

Atlantis Studies in Probability and Statistics
Series Editor: C. P. Tsokos

Mohammad Ahsanullah

Characterizations of Univariate Continuous Distributions

Atlantis Studies in Probability and Statistics

Volume 7

Series editor

Chris P. Tsokos, Tampa, USA

Aims and scope of the series

The series 'Atlantis Studies in Probability and Statistics' publishes studies of high quality throughout the areas of probability and statistics that have the potential to make a significant impact on the advancement in these fields. Emphasis is given to broad interdisciplinary areas at the following three levels:

- (I) Advanced undergraduate textbooks, i.e., aimed at the 3rd and 4th years of undergraduate study, in probability, statistics, biostatistics, business statistics, engineering statistics, operations research, etc.;
- (II) Graduate-level books, and research monographs in the above areas, plus Bayesian, nonparametric, survival analysis, reliability analysis, etc.;
- (III) Full Conference Proceedings, as well as selected topics from Conference Proceedings, covering frontier areas of the field, together with invited monographs in special areas.

All proposals submitted in this series will be reviewed by the Editor-in-Chief, in consultation with Editorial Board members and other expert reviewers.

For more information on this series and our other book series, please visit our website at: www.atlantis-press.com/Publications/books

AMSTERDAM—PARIS—BEIJING
ATLANTIS PRESS
Atlantis Press
29, avenue Laumière
75019 Paris, France

More information about this series at <http://www.atlantis-press.com>

Mohammad Ahsanullah

Characterizations of Univariate Continuous Distributions

Mohammad Ahsanullah
Department of Management Sciences
Rider University
Lawrenceville, NJ
USA

ISSN 1879-6893 ISSN 1879-6907 (electronic)
Atlantis Studies in Probability and Statistics
ISBN 978-94-6239-138-3 ISBN 978-94-6239-139-0 (eBook)
DOI 10.2991/978-94-6239-139-0

Library of Congress Control Number: 2017934309

© Atlantis Press and the author(s) 2017

This book, or any parts thereof, may not be reproduced for commercial purposes in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system known or to be invented, without prior permission from the Publisher.

Printed on acid-free paper

*To my grand children, Zakir, Samil, Amil
and Julian.*

Preface

Characterization of distributions plays an important role in statistical science. Using the basic properties of data, characterizations provide the type of distributions of that data set. Significant findings in this area have been published over the last several decades, and this book serves to be an extensive compilation of many important characterizations of univariate continuous distributions. Chapter 1 presents basic properties common to all univariate continuous distributions, while Chap. 2 discusses the properties of some select important distributions. Chapter 3 discusses ways to use independent copies of random variables to characterize distributions. Chapters 4–6 characterize distributions using order statistics, record values, and generalized order statistics, respectively.

I would like to thank Prof. Chris Tsokos for his encouragement to publish a book on characterization of distributions and Zeger Karssen of Atlantis Press for his support of this publication. I would also like to thank my wife Masuda for all her support. Finally, I would like to thank Rider University for a summer grant and a sabbatical leave that provided resources for me to complete this book.

Lawrenceville, NJ, USA
December 2016

Mohammad Ahsanullah

Contents

1	Introduction	1
1.1	Distribution of Univariate Continuous Distribution	1
1.2	Moment Generating and Characteristic Functions	1
1.3	Some Reliability Properties	2
1.4	Cauchy Functional Equations	3
1.5	Order Statistics	4
1.6	Record Values	5
1.7	Generalized Order Statistics	10
1.8	Lower Generalized Order Statistics (Lgos)	12
1.9	Some Useful Functions	15
2	Some Continuous Distributions	17
2.1	Beta Distribution	17
2.2	Cauchy Distribution	18
2.3	Chi-Squared Distribution	19
2.4	Exponential Distribution	20
2.5	F-Distribution	22
2.6	Gamma Distribution	23
2.7	Gumbel Distribution	24
2.8	Inverse Gaussian (Wald) Distribution	25
2.9	Laplace Distribution	26
2.10	Logistic Distribution	27
2.11	Lognormal Distribution	28
2.12	Normal Distribution	29
2.13	Pareto Distribution	30
2.14	Power Function Distribution	31
2.15	Rayleigh Distribution	32
2.16	Student's t-Distribution	33
2.17	Weibull Distribution	33

