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Preface

Oriental Thinking and Fuzzy Logic in Dalian, China, an international conference,
was held during August 17–20, 2015, to celebrate the 50th anniversary of Fuzzy
Sets. The honorary chair for this conference was Prof. L.A. Zadeh, the founder of
fuzzy sets theory, who has guided an information revolution, and constructed a
great bridge between qualitative and quantitative.

The conference focused on six main topics as follows: fuzzy information pro-
cessing; fuzzy engineering; Internet and big data applications; factor space and
factorial neural networks; information granulation and granular computing; exten-
sion and innovation methods. Here, topic three, the theory of factor space was
initiated by Prof. Pei-Zhuang Wang with the oriental thinking. And extension topic
six, is a new field of the disciplinary initiated by Prof. Wen Cai, who achieved
innovation facing a problem where impossible cases seem to be possible.

There were 15 plenary talks in the conference including Wen Cai, fuzzy logic
and extenics; Y.X. Chen, inter-definability and application of fuzzy logic operators;
I. Dzitac, fuzzy logic and artificial intelligence; J.L. Feng, theory of meta-synthetic
wisdom based on fusion of qualitative, quantitative and imagery operations; J.F.
Gu, system science and Chinese medicine; Ouyang He, a mathematical foundation
for factor spaces; Qing He, uncertainty learning; C.F. Huang, an approach checking
whether an intelligent internet can be improved into intelligence; D.Y. Li, cognitive
physics; Z.L. Liu, factorial neural networks; W. Pedrycz, new frontiers of com-
puting and reasoning with qualitative information: a perspective of granular com-
puting; Germano Resconi, from inconsistent topology to consistent in big data;
Yong Shi and Y.J. Tian, uncertainty and big databases; P.Z. Wang, fuzzy sets and
factor space; Z.S. Xu, complex information decision making. As a special guest,
Mr. H.R. Lin, with his 18-year teaching practice in Shanghai Middle School,
introduced his book “Preliminary of Fuzzy Mathematics” for pupils in his schools.

Apart from the organized speeches, we much appreciated the articles from
individuals with natural interest and deep friendship toward Prof. L. Zadeh. They
developed fuzzy theory along probability representation, rough sets, intuitionistic
fuzzy sets, nonlinear Particle Swarm Optimization, ranking method to structure
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elements and they apply fuzzy theory into recommendation, feature extraction,
qualitative mapping, etc. Among all papers presented at the conference, we care-
fully selected over 60 papers to form this book as assorted appetizers to com-
memorate the 50th anniversary of fuzzy sets from the Dalian conference.

Finally, we thank the publisher, Springer, for publishing the proceedings as
Advance in Intelligent and Soft Computing.

December 2015 Bing-Yuan Cao
Pei-Zhuang Wang
Zeng-Liang Liu
Yu-Bin Zhong
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(∈,∈ ∨q(𝝀,𝝁))-Fuzzy Weak Ideal
of Complemented Semirings

Zuhua Liao, Chan Zhu, Xiaotang Luo, Xiaoying Zhu, Wangui Yuan
and Juan Tong

Abstract In this paper,the notions of generalized fuzzy weak ideal of complemented

semiring, (∈,∈ ∨ q(𝜆,𝜇))-fuzzy weak ideal of complemented semiring are introduced.

By discussing, the two new concepts are found to be equivalent. Furthermore, some

fundamental properties of their intersection, union, level sets, homomorphic image

and homomorphic preimage are investigated.

Keywords (∈,∈ ∨ q(𝜆,𝜇))-Fuzzy weak ideal ⋅ Generalized fuzzy weak ideal ⋅
Homomorphic image ⋅ Homomorphic preimage

1 Introduction

Rosenfeld in 1971 introduced fuzzy sets in the context of group theory and formu-

lated the concept of a fuzzy subgroup of a group [1]. Since then, many researches

have extended the concepts of abstract algebra to a fuzzy framework. In 2006, Liao

etc. generalized “quasi-coincident with” relation (q) between a fuzzy point and a

fuzzy set of Liu to “generalized quasi-coincident with” relation (q(𝜆,𝜇)) between a

fuzzy point and a fuzzy set, and extended Rosenfeld’s (∈,∈)-fuzzy algebra, Bhakat

and Das’s (∈,∈ ∨q)-fuzzy algebra and (∈,∈ ∨ q(𝜆,𝜇))-fuzzy algebra to (∈,∈ ∨q(𝜆,𝜇))-
fuzzy algebra [2] with more abundant hierarchy [3].

Vandiver [4] in 1939 put forward the concept of semiring. The applications of

semirings to areas such as optimization theory, graph theory, theory of discrete event

dynamical systems, generalized fuzzy computation, automata theory, formal lan-

guage theory, coding theory and analysis of computer programs have been exten-

sively studied in the literature [5, 6]. Liu [7] introduced fuzzy ideals in a ring.
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Following this definition, Mukherjee and Sen [8, 9]obtained many interesting results

in the theory of rings.

On the study of fuzzy semiring, there has been a large number of researches at

home and abroad. Feng and Zhan [10] proposed complemented semiring. They put

the Boolean algebra as its proper class, and studied the algebraic structure of it.

This paper is the continuation of the above work.

Section 2 of this paper list some necessary preliminaries that support our results.

