
Dirk Draheim

Semantics of the
Probabilistic
Typed Lambda Calculus
Markov Chain Semantics, Termination
Behavior, and Denotational Semantics

Semantics of the Probabilistic
Typed Lambda Calculus

Dirk Draheim

Markov Chain Semantics, Termination
Behavior, and Denotational Semantics

Semantics of the
Probabilistic
Typed Lambda Calculus

Dirk Draheim
Large-Scale Systems Group
Tallinn University of Technology
Tallinn, Estonia

ISBN 978-3-642-55197-0 ISBN 978-3-642-55198-7 (eBook)
DOI 10.1007/978-3-642-55198-7

Library of Congress Control Number: 2017932370

© Springer-Verlag Berlin Heidelberg 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors
or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Preface

Today’s information systems operate in probabilistic environments. Programs
need to react to probabilistic events. Therefore, a rigorous understanding of
probabilistic program behavior becomes ever more important. Probabilistic
programming is relevant in its own right, as a means to implement random-
ized algorithms. This book takes a foundational approach to the semantics
of probabilistic programming. It deals with the probabilistic typed lambda
calculus, which is the typed lambda calculus with recursion plus probabilistic
choice.

We elaborate a Markov chain semantics for the probabilistic lambda cal-
culus. As part of this operational semantics, we define a reduction semantics
and an evaluation semantics in terms of Markov chain hitting probabilities.
The Markov chain semantics unlocks probability theory and Markov chain
theory to be used in reasoning about probabilistic programs. Also, we intro-
duce the notions of reduction graphs and reduction trees. Reduction graphs
and reduction trees are not part of but rather accompany the Markov chain
semantics. They unlock results from graph theory. These prove useful, e.g., in
reasoning about termination behavior. On the basis of this, we investigate the
termination behavior of probabilistic programs. We introduce the notions of
termination degree, bounded termination and path stoppability and investi-
gate their mutual relationships. Path stoppability characterizes a broadened
class of termination and allows for the computation of program runs that are
otherwise considered as non-terminating.

Furthermore, we elaborate a denotational semantics for the probabilistic
lambda calculus. The domains of this denotational semantics are probabilistic
pre-distributions as base domains and ω-continuous function spaces as higher-
type domains. We show the basic correspondence between the denotational
semantics and the established Markov chain semantics.

Tallinn, November 2016 Dirk Draheim

V

Contents

1 Introduction . 1
1.1 Motivation . 3
1.2 The Probabilistic Lambda Calculus . 5
1.3 Termination Behavior of Probabilistic Programs 9
1.4 Denotational Semantics . 11
1.5 Chapter Outline and Further Remarks . 14

2 Preliminary Mathematics . 17
2.1 Probability Theory . 18
2.2 Markov Chains . 23
2.3 Graph Theory . 33
2.4 Inductive Definitions . 39
2.5 Miscellaneous . 59

3 Syntax and Operational Semantics . 65
3.1 Syntax of the Probabilistic Lambda Calculus 66
3.2 Operational Semantics of the Typed λ-Calculus 73
3.3 The Probabilistic Operational Semantics 76
3.4 Important Readings . 91

4 Termination Behavior . 93
4.1 Introductory Examples of Termination Behavior 96
4.2 Bounded and Unbounded Termination . 101
4.3 Program Executions and Program Runs . 103
4.4 The Reduction Graph . 107
4.5 Central Graph Cover Lemmas . 115
4.6 Path Stoppability . 120
4.7 Program Reduction Trees . 127
4.8 Characteristics of Bounded Termination . 131

VII

VIII Contents

5 Denotational Semantics . 135
5.1 Domains and Denotations . 136
5.2 Well-Definedness of the Denotational Semantics 145
5.3 Semantic Correspondence . 157
5.4 Important Readings on Domains and Probabilism 189

References . 193

Index . 211

1

Introduction

In this book, we are interested in systems that consist of programmable com-
ponents and encounter probabilistic impact. We find such systems in many
application areas, i.e., whenever a software-intensive system operates in a
dynamic, vague environment: control systems, production systems, logistics
systems, socio-technical systems of any kind. Also, the components of these
systems themselves may show probabilistic behavior. However, probabilistic
programs are interesting also in their own right, i.e., even if the probabilism is
not a circumstance that we need to deal with, but is generated for the sake of
probabilistic programming itself. This is the field of randomized algorithms.
Randomized algorithms become ever more important in practice, in particu-
lar, in the field of cryptographic systems. In this book, we are interested in
the semantics of probabilistic programs. And we are interested in systematic
reasoning about probabilistic programs.

