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Preface

Characterization of distributions plays an important role in statistical science. Using
the basic properties of data, characterizations provide the type of distributions of
that data set. Significant findings in this area have been published over the last
several decades, and this book serves to be an extensive compilation of many
important characterizations of univariate continuous distributions. Chapter 1 pre-
sents basic properties common to all univariate continuous distributions, while
Chap. 2 discusses the properties of some select important distributions. Chapter 3
discusses ways to use independent copies of random variables to characterize
distributions. Chapters 4-6 characterize distributions using order statistics, record
values, and generalized order statistics, respectively.

I would like to thank Prof. Chris Tsokos for his encouragement to publish a book
on characterization of distributions and Zeger Karssen of Atlantis Press for his
support of this publication. I would also like to thank my wife Masuda for all her
support. Finally, I would like to thank Rider University for a summer grant and a
sabbatical leave that provided resources for me to complete this book.

Lawrenceville, NJ, USA Mohammad Ahsanullah
December 2016
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Chapter 1
Introduction

In this chapter some basic materials will be presented which will be used in the
book. We will restrict ourselves to continuous univariate probability distributions.

1.1 Distribution of Univariate Continuous Distribution

Let X be an absolutely continuous random variable with cumulative distribution
function (cdf) F(x) and probability density function (pdf) f(x). We define

F(x)=P(X<x) for all X, —co<x<oo and f(x)=4£F(x). F(x) has the
following properties

@ 0<Fx <1

lim F(x)=0and lim F(x)=1

X— — X— 00

(i) F(x) is non decreasing
(iii) F(x) is right continuous, F(x) = F(x + 0) for all x.

1.2 Moment Generating and Characteristic Functions

The moment generating function Mx(t) of the random variable X with pdf fx(x) is
defined as

Mx(t)=/ e"fx(x)dx, —oco<t<oo

provided the integral converge absolutely. Mx(0) always exists and equal to 1.
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2 1 Introduction

The characteristic function ¢y () of a random variable with pdf f(x) always exits
and it is given by

ox(t) = / ey (x)dx, —oo<t<oo.

— 00
The characteristic function has the following properties:

(1) A characteristic function is uniformly continuous on the entire real line,
(i) It is non vanishing around zero and ¢y (0)=1,
(iii) It is bounded, |y (1) <1,
@iv) It is Hermitian,

ox(—1)=qx(1),

(v) If a random variable has kth moment, then @y (¢) is k times differentiable on
the entire real line,
(vi) If the characteristic function ¢y () of a random variable X has k-th derivative
at t = 0, then the random variable X has all moments up to k if k is even and
k — 1 if k is odd.

A necessary and sufficient condition for two random variables X; and X, to have
identical cdf is that their characteristic functions be identical.

There is a one to one correspondence between the cumulative distribution
function and characteristic function.

Theorem 1.2.1 If characteristic function @y (t) is integrable, then Fx(x) is abso-
lutely continuous, and X has the probability density function fx(x) that is given by

felo) = 2 / T e gy (i)

:g .

1.3 Some Reliability Properties

Hazard Rate
The hazard rate (r(t)) of a positive random variable random variable with
F(0) = 0 is defined as follows.

r(t) = %, F(t)=1-F(t), provided F(x) is not zero.
By integrating both sides of the above equation, we obtain

F(x)=exp(— /Ox r(t)dr).
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An alternative representation is

1 —F(x)=e ®® R(x) = —In(1 = F(x)).

We will say that the random variable X belongs to class C; if the hazard rate is
monotonically increasing or decreasing.

New Better (Worse) Than Used (NBU(NWU))
A cumulative distribution function F(x) is NBUNWU) if

F(x+y) <(>)F(x)F(y), for x>0,y>0.
We will say the random variable X whose cdf F(x) belongs to the class C, if it is
NBU or NWU.

Memoryless Property
Suppose the random variable X has the property

PX>t+sIX>1t)=PX > s)foralls,t > 0, then we say that X has memory
less property.

The exponential distribution with F(x) =1 — e~ =1/ for 6>0, —c0 <x<
u < oo. is the only continuous distribution that has this memoryless property.

1.4 Cauchy Functional Equations

We will consider the following three Cauchy functional equations for a non zero
continuous function g(x).

(i) gx+y)=g(x)+g(y), x=0,y=0
(i) g(xy)=g(x)+g(y),x=0, y>0

(iii) g(xy)=g(x)g(y),x=0, y=0

We will take the solutions as of the functional equations as g(x)=e,
g(x) =cin(x) and g(x) =x°, where c is a constant respectively. For details about the
solutions see Aczel (1966).



4 1 Introduction

1.5 Order Statistics

Let X;, X,...,X,, be independent and identically distributed (i.i.d.) absolutely
continuous random variables. Suppose that F(x) be their cumulative distribution
function (cdf) and f(x) be the their probability density function (pdf). Let X; , <
Xom < -+ < Xy, be the corresponding order statistics. We denote Fy ,(x) and
finX) as the cdf and pdf respectively of Xy, k = 1,2,...,n. We can write

fon() = e (B0 (1= F()) (),

(k—1)1(n—k)

The joint probability density function of order statistics X; ,,, X ....X,,, has the
form

n
Nz nn(xxa, xg) =0 T f(x), —o0<xp <xp <+ <X, <00
k=1

and
=0, otherwise
There are some simple formulae for pdf’s of the maximum (X,,) and the

minimum (X, ,) of the n random variables._
The pdfs of the smallest and largest order statistics are given respectively as

frn(x)=n(1=Fx)""'f(x)
and
Frn(®)=n(F(x)" " f(x)
The joint pdf f; ,,, (X, y) of X;, and X,,, is given by

A y) =n(n=1)(F(y) = F(x))" "> f(x)f(y),

—00<x<y<oo.

Example 1.5.1. Exponential distribution.

Suppose that X, X,,...,X,, are n i.i.d. random variables with cdf F(x) as
Fx)=1-e"",x>0

The pdfs f; ,(x) of X;, and f,,, (X) are respectively