Section 3 is the kernel of the whole paper, which display main results obtained by

the authors, including the relationships among generalized fuzzy weak ideal, (∈,∈
∨q(𝜆,𝜇))-fuzzy weak ideal and level subsets of a fuzzy set and relative properties

about the intersection, union, homomorphic image and homomorphic preimage of

such generalized fuzzy weak ideal. In section, we make a conclusion and prospect

the further study of generalized fuzzy weak ideal.

2 Preliminaries

In this section we recall some basic notions and results which will be needed in the

sequel.

Throughout the paper we always consider S as a semigroup.

Definition 1 [11] A semiring S is a structure consisting of a nonempty set S together

with two binary operations on S called addition and multiplication (denoted in the

usual manner) such that

(1) S together with addition is a semigroup. o is additive identity element;

(2) S together with multiplication is a semigroup.1 is multiplicative identity ele-

ment;

(3) a(b + c) = ab + ac, (a + b)c = ac + bc,∀a, b, c ∈ S;

(4) o ⋅ a = a ⋅ o = o.

Definition 2 [10] Assume a is an element of semiring S, if there exists a comple-

ment a which makes aa = o, a + a = 1, a is called complemented. S is said to be a

complemented semiring if every element of S has a complement.

Definition 3 [12] Let S be a semiring. A nonempty subset A of S is said to be a

complemented subsemiring of S if A is closed under three binary operations on S:

(1) If a, b ∈ A, then a + b ∈ A;

(2) If a, b ∈ A, then ab ∈ A;

(3) If a ∈ A, then a ∈ A.

From now on, we write S and H for complemented semirings.

Definition 4 [13] Let 𝛼, 𝜆, 𝜇 ∈ [0, 1] and 𝜆 < 𝜇, if A(x) ≥𝛼, then a fuzzy point x
𝛼

is

said to belongs to a fuzzy subset A written x
𝛼

∈ A; if 𝜆 < 𝛼 and A(x) + 𝛼 > 2𝜇, then

a fuzzy point x
𝛼

is called to be generalized quasi-coincident with a fuzzy subset A,

denoted by x
𝛼

q(𝜆,𝜇)A. If x
𝛼

∈ A or x
𝛼

q(𝜆,𝜇)A, then x
𝛼

∈ ∨q(𝜆,𝜇)A.
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Definition 5 [12] Let 𝛼, 𝜆, 𝜇 ∈ [0, 1] and 𝜆 < 𝜇, A fuzzy subset A of S is called

an (∈,∈ ∨q(𝜆,𝜇))-fuzzy complemented subsemiring of S, if ∀t, r ∈ (𝜆, 1], a, b ∈ S
satisfy:

(1) If at, br ∈ A, we have (a + b)t∧r ∈ ∨q(𝜆,𝜇)A;

(2) If at, br ∈ A, there exist (ab)t∧r ∈ ∨q(𝜆,𝜇)A;

(3) If at ∈ A, at ∈ ∨q(𝜆,𝜇)A holds.

Definition 6 [12] Let 𝛼, 𝜆, 𝜇 ∈ [0, 1] and 𝜆 < 𝜇, A is a fuzzy set of S. We call A a

generalized fuzzy complemented subsemiring of S if ∀a, b ∈ S satisfy:

(1) A(a + b) ∨ 𝜆 ≥ A(a) ∧ A(b) ∧ 𝜇;

(2) A(ab) ∨ 𝜆 ≥ A(a) ∧ A(b) ∧ 𝜇;

(3) A(a) ∨ 𝜆 ≥ A(a) ∧ 𝜇.

Definition 7 [14] Let Si(1 ≤ i ≤ n) be complemented semirings and direct prod-

uct:
∏

1≤i≤nSi = {(a1, a2,… an)|ai ∈ Si}. Then
∏

1≤i≤nSi is a complemented semi-

ring under the operations as following:

(a1, a2,… an) + (b1, b2,… bn) = (a1 + b1, a2 + b2,… , an + bn);
(a1, a2,… an)(b1, b2,… bn) = (a1b1, a2b2,… anbn);
(a1, a2,… an) = (a1, a2,… an).

Definition 8 [14] Let Ai(1 ≤ i ≤ n) be fuzzy subsets of Si, then a fuzzy set
∏

1≤i≤nAi
defined as (

∏
1≤i≤nAi)(x1, x2,… xn) = inf1≤i≤nAi(xi) is called fuzzy direct product.

Theorem 1 [12] Let A be a fuzzy subset of S, then A is a generalized fuzzy com-
plemented subsemiring of S if and only if A is an (∈,∈ ∨q(𝜆,𝜇))-fuzzy complemented
subsemiring of S.

Theorem 2 [12] Let A be a fuzzy subset of S, then A is a generalized fuzzy comple-
mented subsemiring of S if and only if∀𝛼 ∈ (𝜆, 𝜇], nonempty A

𝛼

is a subsemiring of S.

Theorem 3 [12] Let A and B be generalized fuzzy complemented subsemirings of
S, then A ∩ B is a generalized fuzzy complemented subsemiring of S.

Theorem 4 [12] A subset A of S is a complemented subsemiring of S if and only if
𝜒A is a generalized fuzzy complemented subsemiring of S.

Theorem 5 [12] Let f ∶ S → H be a full homomorphism. If A is a generalized fuzzy
complemented subsemiring of S, then f (A) is a generalized fuzzy complemented sub-
semiring of H.

