrically equivalent to each other. As
the name suggests, these metrics are constructed in a similar fashion as the visual
metrics on the boundary ∂∞G of aGromov hyperbolic groupG (see [BM17, Chap.8]
for details, and see [HP09] for a related construction). In the language above, the
following theorem was obtained in [BM17, HP09].

Theorem 1.1 (M. Bonk and D. Meyer, P. Haïssinsky and K. Pilgrim) An expanding
Thurstonmap is conjugate to a rational map if and only if the sphere (S2, d) equipped
with a visual metric d is quasisymmetrically equivalent to the Riemann sphere Ĉ

equipped with the spherical metric.

The dynamics induced by iterations of expandingThurstonmapsmentioned above
is going to be the main subject matter of this monograph.

Various characterization theorems of rational maps correspond to Cannon’s Con-
jecture via Sullivan’s dictionary.M. Bonk and B. Kleiner proved in [BonK05] a weak
form of Cannon’s Conjecture by adding an additional condition on the dimensions
of the visual metrics. From the same metric property point of view, P. Haïssinsky and
K. Pilgrim established in [HP14] a sufficient condition for an expanding Thurston
map to be essentially a rational map. Their theorem asserts that if an Ahlfors regular
metric d ′ that is quasisymmetrically equivalent to a visual metric d of an expand-
ing Thurston map f : S2 → S2 realizes the Ahlfors regular conformal dimension
confdimAR( f ) of f , then f is conjugate to a rational map except for special cases
of so-called obstructed Lattès examples. Here the Ahlfors regular conformal dimen-
sion confdimAR( f ) of f is defined as the infimum of the Hausdorff dimension of
all Ahlfors regular metrics that are quasisymmetrically equivalent to a visual metric
of f . A metric space (X, d) is Ahlfors regular of dimension Q provided there is a
Radon measure μ and a constant C > 1 such that

1

C
rQ ≤ μ (Bd(x, r)) ≤ CrQ

for x ∈ X and r ∈ (0, diamd(X)].
Due to important and fruitful applications of Thurston’s theorem, many authors

have worked on extending it beyond postcritically-finite rational maps using sim-
ilar combinatorial obstructions. See for example, J.H. Hubbard, D. Schleicher,
M. Shishikura’swork on somepostcritically-finite exponentialmaps [HSS09];G.Cui

http://dx.doi.org/10.2991/978-94-6239-174-1_2
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and L. Tan’s and G. Zhang and Y. Jiang’s works on hyperbolic rational maps [CT11,
ZJ09]; G. Zhang’s work on certain rational mapswith Siegel disks [Zh08]; X.Wang’s
work on certain rational maps with Herman rings [Wan14]; and G. Cui and L. Tan’s
work on some geometrically finite rational maps [CT15]. The characterization
theorems of rational maps from [BM17,HP09,HP14] mentioned above provide an
entirely new perspective (from properties of metric spaces) to the classical combi-
natorial classification theorem of rational maps by W.P. Thurston and its various
generalizations.

The conditions regarding the Ahlfors regular conformal dimension in [BonK05,
HP14] also reveal the relevance of dimension theory in our metric and dynamical
context.

The notions of fractal dimension arewidely used inmany different areas ofmathe-
matics and natural sciences nowadays. C. Carathéodory, F. Hausdorff, and A.S. Besi-
covich laid the foundation of dimension theory in the early twentieth century. The
early investigation centered around the Hausdorff dimension, which serves as an
appropriate notion tomeasure the complexity of topological and geometric structures
of subsets in metric spaces that are similar to the well-known Cantor set. Thanks to
the powerful tools of computer visualization, the study of fractal objects became
popular in mathematics and natural sciences. The ideas of fractal dimension were
explored extensively by practitioners in sciences and applied mathematics, usually
heuristically, well before rigorous mathematical theories were developed.

In the study of dynamical systems, it is strongly believed that there is a deep
connection between the topology and geometry of invariant fractal sets and properties
of the dynamical system acting on them. For a discussion on the relationship between
various notions of fractal dimension and invariants of the dynamical systems such
as Lyapunov exponents and entropy, see for example, [GOY88].

Many methods and tools developed in the study of dynamical systems have been
proved to be useful in the investigation of notions of fractal dimension. The thermo-
dynamical formalism, and more generally, ergodic theory, are such important tools.
For close relationship between thermodynamical formalism and fractal dimension
theory in dynamical systems, see [Pe97,Barr11,PU10].

Ergodic theory has been an important tool in the study of dynamical systems
in general. The investigation of the existence and uniqueness of invariant measures
and their properties has been a central part of ergodic theory. However, a dynamical
system may possess a large class of invariant measures, some of which may be
more interesting than others. It is therefore crucial to examine the relevant invariant
measures.

The thermodynamical formalism is one such mechanism to produce invariant
measures with some nice properties under assumptions on the regularity of their
Jacobian functions. More precisely, for a continuous transformation on a compact
metric space, we can consider the topological pressure as a weighted version of the
topological entropy, with the weight induced by a real-valued continuous function,
called a potential. The Variational Principle identifies the topological pressure with
the supremum of its measure-theoretic counterpart, the measure-theoretic pressure,
over all invariant Borel probability measures [Bow75, Wal76]. Under additional
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regularity assumptions on the transformation and the potential, one gets existence
and uniqueness of an invariant Borel probability measure maximizing the measure-
theoretic pressure, called the equilibrium state for the given transformation and the
potential. Often the Jacobian function for the transformation with respect to the
equilibrium state is prescribed by a function induced by the potential. The study of
the existence and uniqueness of the equilibrium states and their various properties
such as ergodic properties, equidistribution, fractal dimensions, etc., has been the
main motivation for much research in the area.