We take a foundational, completely reductionist approach. We narrow our
investigation to a maximally reductionist programming language, the typed
lambda calculus with recursion. We enrich this lambda calculus by a single
programming construct for probabilistic choice, which yields the probabilistic
typed lambda calculus, which we also often call just the probabilistic lambda
calculus for short. We investigate both the operational semantics and the de-
notational semantics of the resulting calculus. First, we will delve into the
operational semantics. On top of its basic operational semantics, we system-
atically give a Markov chain semantics to the probabilistic lambda calculus.
This way we unlock the whole machinery of probability theory, in general, and
Markov chains, in particular, for reasoning about probabilistic program sys-
tems. We use this mathematical machinery to systematically investigate the
termination behavior of probabilistic programming systems. We will come
up with a broadened notion of termination, so-called path stoppability. Path
stoppable programs have a finite term cover, therefore, linear algebra can
be exploited to determine the probability with which program outcomes are
reached. Our investigation yields a precise infinitesimal understanding of the
termination degree of a program.

© Springer-Verlag Berlin Heidelberg 2017
D. Draheim, Semantics of the Probabilistic Typed Lambda Calculus,
DOI 10.1007/978-3-642-55198-7_1

1

2 1 Introduction

Next, we will define a denotational semantics of the probabilistic lambda
calculus. Denotational semantics is the Scott-Strachey approach to the se-
mantics of programming languages [243]. The mathematical beauty of deno-
tational semantics stems from its compositionality resp. de-compositionality.
A denotational semantics is given inductively along the abstract syntax of
a programming language. It establishes a correspondence of syntactical and
semantical constructors. This way, a denotational semantics achieves imple-
mentation independency [238], i.e., it can be considered the specification
of a programming language. Denotational semantics has developed into the
de facto standard for the investigation of programming language semantics,
see [192, 253, 224, 117, 103, 118]. Moreover, denotational semantics gave rise
to domain theory, see [239, 240, 105, 116, 106] and also [224, 117, 3]. Domain
theory provides and investigates appropriate mathematical structures for pro-
gramming language semantics. However, domain theory is not only important
when teamed together with denotational semantics, rather, it yielded impor-
tant results in its own right. Most importantly, in [240] Dana Scott found
a model for the untyped lambda calculus. In [242], Dana Scott incorporates
probabilism into such a model. This way, the semantics for untyped prob-
abilistic lambda calculi, called stochastic lambda calculi in [242], has been
achieved.

In this book we deal with the typed probabilistic lambda calculus. And also
with respect to denotational semantics we only deal with the typed version
of the probabilistic lambda calculus. We will define a denotational seman-
tics for the probabilistic lambda calculus based on ω-cpos (ω-complete partial
orders). We use pure probability pre-distributions as ω-cpos . In the case of
call-by-name semantics the probabilistic choices at higher types can be flat-
tened denotationally to probabilistic choices of ground type. This way, in case
of call-by-name we need distributions only in the construction of the base do-
mains but no nested constructions as higher types. Also, we prove the basic
corresponce between the denotational semantics and our operational Markov
chain semantics.

In the upcoming sections we will give a more detailed overview of the
motivation and the contributions as well as pointers to important literature. In
Sect. 1.1 we motivate the book’s investigations from the perspective of system
simulation and system analytics as well as from the perspective of randomized
algorithms. In Sect. 1.2 we outline the probabilistic lambda calculus and its
Markov chain semantics. In Sect. 1.3 we explain what will be achieved with
respect to the analysis of termination behavior of probabilistic programs. In
Sect. 1.4 we give an outline of our denotational semantics. In Sect. 1.5 we give
further remarks on the book’s content and provide a chapter outline of the
book.

1.1 Motivation 3

1.1 Motivation

In the IT sector, we have many systems that are mere data-processing sys-
tems. Their task is to capture some data, maybe transactional, and to process
and keep them for us [83, 82, 34, 89, 86, 79, 78]. We may find such systems
in enterprise computing [85, 84, 75, 10], e.g., enterprise resource-planning sys-
tems, customer relationships management systems, any kind of master data
management systems, e.g., identity management systems, any kind of data
repositories, optical archives, information bases and so forth. Of course, all of
these systems are no silos and offer interfaces to their environments. They are
used by humans and also other information systems. However, the interaction
with such systems is usually confined to data access.

On the other hand, we see many software-intensive systems that are highly
engaged, i.e., actively engaged, with their environment. They react to external
triggers. They adapt to the changing state of their environment. This is, in
a sense, the realm of agent-oriented systems [261, 132, 133]. Examples stem
from the field of control systems, robotics, manufacturing execution systems,
production planning systems or logistics systems. The degree of interaction,
e.g., in terms of frequency, reaction time or criticality may greatly vary. Also,
the frontiers to the data-processing systems mentioned above vanish more and
more in today’s system landscapes: business process management systems [74,
7, 10, 73] become adaptive [167, 229, 260, 76, 135, 88, 8, 80], decision support
systems become reactive [120, 256], etc. In general, IT systems become ever
more adaptive. With cloud computing [100, 77], elasticity of IT infrastructure
has become mainstream [188].

Also, we might want to deal with internal components of the system that
show probabilistic behavior, i.e., we need to deal not only with external but
also internal probabilistic events.