Theorem 6 [12] Let f ∶ S → H be a homomorphism. If B is a generalized fuzzy
complemented subsemiring of H, then f −1(B) is a generalized fuzzy complemented
subsemiring of S.
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3 (∈,∈ ∨q(𝝀,𝝁))-Fuzzy Completely Prime Ideals

The following if no special instructions, we suppose 𝜆, 𝜇 ∈ [0, 1] and 𝜆 < 𝜇. Firstly,

the definitions of weak idea of complemented semiring generalized fuzzy weak ideal

and (∈,∈ ∨ q(𝜆,𝜇))-fuzzy weak ideal are given.

Definition 9 Let A be a complemented subsemiring of S, then A is said to be a weak

idea of complemented semiring S if for all x ∈ A, y ∈ S, xy + yx ∈ A.

Definition 10 Let A be a generalized fuzzy complemented subsemiring of S, then A
is called a generalized fuzzy weak ideal of S if A(xy + yx) ∨ 𝜆 ≥ A(x) ∧ 𝜇. ∀x, y ∈ S.

Definition 11 Let A be an (∈,∈ ∨q(𝜆,𝜇))-fuzzy complemented subsemiring of S.

Then A is called an (∈,∈ ∨q(𝜆,𝜇))-fuzzy weak ideal of S, if 𝛼 ∈ (𝜆, 1], y ∈ S, x
𝛼

∈ A
imply (xy + yx)

𝛼

∈ ∨q(𝜆,𝜇)A.

By the research on the relationships among generalized fuzzy complemented sub-

semiring, (∈,∈ ∨q(𝜆,𝜇))-fuzzy weak ideal, and level subsets of a fuzzy set, we obtain

the following result.

Theorem 7 Let A be a fuzzy subset of S, then the following conditions are equiva-
lent:

(1) A is an (∈,∈ ∨q(𝜆,𝜇))-fuzzy weak ideal of S;
(2) A is a generalized fuzzy weak ideal of S;
(3) ∀𝛼 ∈ (𝜆, 𝜇], nonempty set A

𝛼

is a weak ideal of S.

Proof (1) ⇒ (2):
From Theorem 1, we know A is an (∈,∈ ∨q(𝜆,𝜇))-fuzzy complemented subsemir-

ing of S thus A is a generalized fuzzy complemented subsemiring of S.

Next we prove A is a generalized fuzzy weak ideal of A. Assume that there exist

x0, y0 ∈ S such that A(x0y0 + y0x0) ∨ 𝜆 < A(x0) ∧ 𝜇. choose 𝛼 such that A(x0y0 +
y0x0) ∨ 𝜆 < 𝛼 < A(x0) ∧ 𝜇, then A(x0y0 + y0x0) < 𝛼,A(x0) > 𝛼 and 𝜆 < 𝛼 < 𝜇, so

(x0)𝛼 ∈ A. Since A is an (∈,∈ ∨q(𝜆,𝜇))-fuzzy weak ideal of S, thus (x0y0 + y0x0)𝛼 ∈
∨q(𝜆,𝜇)A. But A(x0y0 + y0x0) + 𝛼 < 𝛼 + 𝛼 < 2𝜇, a contradiction.

So A is a generalized fuzzy weak ideal of S.

(2) ⇒ (1)
It is easy to prove that A is an (∈,∈ ∨q(𝜆,𝜇))-fuzzy complemented subsemiring of

S. ∀x, y ∈ S, 𝛼 ∈ (𝜆, 1], if x
𝛼

∈ A, then A(x) ≥ 𝛼. Since A is a generalized fuzzy weak

ideal of S, then A(xy + yx) ∨ 𝜆 ≥ A(x) ∧ 𝜇 ≥ 𝛼 ∧ 𝜇.

Case 1: If 𝛼 > 𝜇, thenA(xy + yx) ∨ 𝜆 ≥ 𝜇. By 𝜆 ≤ 𝜇, soA(xy + yx) ≥ 𝜇. ThenA(xy +
yx) + 𝛼 ≥ 𝜇 + 𝛼 > 2𝜇, i.e.(xy + yx)

𝛼

q(𝜆,𝜇)A.

Case 2: If 𝛼 ≤ 𝜇, then we can obtain that A(xy + yx) ≥ 𝛼, i.e.(xy + yx)
𝛼

∈ A. So

(xy + xy)
𝛼

∈ ∨q(𝜆,𝜇)A. Therefore A is an (∈,∈ ∨q(𝜆,𝜇))-fuzzy weak ideal of S.

(2) ⇒ (3)
We know that A

𝛼

is a subsemiring of S based on Theorem 2. ∀x ∈ A
𝛼

, 𝛼 ∈ (𝜆, 𝜇]
and y ∈ S, then A(x) ≥ 𝛼. Since A is a generalized fuzzy weak ideal of S, then A(xy +
yx) ∨ 𝜆 ≥ A(x) ∧ 𝜇 ≥ 𝛼 ∧ 𝜇 = 𝛼, by 𝜆 < 𝛼, so A(xy + yx) ≥ 𝛼, i.e., xy + yx ∈ A

𝛼

.
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Therefore A
𝛼

is a weak ideal of S, ∀𝛼 ∈ (𝜆, 𝜇].
(3) ⇒ (2)
We obtain that A is a generalized fuzzy complemented subsemiring of S based on

Theorem 2. Assume that there exist x0, y0 ∈ S such thatA(x0y0 + y0x0) ∨ 𝜆 < A(x0) ∧
𝜇. Choose 𝛼 such that A(x0y0 + y0x0) ∨ 𝜆 < 𝛼 < A(x0) ∧ 𝜇, then A(x0y0 + y0x0) < 𝛼,

A(x0) > 𝛼 and 𝜆 < 𝛼 < 𝜇. So x0 ∈ A
𝛼

. Since A
𝛼

is a weak ideal of S, then A(x0y0 +
y0x0) ≥ 𝛼, a contradiction. Therefore A is a generalized fuzzy weak ideal of S.