3 Characterizations of Distributions by Independent Copies	35
3.1 Characterization of Normal Distribution	35
3.2 Characterization of Levy Distribution	44
3.3 Characterization of Wald Distribution	45
3.4 Characterization of Exponential Distribution	46
3.5 Characterization of Symmetric Distribution	48
3.6 Charactetization of Logistic Disribution	49
3.7 Characterization of Distributions by Truncated Statistics	49
3.7.1 Characterization of Semi Circular Distribution	51
3.7.2 Characterization of Lindley Distribution	51
3.7.3 Characterization of Rayleigh Distribution	53
4 Characterizations of Univariate Distributions by Order Statistics	55
4.1 Characterizations of Student's t Distribution	55
4.2 Characterizations of Distributions by Conditional Expectations (Finite Sample)	59
4.3 Characterizations of Distributions by Conditional Expectations (Extended Sample)	61
4.4 Characterizations Using Spacings	62
4.5 Characterizations of Symmetric Distribution Using Order Statistics	65
4.6 Characterization of Exponential Distribution Using Conditional Expectation of Mean	66
4.7 Characterizations of Power Function Distribution by Ratios of Order Statistics	67
4.8 Characterization of Uniform Distribution Using Range	69
4.9 Characterization by Truncated Order Statistics	71
5 Characterizations of Distributions by Record Values	73
5.1 Characterizations Using Conditional Expectations	73
5.2 Characterization by Independence Property	76
5.3 Characterizations Based on Identical Distribution	82
6 Characterizations of Distributions by Generalized Order Statistics	89
6.1 Characterizations by Conditional Expectations	89
6.2 Characterizations by Equality of Expectations of Normalized Spacings	95
6.3 Characterizations by Equality of Distributions	95
References	99
Index	125

Chapter 1

Introduction

In this chapter some basic materials will be presented which will be used in the book. We will restrict ourselves to continuous univariate probability distributions.

1.1 Distribution of Univariate Continuous Distribution

Let X be an absolutely continuous random variable with cumulative distribution function (cdf) $F(x)$ and probability density function (pdf) $f(x)$. We define

$F(x) = P(X \leq x)$ for all x , $-\infty < x < \infty$ and $f(x) = \frac{d}{dx}F(x)$. $F(x)$ has the following properties

(i) $0 \leq F(x) \leq 1$

$$\lim_{x \rightarrow -\infty} F(x) = 0 \text{ and } \lim_{x \rightarrow \infty} F(x) = 1$$

(ii) $F(x)$ is non decreasing

(iii) $F(x)$ is right continuous, $F(x) = F(x + 0)$ for all x .

1.2 Moment Generating and Characteristic Functions

The moment generating function $M_X(t)$ of the random variable X with pdf $f_X(x)$ is defined as

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx, \quad -\infty < t < \infty$$

provided the integral converge absolutely. $M_X(0)$ always exists and equal to 1.

The characteristic function $\varphi_X(t)$ of a random variable with pdf $f(x)$ always exists and it is given by

$$\varphi_X(t) = \int_{-\infty}^{\infty} e^{itx} f_X(x) dx, \quad -\infty < t < \infty.$$

The characteristic function has the following properties:

- (i) A characteristic function is uniformly continuous on the entire real line,
- (ii) It is non vanishing around zero and $\varphi_X(0) = 1$,
- (iii) It is bounded, $|\varphi_X(t)| \leq 1$,
- (iv) It is Hermitian,

$$\varphi_X(-t) = \overline{\varphi_X(t)},$$

- (v) If a random variable has k th moment, then $\varphi_X(t)$ is k times differentiable on the entire real line,
- (vi) If the characteristic function $\varphi_X(t)$ of a random variable X has k -th derivative at $t = 0$, then the random variable X has all moments up to k if k is even and $k - 1$ if k is odd.

A necessary and sufficient condition for two random variables X_1 and X_2 to have identical cdf is that their characteristic functions be identical.

There is a one to one correspondence between the cumulative distribution function and characteristic function.