The described systems are all highly relevant and there are two very impor-
tant and huge communities that deal with them, i.e., the community of model
checking and the community of model-based design. We will give some further
remarks on model checking and model-based design together with hints to
the respective literature in due course in Sect. 1.5. On the programming side,
reaction to probabilistic events always gives rise to non-determinism. If we
know the statistical distribution of the relevant external events this opens the
opportunity of probabilistic reasoning about the overall system. If we have
a rigorous model of how probabilities propagate through the programmed
systems, we can make assumptions on program outcomes and overall sys-
tem behavior. Given the Six Sigma approach [125, 126] the potential of such
statistically founded reasoning should be immediately clear for the field of
numerical control and manufacturing execution systems. Consider an exam-
ple from a higher-level use case, i.e., from the domain of logistics. Consider a
stock management system. A stock management system would react to events
concerning the amount of incoming goods, overrunning or too scarce stock-
piles and maybe other variable resources such as availability of employees and

4 1 Introduction

so forth. Based on that it would automatically order goods or re-distribute
goods. Now, as a mature option, the dataflow through a single storage could
be modeled with queueing theory [101, 115, 268, 31], also, the supply chain
consisting of a network of several storages could be modeled as a net of queues.
Other options to model the storages and their network exist. For example, we
could try to exploit stochastic extensions of Petri nets [119, 64, 13] or stochas-
tic extensions of process algebra [107, 134, 50] for this endeavor. Anyhow, our
reasoning about the programmed system in the single stores should fit into
the overall probabilistic model to enable seamless reasoning. Therefore, we
need a rigorous semantics of the programmed system involving probabilities.
Our approach is reductionist. We will choose the lambda calculus as a can-
didate for our investigations. We will extend it by a probabilistic choice and
give a Markov chain semantics to it. A probabilistic choice can be thought
of as an input channel, yielding a reductionist, binary external information
“left” or “right”, i.e., the decision where to move next. This approach can be
considered a first, fundamental step in the direction of an overall target – the
switch from simulation of systems to a systematic analytical approach.

By the way, against the background of the above storage example, it is
worth noting that there exist several business-process-modeling tools that
offer features for process simulation. Simulation is exactly about forecasting
the behavior of the modeled system like the flow of goods through a net
of storages as described above. However, to our best knowledge, we do not
know of a single business-process-modeling tool that incorporates queueing
theory to support an analytical approach. This means, although with queueing
theory we have a powerful tool to analyze systems, queueing theory is not yet
consumable, i.e., it is not yet brought to the end-user, not yet brought to the
average domain expert working in the field. Now, in computer science, or, to
be more precise, in the field of software engineering, we actually have a long
tradition in approaching simulation systematically. The original motivation of
the first object-oriented programming language SIMULA [212] was to create
a framework and language for system simulation. So, approaching simulation
systematically was at the root of the early object-oriented paradigm. Only
later, object-oriented programming turned into a paradigm of reusable [104],
self-responsible software components that was particularly well-suited to serve
the needs of upcoming object-oriented user interfaces. The original motivation
towards system simulation has been a little bit forgotten in the object-oriented
programming languages and design community. Instead, we can recognize the
simulation approach as a basis of the agent-oriented system and modeling
paradigm [261]. Nevertheless, in a sense, the original vision of SIMULA simply
has been turned into reality. Today’s object-oriented programming languages
are mature candidates to specify executable system models – it’s just about
programming. What we need is to raise the level to system analytics. And
there is a need to do this systematically, by building analytical features into
existing programming and modeling environments. Even better, we should

1.2 The Probabilistic Lambda Calculus 5

think about systematically applying automatic or semi-automatic reasoning
platforms [40, 39, 209] in the field of software-intensive systems.

So far, we have considered probabilistic programming languages as em-
bedded into probabilistic environments. Here, the probabilistic programming
language is used to program components that have to react to probabilistic
events. In this perspective, our reductionist probabilistic choice models an in-
put channel that delivers information about events from the environment to
the programmed component. However, probabilistic programming is impor-
tant in its own right, in order to program algorithms stand-alone, without
relationship to an environment. Here, the probabilistic choice is fed by a ran-
dom generator, i.e., it is a programming element instead of representing an
information channel to an outside system. This is the field of randomized
algorithms. Randomized algorithms can speed up the solution of problems
dramatically, at the price of yielding an erroneous result occasionally. For
a seminal work on randomized algorithms see [226] by Michael O. Rabin,
see also the work of Andrew C. Yao in [264] as well as Andrew C. Yao and
F. Frances Yao in [265, 266]. The classical example of randomized algorithms
is about primality testing, approached by Solovay and Strassen in [248] and
Michael O. Rabin in [227]. For an overview on the topic of randomized al-
gorithms see [205] and also [148]. For a thorough treatment of randomized
algorithms including many use cases, see [204]. An introduction to the com-
plexity theory of randomized algorithms can be found in the standard text
book on automata theory [137].

Now, a formal semantics of probabilistic programming languages also
allows for reasoning about randomized algorithms. Reductionist models of
randomized algorithms have been given as probabilistic automata in [68]
and [225]. For a formal treatment of complexity of randomized algorithms
see the seminal text book on automata and language theory by Hopcroft,
Motwani and Ullman [137], which encompasses the definition of complexity
classes on the basis of the probabilistic Turing machine. An important source
concerning the complexity theory of randomized algorithms can be found in
the quantum computing literature. See [208] for a comprehensive text book
on quantum computing and [25] for a survey of quantum computing com-
plexity theory that also clarifies the relationship between the complexity of
randomized algorithms and the complexity of quantum computing algorithms.