This theory, as a successful approach to choosing relevant invariant measures, was
inspired by statistical mechanics, and created by D. Ruelle, Ya. Sinai, and others in
the early seventies [Dob68,Si72,Bow75,Wal82]. Since then, the thermodynamical
formalism has been applied in many classical contexts (see for example, [Bow75,
Ru89, Pr90, KH95, Zi96, MauU03, BS03, Ol03, Yu03, PU10, MayU10]). However,
beyond several classical dynamical systems, even the existence of equilibrium states
is largely unknown, and for those dynamical systems that do possess equilibrium
states, often the uniqueness is unknown or at least requires additional conditions.
The investigation of different dynamical systems from this perspective has been an
active area of current research.

This monograph is intended as an introduction to the ergodic theory of expanding
Thurston maps. More specifically, it focuses on the properties of important invariant
measures such as the measure of maximal entropy and more generally, equilibrium
states corresponding to Hölder continuous potentials, and their relationship with
periodic points and preimage points.

We consent ourselves in this monograph by providing a foundation and a model
case for more involved studies in this area on more general branched covering maps
on S2 such as ones investigated in [ZJ09,CT11,CT15], or between certain general
topological spaces such as coarse expanding conformal maps from [HP09]; or more
general and probably more useful potentials with logarithmic singularities similar to
ones in [MayU10].

We develop the ergodic theory for expanding Thurstonmaps in three stages. In the
first stage, we investigate various properties of the measure of maximal entropy (see
Sect. 3.2 for definition) by direct and elementary arguments using the explicit combi-
natorial and geometric information of the maps. Among other things, we obtain very
strong equidistribution results for preimage points, periodic points, and preperiodic
points with respect to the measure of maximal entropy (see Theorems 4.2, 4.3, and
Corollary 4.4). In order to establish the existence, uniqueness, and various other prop-
erties of equilibrium states for Hölder continuous potentials, one needs to applymore
powerful tools, namely, the theory of thermodynamical formalism. This is what we
do in the second stage. The equidistribution results with respect to equilibrium states
we get from thermodynamical formalism are for preimage points only, and have less
flexible choice of weight at each point compared to the corresponding results we
get in the first stage (see Theorem 5.1). In order to get equidistribution results with
respect to equilibrium states for periodic points, we apply in the last stage another
machinery due to Y. Kifer [Ki90], which leads to some large deviations principles
(see Theorem 7.1) which are stronger than equidistribution results. We are able to
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use this machinery for a subclass of our maps, more precisely, expanding Thurton
maps without periodic critical points. For these maps, we establish the upper semi-
continuity of the measure-theoretic entropy function by investigating certain weak
expansion properties of our dynamical systems. However, upper semi-continuity of
the measure-theoretic entropy and equidistribution of periodic points with respect
to equilibrium states still remain open for expanding Thurston maps with a periodic
critical point.

We now discuss our approaches in more details.
Arguably the most important measure for a dynamical system is its measure

of maximal entropy. By definition, it is an invariant Borel probability measure
that maximizes the measure-theoretic entropy. Thanks to the pioneering work of
R. Bowen, D. Ruelle, P. Walters, Ya. Sinai, M. Lyubich, R. Mañé, and many
others, existence and uniqueness results for the measure of maximal entropy are
known for uniformly expansive continuous dynamical systems, distance expand-
ing continuous dynamical systems, uniformly hyperbolic smooth dynamical sys-
tems, and rational maps on the Riemann sphere. In many cases, the measure
of maximal entropy is also the asymptotic distribution of the period points (see
[Par64,Si72,Bow75,Ly83,FLM83,Ru89,PU10]).

Expanding Thurston maps do not fall into any class of the classical dynamical
systems mentioned above (see Chap. 6 for a more detailed discussion). So we have
to first investigate the existence and uniqueness of such measures. As a consequence
of their general results in [HP09], P. Haïssinsky and K. Pilgrim proved that for each
expanding Thurston map, there exists a measure of maximal entropy and that the
measure of maximal entropy is unique for an expanding Thurston map without peri-
odic critical points. M. Bonk and D.Meyer then proved the existence and uniqueness
of the measure of maximal entropy for all expanding Thurstonmaps using an explicit
combinatorial construction [BM17]. Some equidistribution results for periodic crit-
ical points and iterated preimages with respect to the measure of maximal entropy
were obtained in [HP09]. Following the philosophy of M. Bonk and D. Meyer, we
establish in Chap.4 stronger equidistribution results for (pre)periodic points and iter-
ated preimages with respect to the measure of maximal entropy in our context. In
order to do so, we carefully investigate the locations of fixed points in relation to
the Markov partitions. We also establish an exact formula for the number of fixed
points for an expanding Thurston map (see Theorem 4.1), which is analogous to the
corresponding formula for rational maps (see for example, [Mil06, Theorem 12.1]).

After all, the measure of maximal entropy is just one important invariant measure.
In order to investigate a larger class of important invariant measures, one needs to
apply more powerful tools from thermodynamical formalism.

We establish the existence and uniqueness of the equilibrium state, denoted by
μφ , for a Hölder continuous potential φ: S2 → R. Here S2 is equipped with a
visual metric. This generalizes the existence and uniqueness of the measure of max-
imal entropy of an expanding Thurston map in [HP09, BM17]. We also prove that
the measure-preserving transformation f of the probability space (S2, μφ) is exact
(see Definition 5.40), and in particular, mixing and ergodic (Theorem 5.41 and
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