Theorem 1.2.1 *If characteristic function $\varphi_X(t)$ is integrable, then $F_X(x)$ is absolutely continuous, and X has the probability density function $f_X(x)$ that is given by*

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi_X(t) dt$$

1.3 Some Reliability Properties

Hazard Rate

The hazard rate ($r(t)$) of a positive random variable random variable with $F(0) = 0$ is defined as follows.

$$r(t) = \frac{f(t)}{F(t)}, \quad \overline{F}(t) = 1 - F(t), \text{ provided } \overline{F}(x) \text{ is not zero.}$$

By integrating both sides of the above equation, we obtain

$$\overline{F}(x) = \exp\left(- \int_0^x r(t) dt\right).$$

An alternative representation is

$$1 - F(x) = e^{-R(x)}. R(x) = -\ln(1 - F(x)).$$

We will say that the random variable X belongs to class C_1 if the hazard rate is monotonically increasing or decreasing.

New Better (Worse) Than Used (NBU(NWU))

A cumulative distribution function $F(x)$ is NBU(NWU) if

$$\bar{F}(x+y) \leq (\geq) \bar{F}(x)\bar{F}(y), \text{ for } x \geq 0, y \geq 0.$$

We will say the random variable X whose cdf $F(x)$ belongs to the class C_2 if it is NBU or NWU.

Memoryless Property

Suppose the random variable X has the property

$P(X > t + s | X > t) = P(X > s)$ for all $s, t \geq 0$, then we say that X has memory less property.

The exponential distribution with $F(x) = 1 - e^{-(x-\mu)/\sigma}$ for $\sigma > 0$, $-\infty < x < \mu < \infty$. is the only continuous distribution that has this memoryless property.

1.4 Cauchy Functional Equations

We will consider the following three Cauchy functional equations for a non zero continuous function $g(x)$.

$$(i) \quad g(x+y) = g(x) + g(y), \quad x \geq 0, y \geq 0$$

$$(ii) \quad g(xy) = g(x) + g(y), \quad x \geq 0, y \geq 0$$

$$(iii) \quad g(xy) = g(x)g(y), \quad x \geq 0, y \geq 0$$

We will take the solutions as of the functional equations as $g(x) = e^{cx}$, $g(x) = cln(x)$ and $g(x) = x^c$, where c is a constant respectively. For details about the solutions see Aczel (1966).

1.5 Order Statistics

Let X_1, X_2, \dots, X_n be independent and identically distributed (i.i.d.) absolutely continuous random variables. Suppose that $F(x)$ be their cumulative distribution function (cdf) and $f(x)$ be the their probability density function (pdf). Let $X_{1,n} \leq X_{2,n} \leq \dots \leq X_{n,n}$ be the corresponding order statistics. We denote $F_{k,n}(x)$ and $f_{k,n}(x)$ as the cdf and pdf respectively of $X_{k,n}$, $k = 1, 2, \dots, n$. We can write

$$f_{k,n}(x) = \frac{n!}{(k-1)!(n-k)!} (F(x))^{k-1} (1-F(x))^{n-k} f(x),$$

The joint probability density function of order statistics $X_{1,n}, X_{2,n}, \dots, X_{n,n}$ has the form

$$f_{1,2,\dots,n,n}(x_1, x_2, \dots, x_n) = n! \prod_{k=1}^n f(x_k), \quad -\infty < x_1 < x_2 < \dots < x_n < \infty$$

and

$$= 0, \text{ otherwise}$$

There are some simple formulae for pdf's of the maximum ($X_{n,n}$) and the minimum ($X_{1,n}$) of the n random variables.

The pdfs of the smallest and largest order statistics are given respectively as

$$f_{1,n}(x) = n(1-F(x))^{n-1} f(x)$$

and

$$f_{n,n}(x) = n(F(x))^{n-1} f(x)$$

The joint pdf $f_{1,n,n}(x, y)$ of $X_{1,n}$ and $X_{n,n}$ is given by

$$f_{1,n}(x, y) = n(n-1)(F(y) - F(x))^{n-2} f(x) f(y),$$

$$-\infty < x < y < \infty.$$

Example 1.5.1. Exponential distribution.

Suppose that X_1, X_2, \dots, X_n are n i.i.d. random variables with cdf $F(x)$ as

$$F(x) = 1 - e^{-x}, \quad x \geq 0$$

The pdfs $f_{1,n}(x)$ of $X_{1,n}$ and $f_{n,n}(x)$ are respectively