1.2 The Probabilistic Lambda Calculus

The typed lambda calculus with recursion can be considered a most reduc-
tionist functional programming language. It can be considered the essence of
functional programming languages like ML [190, 111, 193] and Haskell [138],
compare also with [24, 23, 102]. Furthermore, the typed lambda calculus with
recursion has been subject to intensive investigation in the semantics of pro-
gramming language community, where it is also called PCF (Programming

6 1 Introduction

Language for Computable Functions) [223] on many occasions. Therefore, we
have chosen it as our candidate for investigating the semantics of probabilis-
tic computation. It is the task of this section to explain how the probabilistic
lambda calculus emerges as an extension of the typed lambda calculus with
recursion, see Figs. 1.1 and 1.2. We have preferred the probabilistic lambda
calculus over other options such as the probabilistic Turing machine [68, 225].
As opposed to the Turing machine, the lambda calculus comes with a particu-
lar 3GL (third generation language) or even 4GL (fourth-generation language)
look and feel, albeit in a most reductionist form. Programs of the probabilistic
lambda calculus are particularly intuitive and easy to read, because of their
high similarity to the mathematical notation of recursive functions. Similarly,
the probabilistic lambda calculus is particularly amenable to a denotational
treatment that we will also provide in this book.

1.2.1 The Typed Lambda Calculus with Recursion

The lambda calculus in its original form, as introduced by Alonzo Church [47,
48], is an untyped language. If the lambda calculus is enriched by a type
system, it is also called the simply typed lambda calculus [19]. In order to
gain a Turing-complete typed calculus, an explicit recursion construct μ is
added to the simply typed lambda calculus. Then, the resulting calculus is
usually called the typed lambda calculus with recursion. Henceforth, we will
also refer to this calculus simply as the lambda calculus or λ-calculus if it is
clear from the context which calculus we mean.

Basically, the lambda calculus is introduced as a syntax and its operational
semantics – see Fig. 1.1. The syntax is defined as context-free syntax plus a
type system which specifies the notion of well-typed term. The operational
semantics is introduced in two stages. First, the so-called immediate reduction
relation is defined. This specifies which single steps are possible between terms.
Actually, the immediate reduction relation is a partial function from terms
to terms. The constants are considered the result values of programs. The
constants and all of those terms that are outermost abstractions are the so-
called values of the lambda calculus. It is not possible to do a further step from
a value. Values stop computations. For each other term M there exists exactly
one successor term N to which a next step is possible, which is denoted by
M −→ N . This right-uniqueness of the immediate reduction relation makes the
considered lambda calculus a deterministic calculus. The considered lambda
calculus is deterministic, because a concrete reduction strategy, in our case
call-by-name, is fixed for it.

The immediate reduction relation forms the first stage of the lambda cal-
culus’ operational semantics. As the second stage the reduction relation is
defined as the transitive, reflexive closure of the immediate reduction rela-
tion. We say that a term M reduces to another term N if it is connected to
it – in the correct direction – via the reduction relation, which is denoted by

1.2 The Probabilistic Lambda Calculus 7

type system

 -calculus
context-free syntax

M N
immediate reduction relation

M N
reduction relation

Fig. 1.1. Syntax and semantics of the λ-calculus

M
�−→ N . We then also say that N is reachable from M . It is very interest-

ing to recognize that the specification of the immediate reduction relation is
already sufficient for an implementation of the lambda calculus as a program-
ming language. It might be a bit unfair, but we could say that the reduction
relation does not add anything else but some terminology, i.e., the notion of
reachability of terms. It is actually unfair, because semantics is, first, about
the agreement of what we actually intend with a formal language and, sec-
ond, a means to get access to further semantical tools that can be used in
reasoning about the program. Obviously, we need to agree upon the notion of
program results and, furthermore, an understanding of the reduction relation
as a transitive closure will be needed in formal argumentations on program
behavior. Nevertheless, the definition of the immediate reduction relation is
not sufficient for all investigations of program behavior that we might want to
conduct. Further notions, such as program reduction trees, are usually defined
on top of it to gain appropriate mathematical tools for program reasoning.
Anyhow, it is worth noting that with respect to the behavior of programs,
the immediate reduction relation is already a complete specification. This
viewpoint will also be useful in the comparison with the probabilistic lambda
calculus in due course.

In general, it is not necessary to fix a reduction strategy for a lambda calcu-
lus, so that a lambda calculus may encounter some level of non-determinism.
However, such non-determinism does no harm, or, to say it better, makes no
difference with respect to the program outcomes. This is so due to the Church-
Rosser property [49]. If a program is able to reduce to a constant, i.e., if it
is a terminating program, then this constant is uniquely given. Furthermore,
we can reduce to it from any reachable intermediate term. However, the lat-
ter is not so important for us here. What interests us here is the uniqueness
of terminating program outcomes. This actually guarantees a certain level of
determinism. With respect to terminating program results, each lambda cal-
culus is deterministic, independent of the chosen reduction strategy. And here
also lies the difference between the non-determinism encountered in lambda

8 1 Introduction

calculi in general as opposed to the probabilistic lambda calculus in this book.
In the probabilistic lambda calculus, a program may terminate with different
constants.