The above theorem shows that generalized fuzzy weak ideal and (∈,∈ ∨ q(𝜆,𝜇))-
fuzzy weak ideal are equivalent. Thus we can prove a normal fuzzy set be an (∈,∈
∨ q(𝜆,𝜇))-fuzzy weak ideal by proving it be a generalized fuzzy weak ideal, which is

easier than the former. Meanwhile, Theorem 7 establishes a kind of link between

generalized fuzzy weak ideal and ordinary weak ideal.

Theorem 8 Let A and B be generalized fuzzy weak ideal of S, then A ∩ B is a gen-
eralized fuzzy weak ideal of S.

Proof We obtain that A ∩ B is a generalized fuzzy complemented subsemiring of S
based on Theorem 3. For all x, y ∈ S, we have (A ∩ B)(xy + yx) ∨ 𝜆 = (A(xy + yx) ∧
B(xy+yx)) ∨ 𝜆 = (A(xy + yx) ∨ 𝜆) ∧ (B(xy + yx) ∨ 𝜆) ≥ (A(x) ∧ 𝜇)∧(B(x) ∧ 𝜇) =
(A ∩ B)(x) ∧ 𝜇.

Therefore A ∩ B is a generalized fuzzy weak ideal of S.

Corollary 1 Let Ai(i ∈ I) be generalized fuzzy weak ideals of S, then ∩i∈IAi is a
generalized fuzzy weak ideal of S.

Theorem 9 Let Ai(i ∈ I) be generalized fuzzy weak ideals of S, and ∀i, j ∈ I,Ai ⊆ Aj
or Aj ⊆ Ai. Then ∪i∈IAi is a generalized fuzzy weak ideal of S.

Proof Firstly, we prove that ∨i∈I(Ai(x) ∧ Ai(y) ∧ 𝜇) = (∪i∈IAi)(x) ∧ (∪i∈IAi)(y) ∧ 𝜇.

Obviously, ∨i∈I(Ai(x) ∧ Ai(y)∧𝜇) ≤ (∪i∈IAi)(x) ∧ (∪i∈IAi)(y) ∧ 𝜇. Assume that ∨i∈I
(Ai(x) ∧ Ai(y) ∧ 𝜇) ≠ (∪i∈IAi)(x) ∧ (∪i∈IAi)(y) ∧ 𝜇, then there exists r such that ∨i∈I
(Ai(x) ∧ Ai(y) ∧ 𝜇) < r < (∪i∈IAi)(x) ∧ (∪i∈IAi)(y) ∧ 𝜇. Since∀i, j∈ I,Ai ⊆Aj orAj ⊆

Ai, then ∃k ∈ I, such that r < Ak(x) ∧ Ak(y) ∧ 𝜇. But Ai(x) ∧ Ai(y) ∧ 𝜇 < r, ∀i ∈ I, a

contradiction. Thus {∨i∈I(Ai(x) ∧ Ai(y) ∧ 𝜇)} = (∪i∈IAi)(x) ∧ (∪i∈IAi)(y) ∧ 𝜇. Next,

∀x, y ∈ S, we have (∪i∈IAi)(x + y) ∨ 𝜆 = ∨i∈IAi(x + y) ∨ 𝜆 = ∨i∈I(Ai(x + y) ∨ 𝜆) ≥
∨i∈I(Ai(x) ∧ Ai(y) ∧ 𝜇) = (∪i∈IAi)(x) ∧ (∪i∈IAi)(y) ∧ 𝜇. Similarly, we can prove that

(∪i∈IAi)(xy) ∨ 𝜆 ≥ (∪i∈IAi)(x) ∧ (∪i∈IAi)(y) ∧𝜇.∀i∈ I, sinceAi is a generalized fuzzy

complemented subsemiring of S, so Ai(a) ∨ 𝜆 ≥ Ai(a) ∧ 𝜇. Then (∨i∈IAi(a)) ∨ 𝜆 ≥

Ai(a) ∨ 𝜆 ≥ Ai(a) ∧ 𝜇. We have (∨i∈IAi(a)) ∨ 𝜆 ≥ (∨i∈IAi(a)) ∧ 𝜇. That is (∪i∈IAi(a))
∨ 𝜆 ≥ (∪i∈IAi(a)) ∧ 𝜇.

Thus, ∪i∈IAi is a generalized fuzzy complemented subsemiring of S.

Finally,∀x, y ∈ S,∪i∈I(xy + yx) ∨ 𝜆 = ∨i∈IAi(xy + yx) ∨ 𝜆 =∨i∈I(Ai(xy + yx) ∨ 𝜆)
≥ ∨i∈I(Ai(x) ∧ 𝜇) = ∨i∈IAi(x) ∧ 𝜇 =(∪i∈IAi)(x) ∧ 𝜇.

Therefore ∪i∈IAi is a generalized fuzzy weak ideal of S.

Theorem 10 Let A1 and A2 be generalized fuzzy weak ideals of S1 and S2 respec-
tively, then A1 × A2 is a generalized fuzzy weak ideal of S1 × S2.
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Proof Firstly, we prove that A1 × A2 is a generalized fuzzy subsemiring of S1 × S2.