1.2.2 The Probabilistic Lambda Calculus Compared

Now, let us turn to the probabilistic lambda calculus, see Fig. 1.2. Syntacti-
cally, the probabilistic lambda calculus is just the typed lambda calculus with
recursion plus a program construct for probabilistic choice. Of course also the
type system is adjusted to the new terms. Now, for any two terms M and N ,
the term M |N denotes the probabilistic choice of M and N . Given a program
M |N , this program executes with fifty per cent probability as M and, equally,
with fifty per cent as N . Again, we give the semantics in two stages. First we
define a one-step semantics. However, this time the one-step semantics is a
total function that assigns to each pair of terms M and N the probability i
with which the program may move from M to N , which is then denoted by
M

i−→ N .
Of course, all terms of the plain lambda calculus are also terms of the

probabilistic lambda calculus. Each immediate reduction M −→ N can be
found in the probabilistic lambda calculus as step M

1−→ N . Of course, the
crucial difference lies in terms of the form M |N . In case that M �= N we
specify two possible reductions, i.e., a reduction M |N 0.5−−→M and a reduction
M |N 0.5−−→ N . For each term P that is different from both M and N , we define
an immediate one step reduction M |N 0−→ P to ensure that the one-step
reduction becomes a total function. In case of terms M |M we will introduce
a possible reduction M |M 1−→M . Again, for each term P different from M we
define a one-step reduction M |M 0−→ P .

On top of the one-step semantics we then define the Markov chain seman-
tics of the probabilistic lambda calculus, see Fig. 1.2. We take closed terms
of the probabilistic lambda calculus as the states of a Markov chain S. We
take the one-step semantics as the transition matrix of this Markov chain.
Now, we define the reduction semantics of the probabilistic lambda calculus
via hitting probabilities of the Markov chain. The probability to reduce from
a term M to a term N , denoted by M ⇒ N , is defined as the Markov chain’s
probability of starting in M and ever hitting N . With the Markov chain se-
mantics we inherit all results from probability theory and Markov chains for
reasoning about program behavior of probabilistic programs. For example,
we can determine reduction probabilities as least solutions of linear equation
systems.

In this book we consider the lambda calculus under the call-by-name strat-
egy. This is a very common choice: note that also PCF [223] is considered with
the call-by-name strategy. The choice of call-by-name is convenient. Actually,
the results on termination behavior in Chap. 4 are independent of the call-
by-name strategy, i.e., they would also hold under a concrete call-by-value

1.3 Termination Behavior of Probabilistic Programs 9

type system

probabilistic lambda calculus
context-free syntax

M N one-step semantics

S
Markov
chain

i

M N reduction semantics

Fig. 1.2. Syntax and semantics of the probabilistic lambda calculus

strategy. However, the choice of call-by-name is crucial for the denotational
semantics in Chap. 5. Here, the choice of call-by-value would result in different
domains than the chosen ones.

1.3 Termination Behavior of Probabilistic Programs

In the deterministic lambda calculus a program either terminates or does
not. Each program corresponds to exactly one program run. This is not so
any more with the probabilistic lambda calculus. Here, a program results, in
general, in one out of many possible program runs. It is the single program run
that may terminate or not. Now, a non-deterministic program may have some
terminating program runs plus some non-terminating program runs. However,
we will define the notion of termination degree for probabilistic programs. The
termination degree of a program is the probability that it will ever reach one
of the constant values. Or, to say it differently, the termination degree of a
program is the accumulated probability of all of its terminating program runs.

Let us coin the somehow artificial term of strictly terminating program.
We say that a program strictly terminates if all of its program runs termi-
nate. Actually, with respect to terminology we are in a bit of a dilemma. We
would like to avoid calling a non-deterministic program a terminating pro-
gram. The problem is that we have the interesting class of programs with
termination degree one. In this class, there are also programs that may have
a non-terminating program run. For example, the program M = μλx.(x|0)
has a termination degree of one, however, it also has a non-terminating pro-
gram run. The program M will reach the constant 0 with a hundred per

10 1 Introduction

cent probability. On the other hand M has a non-terminating program run
M

1−→ λx.(x|0)μλx.(x|0) 1−→ (M |x) 0.5−−→ M
1−→ · · · which is kept in an end-

less loop back to the starting term M . However, this terminating program
run has a probability of zero. Now, it would be fair to say that M is always
terminating, or just terminating for short. We prefer to say that M has a
termination degree of one and that a program that has no non-terminating
program runs is strictly terminating. All this has to do with the original ex-
plicatio of probability theory given by Kolmogorov in [163] as a model of
experimental data, and with how we usually speak about events that have
zero per cent probabilities as impossible events. The termination degree of M
equals the termination degrees of the programs μλx.0 and 0 in our semantics,
i.e., they are infinitesimally “equal”.

Based on the Markov chain semantics we will be able to identify a broad-
ened notion of termination, so-called path stoppability, see Fig. 1.3. Path
stoppability is a notion of program analysis. It allows us to stop some non-
terminating programs and to determine their termination degree. Let us walk
through the example programs given in Fig. 1.3. The program (λx.x)(0|1)
is a strictly terminating program. All of its program runs terminate. This is
not so for the program M = μλx.(x|0). We have just discussed that this pro-
gram has a non-terminating program run. We will design an algorithm, let us
call it the path-stopping algorithm, that dovetails a given non-deterministic
program and detects and stops all of its endlessly looping program runs. We
will show that this algorithm terminates for all of those programs that have
a finite cover. The path-stopping algorithm implements a program analysis.
Now, program M has a finite cover, and therefore it is stoppable by the path-
stopping algorithm. It falls into the class of path stoppable programs. This is
not so for the program (μλx.(+1(x) | 0)). The cover of this program contains
infinitely many terms, e.g., all terms of the form +1n(0) for each number n.

The notion of path stoppability also applies to deterministic lambda pro-
grams. We have given the corresponding examples in Fig. 1.3. The program
(λx.x)0 serves as an example for strictly terminating programs, the most
simple non-terminating program μλx.x as an example for path stoppable pro-
grams and the program μλx.+ 1(x) as an example for programs that are not
path stoppable.

For path stoppable programs, it is possible to compute their termination
degrees. As a consequence, it is possible to compute all reduction probabili-
ties for path stoppable programs. We will also speak of path computability or
p-computability of reduction probabilities. In order to investigate the termi-
nation behavior of probabilistic programs as just outlined, we will need results
from graph theory. Therefore, the Markov chain semantics is teamed together
with the notion of reduction graph and the notion of reduction tree – see
Fig. 1.4. We will interpret the one-step semantics as a graph, the so-called re-
duction graph R. Based on that we will precisely define program executions,
program runs and term covers. We will tightly integrate the graph seman-

1.4 Denotational Semantics 11

probabilistic lambda calculus

-calculus

strictly
terminating

programs

path stoppable
programs

x.x)0x.x)(0|1)

x.xx.(x|0)

x.+1(x)
x.(+1(x) | 0))

Fig. 1.3. The λ-calculus and the probabilistic lambda calculus compared

tics with the Markov chain semantics. This way we unlock graph theoretical
results for reasoning about programs and their behavior. For example, we
will exploit König’s lemma in the investigation of termination behavior of
programs. Similarly, we define a tree semantics on top of the one-step seman-
tics. For each program M we define the tree τ [M] of program runs starting
in M . Reduction trees are defined on the basis of the reduction graph R.
They provide a tree-specific viewpoint on the reduction graph and unlock
tree-specific graph theoretical results for program reasoning. For example we
will use Beth’s Tree Theorem, which is an instance of König’s Lemma, in the
investigation of bounded program termination.

1.4 Denotational Semantics

Denotational semantics is the Scott-Strachey approach to the semantics of
programming languages [243]. The denotational semantics of a programming
language is given directly in terms of the mathematical objects that are com-
puted by the programs of a programming language. A denotational semantics
targets implementation independency [238], i.e., it can be considered the spec-
ification of a programming language as opposed to the several possible imple-
mentations of this programming language. A major characteristic of denota-
tional semantics is compositionality. This means that a denotational semantics

12 1 Introduction

type system

probabilistic lambda calculus
context-free syntax

M N one-step semantics

R
reduction

graph

[M]
reduction

trees

S
Markov
chain term

walks

i

M p N

p-computation semantics

M N reduction semantics

te
rm

co

ve
rs

hitting
probabilities

Fig. 1.4. Auxiliary operational concepts for the probabilistic lambda calculus

introduces an appropriate semantic constructor for each of the syntactic con-
structors of the programming language. Then, the denotational semantics is
given inductively along the abstract syntax of the programming language and
the correspondence of syntactical and semantical constructors. Given this in-
ductiveness, a denotational semantics also reveals operational semantics, i.e.,
it can be considered a program of a recursive “meta” programming language.
The point is that it does not have to rely on an operational semantics of this
pre-assumed meta programming language, it itself receives its semantics from
first principles, i.e., the notion of inductive definitions. For more on inductive
definitions see also our primer on this topic in this book in Sect. 2.4.

Against the background of implementation independence, a denotational
semantics can be considered as coming first. Then, it can be considered a
specification in a programming language engineering process. However, also
the opposite perspective is admissible. Here, the denotational semantics is de-
fined for an existing programming language for the purpose of clarifying its
semantics and, even more important, for unlocking the mathematical toolkit
for reasoning about program behavior. At least when we treat reduction-
ist programming languages like the lambda calculus, denotational semantics
sometimes rather has this flavor of coming second, after the operational se-
mantics.