For all x, y ∈ S1 × S2, where x = (x1, x2), y = (y1, y2), since A1 and A2 are general-

ized fuzzy subsemirings of S1 and S2 respectively, then (A1 × A2)(x + y)∨𝜆 = (A1 ×
A2)(x1 + y1, x2 + y2) ∨ 𝜆 = (A1(x1 + y1) ∧ A2(x2 + y2))∨𝜆 = (A1(x1 + y1) ∨ 𝜆) ∧ (A2
(x2 + y2) ∨ 𝜆) ≥ (A1(x1) ∧ A1(y1)∧𝜇) ∧ (A2(x2) ∧ A2(y2) ∧ 𝜇) = (A1 × A2)((x1, x2)) ∧
(A1 × A2)((y1 , y2)) ∧ 𝜇 = (A1×A2)(x) ∧ (A1 × A2)(y) ∧ 𝜇.

Similarly, we can prove that (A1 × A2)(x) ∨ 𝜆 ≥ (A1 × A2)(x)∧𝜇 and (A1 × A2)(xy)
∨ 𝜆 ≥ (A1 × A2)(x) ∧ (A1 × A2)(y) ∧ 𝜇. So A1 × A2 is a generalized fuzzy comple-

mented subsemiring of S1 × S2.

Next, for all x, y ∈ S1 × S2, where x= (x1, x2), y =, (y1, y2), (A1 × A2)(xy + yx) ∨
𝜆= (A1 × A2)(x1y1 + y1x1, x2y2 + y2x2)∨𝜆= (A1(x1y1 + y1x1) ∧ A2(x2y2 + y2x2)) ∨ 𝜆

= (A1(x1y1 + y1x1)∨𝜆) ∧ (A2(x2y2 + y2x2) ∨ 𝜆) ≥ (A1(x1) ∧ 𝜇) ∧ (A2(x2) ∧ 𝜇) = (A1 ×
A2)(x1, x2) ∧ 𝜇 = (A1 × A2)(x) ∧ 𝜇.

Therefore A1 × A2 is a generalized fuzzy weak ideal of S1 × S2.

Theorem 11 Let Ai be generalized fuzzy weak ideals of S, then
∏

1≤i≤nAi is a gen-
eralized fuzzy weak ideal of

∏
1≤i≤nSi.

Proof Firstly, we prove that
∏

1≤i≤nAi is a generalized fuzzy subsemiring of∏
1≤i≤nSi. For all x, y ∈

∏
1≤i≤nSi, where x = (x1, x2,… xn) and y = (y1, y2,… yn),

then (
∏

1≤i≤nAi)(x + y) ∨ 𝜆 = inf Ai(xi + yi) ∨ 𝜆 = inf(Ai(xi + yi)∨𝜆) ≥ inf(Ai(xi) ∧
Ai(yi) ∧ 𝜇) = inf Ai(xi) ∧ inf Ai(yi) ∧𝜇 =(

∏
1≤i≤nAi)(x) ∧ (

∏
1≤i≤nAi)(y) ∧𝜇.

Similarly, we can prove (
∏

1≤i≤nAi)(xy) ∨ 𝜆 ≥ (
∏

1≤i≤nAi)(x)∧ (
∏

1≤i≤nAi)(y) ∧ 𝜇.

Next in addition, (
∏

1≤i≤nAi)(x) ∨ 𝜆 = inf Ai(xi) ∨ 𝜆 = inf(Ai( xi) ∨ 𝜆) ≥ inf(Ai(xi) ∧
𝜇) = inf Ai(xi) ∧ 𝜇 = (

∏
1≤i≤nAi)(x) ∧ 𝜇.

Therefore
∏

1≤i≤nAi is a generalized fuzzy complemented subsimiring of∏
1≤i≤nSi.
Finally, for all x, y ∈

∏
1≤i≤nSi, where x = (x1, x2,… xn) and y = (y1, y2,… yn),

then (
∏

1≤i≤nAi)(xy + yx) ∨ 𝜆 = inf Ai(xiyi + yixi) ∨ 𝜆 = inf(Ai(xiyi + yixi) ∨ 𝜆)≥
inf(Ai(xi) ∧ 𝜇) = inf Ai(xi) ∧ 𝜇 = (

∏
1≤i≤nAi)(x) ∧ 𝜇. Thus

∏
1≤i≤nAi is a generalized

fuzzy weak ideal of
∏

1≤i≤nSi.

Theorem 12 Let A be a subset of S, then 𝜒A is a generalized fuzzy weak ideal of S
if and only if A is a weak ideal of S.

Proof We know that A is a complemented subsemiring of S based on Theorem

4. For all x ∈ A and y ∈ S, since 𝜒A is a generalized fuzzy weak ideal of S, then

𝜒A(xy+ yx) ∨ 𝜆 ≥ 𝜒A(x) ∧ 𝜇 = 1 ∧ 𝜇 = 𝜇. By 𝜆 < 𝜇, so 𝜒A(xy + yx) ≥ 𝜇 > 0 and

𝜒A(xy + yx) = 1. Then xy + yx ∈ A. Therefore A is a weak ideal of S.

Conversely, we can obtain that 𝜒A is a generalized fuzzy complemented subsemir-

ing of S based on Theorem 4.

Assume that there exist x0, y0 ∈ S such that 𝜒A(x0y0 + y0x0) ∨ 𝜆 < 𝜒A(x0) ∧ 𝜇.

Choose 𝛼 such that 𝜒A(x0y0 + y0x0) <𝛼 < 𝜒A(x0) ∧ 𝜇 < 𝛼 < 𝜒A(x0) ∧ 𝜇, then

𝜒A(x0y0 + y0x0) < 𝛼,𝜒A(x0) > 𝛼 and 𝜆 < 𝛼 < 𝜇. i.e. x0 ∈ A. Since A is a weak ideal

of S then x0y0 + y0x0 ∈ A. So 𝜒A(x0y0 + y0x0) = 1 > 𝛼, a contradiction.

Thus 𝜒A is a generalized fuzzy weak ideal of S.
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Theorem 13 Let A be a generalized fuzzy weak ideals of S, then A
𝜆

= {x|A(x) > 𝜆}
is a generalized weak ideal of S.

Proof Firstly, we prove that A
𝜆

is a complemented subsemiring of S. For all x, y ∈
A
𝜆

, sinceA is a generalized fuzzy weak ideals of S, thenA(x + y) ∨ 𝜆 ≥ A(x) ∧ A(y) ∧
𝜇 > 𝜆, so A(x + y) > 𝜆, i.e., x + y ∈ A

𝜆

. Similarly, we can prove that xy, x ∈ A
𝜆

.

Therefore A
𝜆

is a complemented submiring of S. Next, for all x ∈ A
𝜆

and y ∈ S,

then A(x) > 𝜆. Since A is a generalized fuzzy weak ideals of S, then A(xy + yx) ∨ 𝜆 ≥

A(x) ∧ 𝜇 > 𝜆, so A(xy + yx) > 𝜆, i.e., xy + yx ∈ A
𝜆

.

Therefore A
𝜆

is a weak ideal of S.

Theorem 14 Let f ∶ S → H be a full homomorphism, if A is a generalized fuzzy
weak ideal of S, then f (A) is a generalized fuzzy weak ideal of H.

Proof Based on Theorem 5, we know that f (A) is a generalized fuzzy complemented

subsemiring of H. For all z1, z2 ∈ H, there exist x1, x2 ∈ S, such that f (x1) = z1, f (x2)
= z2, then f (x1x2 + x2x1) = f (x1x2) + f (x2x1) = f (x1)f (x2)+f (x2)f (x1) = z1z2 +
z2z1, So f (A)(z1z2 + z2z1) ∨ 𝜆 = sup{A(x)|f (x)=z1z2 + z2z1} ∨ 𝜆= sup{A(x) ∨ 𝜆|f (x)
= z1z2 +z2z1} ≥ sup{A(x1x2 + x2x1) ∨ 𝜆|f (x1) = z1, f (x2) = z2} ≥ sup{A(x1) ∧ 𝜇|f (x1)
= z1} = sup{A(x1) ∧ 𝜇|f (x1) = z1} == f (A)(z1) ∧ 𝜇.

Therefore f (A) is a generalized fuzzy ideal of H.

Theorem 15 Let f ∶ S → H be a homomorphism, if B is a generalized fuzzy weak
ideal of H, then f −1(B) is a generalized fuzzy weak ideal of S.

Proof Based on Theorem 6, we can obtain that f −1(B) is a generalized fuzzy com-

plemented subsemiring of S. For all x, y ∈ S, then f (x), f (y) ∈ H. SinceB is a general-

ized fuzzy weak ideal ofH, so f −1(B)(xy + yx) ∨ 𝜆 = B(f (xy+yx)) ∨ 𝜆 = B(f (x)f (y) +
f (y)f (x)) ∨ 𝜆 ≥ B(f (x)) ∧ 𝜇 =f −1(B)(x) ∧ 𝜇.

Therefore f −1(B) is a generalized fuzzy weak ideal of S.

4 Conclusion

In this present investigation, the concepts of generalized fuzzy weak ideal and (∈,∈
∨q(𝜆,𝜇))-fuzzy weak ideal are proposed. Moreover, the relevant properties are studied.

Further we will do some relevant properties on chain condition of fuzzy weak ideal.
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Generalized Fuzzy Sets and Fuzzy Relations

Yan-cai Zhao, Zu-hua Liao, Teng Lu and Juan Tong

Abstract In classical fuzzy set theory, a fuzzy set is a membership function which

associates with each element a real number in [0, 1], a fuzzy relation is a function

which associates with each pair of elements a real number in [0, 1]. In the present

paper, we generalize the above two concepts by associating with each set a real num-

ber in [0, 1], and associating with each pair of sets a real number in [0, 1], respec-

tively. We then give a series of properties for these two types of generalized concepts.

We also show that a generalized fuzzy relation can be induced by a classical fuzzy

relation, which shows the communication of our generalized fuzzy concepts with the

classical fuzzy theory.

Keywords Fuzzy set ⋅ Fuzzy relation ⋅ Generalized fuzzy set ⋅ Generalized fuzzy

relation ⋅ Power set

1 Introduction

The concept of a fuzzy set was introduced by Zadeh [10]. A fuzzy set in a referential

(universe of discourse) X is characterized by a membership function A which asso-

ciates with each element x ∈ X a real number A(x) ∈ [0, 1], having the interpretation

that A(x) is the membership degree of x in the fuzzy set A. For convenience, we also

call the set X in above definition the base set of a the fuzzy set A.

Let X,Y be two sets. A mapping R ∶ X × Y → [0, 1] is called a fuzzy relation [10].