1.4 Denotational Semantics 13

The reductionist programming language and reasoning system Edinburgh
LCF (Logics for Computable Functions) [237, 190, 191, 111], also just LCF
for short, has been given a denotational semantics in [192]. The reductionist
programming language PCF, which is also based on LCF, has been given a
denotational semantics in [223]. A major task in denotational semantics is
to establish the appropriate domains from which the semantical objects are
drawn. A major challenge is to provide domains for recursively defined data
types which naturally arise in programming languages. Dana Scott showed
how to solve this problem of finding solutions of recursive domain equations
even if function spaces are involved. In [240] he was able to construct a model
of the untyped lambda calculus. A model of the untyped lambda calculus
amounts to a function space that is isomorphic to itself, i.e., is a solution to
the domain equation D ∼= D → D. In general, i.e., in the case of sets, it is
impossible to find a solution to the domain equation D ∼= D → D, because
the cardinality of D → D is larger than the cardinality of D for any set D.
In [240] such a function space has been established on the basis of complete
lattices.

The construction of domains for denotational semantics evolved into a
discipline in its own right, i.e., domain theory. The foundational challenge
addressed by domain theory is to tighten the correspondence between the
denotational semantics and the operational semantics of programming lan-
guages and to provide optimized domains for this purpose. Orthogonal to
this challenge, domain theory provides specialized domains to address various
programming language phenomena such as non-determinism or parallelism.
For texts on domain theory, see [116, 224, 3]. For comprehensive texts on
denotational semantics in general, see, e.g., [253, 235, 117, 203, 118, 263].

We will elaborate a denotational semantics for the probabilistic lambda
calculus. The chosen approach is straightforward and standard from the lit-
erature; compare with the work of Saheb-Djaromi in [232, 233]. Our deno-
tational semantics is based on ω-complete partial orders, i.e., ω-cpos. We
have that ω-cpos are, among other domains such as, e.g., complete lattices,
directed complete partial orders, a well-known choice for denotational seman-
tics. They have been used very early for this purpose, i.e., in the definition of
a denotational semantics of Edinburgh LCF, see [192]. As basic mathematical
objects of our denotational semantics, we will use vectors of real numbers in
[0, 1]. These vectors assign probability values to data points. We call these
vector probability pre-distributions, because they play the same role as dis-
tributions. There is a crucial difference to distributions. Their total mass,
i.e., the sum of all the values of all possible data points, does not necessarily
have to be a hundred per cent in case of pre-distributions. And this makes
sense. A total mass of less than a hundred per cent stands for the existence of
some non-terminating program runs. Actually, we will call the total mass of
a pre-distribution the degree of termination later. As a result, we work with-
out explicit bottom elements representing non-termination. Bottom elements
arise implicitly as distributions that assign a zero per cent probability to each

14 1 Introduction

data point. Furthermore, we will see that probabilistic choices at higher types
can be flattened completely to probabilistic choices of ground type. This way,
we need distributions only in the construction of the base domains. All the
domains of higher type that we introduce in our semantics turn out to be
vector spaces, which greatly eases our argumentations and formal proofs.

Given a program M of the probabilistic lambda calculus, we will denote, as
usual, the semantical object assigned to it as [[M]]. Given a number constant
ni, its semantics is given as the (pre-)distribution that assigns a hundred per
cent probability to the so-called data point i, i.e., [[ni]](i) = 1 and [[ni]](j) = 0
for all j �= i. Next, we also say that ni represents the data point i and use
[ni] to denote it, i.e., [ni] = i . Similar definitions can be given for the other
ground type of the probabilistic lambda calculus, i.e., Boolean. Once we have
introduced the denotational semantics for the probabilistic lambda calculus,
we will investigate its relationship to the operational semantics. We will prove
the one-to-one correspondence at the base element level. More concretely, this
correspondence means that the semantics of a program M , applied to a data
point [c], equals the probability with which M reduces to that constant c that
represents [c], which can expressed in the notation that we have introduced
so far as follows: ([[M]][c]) = (M ⇒ c).

1.5 Chapter Outline and Further Remarks

Chapter 2 is a preparatory chapter. It recaps and comments on basic math-
ematical tools needed throughout the book, in particular, from the fields of
probability theory, Markov chains, graph theory and domain theory. Also, it
delves into the topic of inductive definitions, because they form the founda-
tion of rigorous specification of semantics. In Chap. 3 we define the syntax
and establish the Markov chain semantics of the probabilistic lambda calcu-
lus. To improve comparability we also introduce the operational semantics
of the plain, deterministic lambda calculus. In Chap. 4 we investigate the
termination behavior of the probabilistic lambda calculus. We define the no-
tion of termination degree. Furthermore, we define the notion of bounded
termination, which is about programs that do not exceed an upper bound
of steps whenever they terminate. We define the notion of path stoppability
that we have described above as a broadened notion of termination. Then,
we systematically investigate the mutual dependencies between path stoppa-
bility, bounded termination and termination degrees of a hundred per cent.
To achieve all this, the chapter establishes the graph semantics as well as
the tree semantics of the probabilistic lambda calculus. Also, it shows some
needed graph cover lemmas, i.e., the fact that the cover of a graph is al-
ready completely determined by the cover of its paths and, second, that the
finite cover of a graph is computable for all k-ary graphs that have a finite
cover and a computable edge relation. Finally, in Chap. 5 we define a deno-
tational semantics of the probabilistic lambda calculus, based on functionals

1.5 Chapter Outline and Further Remarks 15

over probability distributions as domains. As the basic semantic correspon-
dence, we show the correspondence of the denotational semantics with respect
to the Markov chain semantics.