The number R(x, y) ∈ [0, 1] can be interpreted as the degree of relationship between

x and y.
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Since fuzzy set was introduced by Zadeh in 1965 [10], many extensions have been

developed, such as intutionistic fuzzy set [1], type-2 fuzzy set [2, 4], type-n fuzzy

set [2], fuzzy multiset [5, 9] and hesitant fuzzy set [6–8, 11]. So far as we know, all

types of fuzzy set assign a value or a set of values to an element of a classical set.

However, there are many situations in our real lives in which one has to make decision

on a whole set. For example, a patient usually has several symptoms. His/Her doctor

has to make a decision by whole of his/her symptoms, which means that the doctor

assigns a value to the set of all the patient’s symptoms. We will give the details of

this example later.

In this paper, we first generalize the classical fuzzy set on a base set X to one

on a collection of sets. Then, we concentrate on the study of the generalized fuzzy

sets on base set (X), the power set of X, and obtain a series of properties; We

also generalize the classical fuzzy relation between two elements to several types of

relations between two sets, and obtain a series of properties for these generalized

fuzzy relations. Among them, we construct a equivalence fuzzy relation at the end

of the paper.

2 Generalized Fuzzy Sets and Their Operations

In our real lives, there exist many situations in which we should make decisions on

a collection of sets.

Example 1 A doctor usually judge that if a patient has caught a cold by the following

symptoms of this patient: Fever (F for short), Headache (H for short) and Cough (C

for short). The following table give the corresponding numbers to different sets of

symptoms. Each number means a degree of a patient catch a cold.

In the following table, the collection D of decisions is a fuzzy set on the collection

of the set of different symptoms of a patient (Fig. 1).

D = 0
∅
+ 0.2

{F}
+ 0.1

{H}
+ 0.2

{C}
+ 0.3

{F,H}
+ 0.5

{F,C}
+ 0.4

{H,C}
+ 0.9

{F,H,C}
.

A classical fuzzy set assigns a value to an element. We now give a generalized

type of fuzzy set which assigns a value to a set.

Definition 1 Let  = {Si| i ∈ I} be a collection of sets. Then a mapping A such

that A ∶  → [0, 1], S ↦ A(S),∀S ∈  is called a fuzzy set on  . A(S) is called the

membership degree of S in  . Let the collection of all the fuzzy sets on  be  ().

Fig. 1 Fuzzy decisions on

the power set of a set

symptoms ∅ {F} {H} {C} {F,H} {F,C} {H,C} {F,H,C}
decision 0 0.2 0.1 0.2 0.3 0.5 0.4 0.9
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As an special collection of sets, the power set of a set is interesting. So we will

concentrate our studies on the fuzzy sets on a power set.

Definition 2 Let X be a set. Then a mapping A


such that

A

∶ (X) → [0, 1],P ↦ A


(P),∀P ∈ (X)

is called a fuzzy set on (X). A

(P) is called the membership degree of P in (X).

Let the collection of all the fuzzy sets on (X) be  ((X)).
Give a fuzzy set on X, we can deduce a fuzzy set on (X) as follows.

Definition 3 Given a fuzzy set A on X, the mapping such that

Amax ∶ (X) → [0, 1],P ↦ Amax(P) = ∨x∈PA(x)

is called the max-type induced fuzzy set by A. Denote max((X)) = {Amax | A ∈
 (X)}.

Definition 4 Given a fuzzy set A on X, the mapping such that

Amin ∶ (X) → [0, 1],P ↦ Amin(P) = ∨x∈PA(x)

is called the min-type induced fuzzy set by A. Denote min((X)) = {Amin | A ∈
 (X)}.

Given any fuzzy set A on X, then A induces a relation ∼ on X by defining that

x ∼ y ⇔ A(x) = A(y). It is easy to see that ∼ is an equivalence relation on X. There-

fore, there exists the quotient set X∕∼. Similarly, Amax or Amin induces a relation ∼′

on (X) such that P1 ∼′ P2 ⇔ A

(x) = A


(y) for any P1,P2 ∈ (X). ∼′

is an equiv-

alence relation on (X) and thus there exists the quotient set (X)∕∼′
.

The order relation of elements in a set is usually defined as x ≤ y ⇔ A(x) ≤ A(y).
Now we define the order relation of two sets as follows.

Definition 5 LetA be a fuzzy set onX. For anyP1,P2 ∈ (X),P1 ≤ P2 ⇔ A

(P1) ≤

A

(P2).
We further give a more general order relation on (X) as follows.

Definition 6 Let ̃A, ̃B ∈  ((X)). If ∀P ∈ (X), ̃A(P) ≤ ̃B(P), then we say ̃A ⊆
̃B.

If ∀P ∈ (X), ̃A(P) = ̃B(P), then we say that ̃A = ̃B.

Theorem 1 Let ̃A, ̃B, ̃C ∈  ((X)), then we have the follows.

(1) Self-reflexivity. ̃A ⊆
̃A.

(2) Anti-symmetry. ̃A ⊆
̃B, ̃B ⊆

̃A ⇒ ̃A = ̃B.
(3) Transitivity. ̃A ⊆

̃B, ̃B ⊆
̃C ⇒ ̃A ⊆

̃C.

From Theorem 1 we know that ( ((X)), ⊆) is a partially ordered set.
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3 Generalized Fuzzy Relations

The classical fuzzy set theory defined the relations between two elements as follows.

LetX,Y be two classical sets. A mappingR ∶ X × Y → [0, 1] is called a fuzzy relation
[10]. The number R(x, y) ∈ [0, 1] can be interpreted as the degree of relationship

between x and y.

Now we define the fuzzy relation between two sets as follows.

Definition 7 Let X,Y be two classical sets. A mapping R ∶ (X) × (Y) → [0, 1] is

called a fuzzy relation. The number R(A,B) ∈ [0, 1] can be interpreted as the degree

of relationship between A and B.

Further, we give two types of induced relations between two sets as follows.

Definition 8 Let R ∶ X × X → [0, 1] be a fuzzy relation on X. The mapping ̃R ∶
(X) × (X) → [0, 1] such that ̃R(A,B) =

⋁
a∈A,b∈B R(a, b) for A,B ∈ (X) is called

the max-type induced fuzzy relation between A and B.

Definition 9 Let R ∶ X × X → [0, 1] be a fuzzy relation on X. The mapping ̃R ∶
(X) × (X) → [0, 1] such that ̃R(A,B) =

⋀
a∈A,b∈B R(a, b) for A,B ∈ (X) is called

the min-type induced fuzzy relation between A and B.

Theorem 2 If R is a fuzzy relation on X, then the max-type induced fuzzy relation
̃R on (X) has the following properties.
(1) A ⊆ C,B ⊆ D ⇒ ̃R(A,B) ≤ ̃R(C,D);
(2) If R is self-reflexive and A ∩ B ≠ ∅, then ̃R(A,B) = 1;
(3) ̃R(A,B ∪ C) = ̃R(A,B) ∨ ̃R(A,C);
(4) ̃R(A,B ∩ C) ≤ ̃R(A,B) ∧ ̃R(A,C).

Proof (1). By Definition 8, it is easy to see.

(2). Since R is self-reflexive, R(x, x) = 1 for any x ∈ X. Choose an element

Y ∈ A ∩ B. Then by (1) ̃R(A,B) ≥ ̃R({x}, {x}) = R(x, x) = 1. So ̃R(A,B) = 1.

(3).

̃R(A,B ∪ C) = ∨
a ∈ A

u ∈ B ∪ C

R(a, u)

= ∨
a ∈ A
u ∈ B

or
a ∈ A
u ∈ C

R(a, u)

=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∨
a ∈ A
u ∈ B

R(a, u)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

∨

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∨
a ∈ A
u ∈ C

R(a, u)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= ̃R(A,B) ∨ ̃R(A,C).



Generalized Fuzzy Sets and Fuzzy Relations 15

(4). It is easy to be deduced from (1).

Theorem 3 If R is a fuzzy relation on X, then the min-type induced fuzzy relation ̃R
on (X) has the following properties.

(1) A ⊆ C,B ⊆ D ⇒ ̃R(A,B) ≥ ̃R(C,D);
(2) If R is self-reflexive and A − B ≠ ∅ (Res. B − A ≠ ∅), then ̃R(A,B) = ̃R(A − B,B)

(Res. ̃R(A,B) = ̃R(A,B − A));
(3) ̃R(A,B ∪ C) = ̃R(A,B) ∧ ̃R(A,C);
(4) ̃R(A,B ∩ C) ≥ ̃R(A,B) ∨ ̃R(A,C).

Proof The proofs are similar to those in Theorem 2, and thus we omit.

Now we give two types of definitions of transitivity of fuzzy relations on (X),
and will provide an equivalence fuzzy relation on (X).

Definition 10 A fuzzy relation R on (X) is called I-type transitive, if R2 = R ◦R ⊆

R, that is, ∀(U,V) ∈ (X) × (X),
⋁

W∈(X) R(U,W)
⋀

R(W,V) ≤ R(U,V).

Definition 11 A fuzzy relationR on(X) is called II-type transitive, ifR2 = R ◦R ⊆

R, that is, ∀(U,V) ∈ (X) × (X),
⋁

{x}∈(X) R(U, {x})
⋀

R({x},V) ≤ R(U,V).

Definition 12 Let R ∶ X × X → [0, 1] be a fuzzy relation on X. For any two different

elements x, y ∈ X, a path from x to y, denoted P(x, y), is a set of continuous pairs

(x, a1), (a1, a2), (a2, a3),… , (an, y), where, each pair is called an edge of the path. Let

E(P(x, y)) be the set of all edges in a path P(x, y). The degree of a path P(x, y) is

S(P(x, y)) =
⋀

e∈E(P(x,y)) R(e). Suppose that there are l paths P1,P2,… ,Pl from x to

y. Then the connective degree between x and y is

S(x, y) ==
{⋁l

i=1S(Pi), if x ≠ y;
1, if x = y.

The set of paths from A to B is P(A,B) = {P(a, b)|a ∈ A, b ∈ B}. The connective
degree between A and B is S(A,B) =

⋁
a∈A,b∈B S(a, b).

The induced fuzzy relation S on (X) has the following properties.

Theorem 4 If R is a fuzzy relation on X, then the fuzzy relation S on (X) has the
following properties.

(1) A ⊆ C,B ⊆ D ⇒ S(A,B) ≤ S(C,D);
(2) If A ∩ B ≠ ∅, then S(A,B) = 1;
(3) S(A,B ∪ C) = S(A,B) ∨ S(A,C);
(4) S(A,B ∩ C) ≤ S(A,B) ∧ S(A,C).

Proof The proof is similar to that of Theorem 2, and thus we omit.

Theorem 5 If R is a symmetric fuzzy relation on X, then S is an equivalence relation
on (X), under the meaning of the II-type transitivity.