The main focus of this book is the Markov chain semantics for the proba-
bilistic higher-order typed lambda calculus. It is a natural idea to treat proba-
bilistic computation with Markov chains, compare, e.g., to the textbook [204]
of Motwani and Raghavan on randomized algorithms and, again, to the work
on the probabilistic lambda calculus by Saheb-Djahromi in [232, 233]. Com-
pare also with, e.g., [128, 174, 38, 94, 110, 175, 72] to name a few. The book’s
aim is to fully elaborate the Markov chain semantics, i.e., to elaborate it to a
level that systematically unlocks results from Markov chain theory to be used
in reasoning about program semantics and, in particular, establishing further
formal results. This can be understood best by looking at how we exploit the
established semantics to investigate termination behavior of probabilistic pro-
grams and come up with and further investigate notions like path stoppability,
path computability and bounded termination.

The focus of the book is narrow in several ways, i.e., with respect to the
probabilistic programming phenomena it delves into, the chosen program-
ming language paradigm, the programming language semantic approaches it
exploits, the level of investigation and the motivation it stresses for its inves-
tigations. All of these aspects are mutually dependent. First, we deal with the
functional programming language paradigm and here we have chosen the most
reductionist language, i.e., the typed lambda calculus also known as Plotkin’s
PCF [223]. A thorough treatment of probabilistic imperative programming is
provided by the book [185] by McIver and Morgan.

We delve into operational semantics. Also, we work with denotational se-
mantics. We treat denotational semantics only as far as we feel is needed
to bridge our treatment into the extremely mature body of knowledge that
is established by denotational semantics and domain theory for probabilistic
computation, see Sect. 5.4 on selected important readings in the field. We
do not look into axiomatic semantics [136] of probabilistic computing. Once
more, we want to recommend the book [185] by McIver and Morgan as an
authoritative reference. The important field of axiomatic semantics is so rich
with respect to probabilistic computation, we do not even attempt to give
a literature overview, again, the reader might want to use [185] as a good
starting point.

The field of model checking is extremely mature with respect to proba-
bilistic systems. The overview article [175] of Legay, Delahaye and Bensalem
provides a good entry point into the subject matter. The reason why the field
of model checking is particularly important is because it does not stop at defin-
ing and investigating formal logics and reasoning systems, but actually pro-
vides concrete implementations of model-checking platforms or model check-
ers. Important probabilistic model checkers are ETMCC [131], Prism [172],
Ymer [267], Vesta [244], and MRMC [149]. The list does not aim to be com-
plete, nor does it express preference or priority. A rigorous comparison of these

16 1 Introduction

model checkers is provided in [140] by Jansen et al. A typical model checker for
probabilistic systems allows us to model systems as discrete- and continuous
Markov chains. Based on these models, it allows for system simulation and
automated or semi-automated verification of system properties. Probabilistic
versions of the temporal logics CTL and CTL*, i.e., pCTL and pCTL*, have
been introduced by Hansson and Jonsson in [121]. In [11, 12], Aziz et al. intro-
duce the logic CSL (Continuous Stochastic Logic), which allows for reasoning
about continuous-time Markov chains, compare also with [14], which treats,
in more depth, model checking aspects of CSL. As we said, we consider model
checking based on Markov chain models as typical, albeit other important
approaches exist such as, e.g., the application [30] of uniform continuous-
time Markov decision processes [15] to statecharts [122, 123], the GreatSPN
tool [64, 13] with respect to Petri nets, or the PEPA workbench [107, 134]
with respect to stochastic process algebras.

It is also important to mention the industrial-strength modeling environ-
ment Simulink [257] and, in particular, also its module SimEvents [114, 44].
Simulink is based on Matlab. It supports model-based design, a combination
of modeling, simulation, code generation for and verification of dynamic sys-
tems consisting of both discrete and continuous switching blocks. Its original
domain is the domain of control systems and it is applied at several levels and
instances thereof ranging from manufacturing execution systems over embed-
ded systems to circuit design. The module SimEvents extends Simulink by
queueing-system building blocks.

Programming languages such as IBAL [218], Church [110] and Ven-
ture [180] are programming languages that contain a probabilistic program-
ming primitive. The purpose of these languages is to express stochastic models,
i.e., to generate stochastic models. They allow for querying distribution out-
comes against the traces of a probabilistic program. This way, these program-
ming languages become decision support tools. They are called probabilistic
programming languages by Stuart Russell in [231] or stochastic programming
languages in [110], however, the language IBAL is called a rational program-
ming language by Pfeffer in [218], because the purpose of such languages is
to support reasoning about rational agents. A precursor of IBAL was already
developed by Pfeffer et al. in [161].

