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Preface

This book consists of five parts covering a wide range of topics in applied
mathematics, modeling, and computational science (AMMCS). It resulted from two
highly successful meetings held jointly in Waterloo (Canada) on the main campus
of Wilfrid Laurier University. It is the oldest university in the Cambridge-Kitchener-
Waterloo-Guelph area, a beautiful part of Canada, just west of the city of Toronto.
The main campus of the university is located in a comfortable driving distance
from some of North America’s most spectacular tourist destinations, including the
Niagara Escarpment, a UNESCO World Biosphere Reserve. Over the years, this uni-
versity has become a traditional venue for the International Conference on Applied
Mathematics, Modeling and Computational Science, and in 2015 it was held jointly
with the annual meeting of the Canadian Applied and Industrial Mathematics
(CAIMS) from June 7–12, 2015. The AMMCS interdisciplinary conference series
runs biannually. Focusing on recent advances in applied mathematics, modeling,
and computational science, the 2015 AMMCS-CAIMS Congress drew some of the
top scientists, mathematicians, engineers, and industrialists from all over the world
and was a true celebration of interdisciplinary research and collaboration involving
mathematical, statistical, and computational sciences within a larger international
community.

The book clearly demonstrates the importance of interdisciplinary interactions
between mathematicians, scientists, engineers, and representatives from other dis-
ciplines. It is a valuable source of the methods, ideas, and tools of mathematical
modeling, computational science, and applied mathematics developed for a variety
of disciplines, including natural and social sciences, medicine, engineering, and
technology. Original results are presented here on both fundamental and applied
levels, with an ample number of examples emphasizing the interdisciplinary nature
and universality of mathematical modeling.

The book contains 70 articles, arranged according to the following topics
represented by five parts:

• Theory and Applications of Mathematical Models in Physical and Chemical
Sciences

v
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Fig. 1 Participants of the 2015 International AMMCS-CAIMS Congress, Canada (Photo taken by
Tomasz Adamski on the Waterloo Campus at Wilfrid Laurier University)

• Mathematical and Computational Methods in Life Sciences and Medicine
• Computational Engineering and Mathematical Foundation, Numerical Methods,

and Algorithms
• Mathematics and Computation in Finance, Economics, and Social Sciences
• New Challenges in Mathematical Modeling for Scientific and Engineering

Applications

These chapters are based on selected refereed contributions made by the
participants of both meetings. The AMMCS-CAIMS Congress featured over 30
special and contributed sessions with mini-symposia ranging from mathematical
models in nanoscience and nanotechnology to statistical equilibrium in economics
and to mathematical neuroscience, the embedded Conference of the Computational
Fluid Dynamics Society of Canada, and the 2nd Canadian Symposium on Scientific
Computing and Numerical Analysis, as well as larger sessions around such sci-
entific themes as applied analysis and dynamical systems, industrial mathematics,
mathematical biology, financial mathematics, and much more. Over 600 participants
from all continents attended the Congress and shared the latest achievements,
ideas, insights, and theories about modern problems in science, engineering, and
society that can be approached with new advances in mathematical modeling and
mathematical, computational, and statistical methods.

This book presents a selected sample of the above topics and can serve as a
reference to some of the state-of-the-art original works on a range of such topics. It
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Fig. 2 Members of the local organizing committee and student volunteers (Photo taken by Dr.
Shyam Badu on the Waterloo Campus at Wilfrid Laurier University)

has a strong multidisciplinary focus, supported by fundamental theories, rigorous
procedures, and examples from applications. Furthermore, the book provides a
multitude of examples accessible to graduate students and can serve as a source
for graduate student projects.

Taking this opportunity, we would like to thank our colleagues on the AMMCS-
CAIMS Congress organizing team, as well as our sponsors and partners, in particu-
lar the Fields Institute and PIMS, and the Centre de Recherches Mathématiques, as
well as Wilfrid Laurier University, NSERC, and the Government of Ontario. Among
others, traditional supporters of the AMMCS Interdisciplinary Conference series
were Maplesoft and SHARCNET, as well as Springer, De Gruyter, and CRC Press.
The Congress was held under the auspices of the MS2Discovery Interdisciplinary
Research Institute based at Wilfrid Laurier University and in cooperation with
the Society of Industrial and Applied Mathematics and the American Institute of
Mathematical Sciences.

The Congress scientific committee included 15 internationally known
researchers. We would like to thank them, as well as the Congress referees whose
help in the refereeing process was invaluable. Among them we had some of the
leading researchers from all parts of the world, and their assistance was decisive in
completing this project. Our technical support committee and students’ team were
exemplary, and we are truly grateful for their efforts. Last but not least, we are
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also grateful to the editorial team at Springer, in particular Martin Peters and Ruth
Allewelt, whose continuous support during the entire process was at the highest
professional level.

We believe that the book will be a valuable addition to the libraries, as well
as to private collections of university researchers and industrialists, scientists and
engineers, graduate students, and all of those who are interested in the recent
progress in mathematical modeling and mathematical, computational, and statistical
methods applied in interdisciplinary settings.

Montreal, Canada Jacques Bélair
Vancouver, Canada Ian Frigaard
Guelph, Canada Herb Kunze
Waterloo, Canada Roman Makarov
Waterloo, Canada Roderick Melnik
Saskatoon, Canada Raymond Spiteri
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Part I
Theory and Applications of Mathematical
Models in Physical and Chemical Sciences



Compressibility Coefficients in Nonlinear
Transport Models in Unconventional Gas
Reservoirs

Iftikhar Ali, Bilal Chanane, and Nadeem A. Malik

Abstract Transport models for gas flow in unconventional hydrocarbon reservoirs
possess several model parameters such as the density .�/, the permeability .K/,
the Knudsen number .Kn/, that are strongly dependent upon the pressure p. Each
physical parameter, say � , in the system has an associated compressibility factor
�� D �� . p/ (which is the relative rate of change of the parameter with respect to
changes in the pressure, Ali I et al. (2014, Time-fractional nonlinear gas transport
equation in tight porous media: an application in unconventional gas reservoirs.
In: 2014 international conference on fractional differentiation and its applications
(ICFDA), Catania, pp 1–6, IEEE)). Previous models have often assumed that
�� D Const, such as Cui (Geofluids 9(3):208–223, 2009), and Civan (Transp
Porous Media 86(3):925–944, 2011). Here, we investigate the effect of selected
compressibility factors (real gas deviation factor .�Z/, gas density .��/, gas viscosity
.��/, permeability .�K/, and the porosity .��/ of the source rock) as functions of
the pressure upon rock properties such as K and �. We also carry out a sensitivity
analysis to estimate the importance of each model parameter. The results are
compared to available data.

1 Introduction

Unconventional gas reservoirs include tight gas, coalbed methane, and shale gas.
Shale gas is distributed over large areas and is found in discrete largely unconnected
gas pockets. Different methods are applied to induce fractures inside the rocks to
release the gas, such as hydraulic fracturing, but this is very expensive. Hence,
an initial guess is required before drilling. Reservoir simulations can be crucial in
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assisting this process for economical recovery. This requires accurate determination
of fluid and rock properties, and a realistic transport model, [2, 5, 11, 15].

Unconventional gas reservoirs are characterized by extremely low permeability,
in the nano- to micro-Darcy range, and low porosity, in the 4 %–15 % range. The
gas extraction process is very complex and involves new technologies, and takes
a lot of time, money and human resources, [18]. The science and technology of
tight gas transport and extraction is still in its infancy, and field data urgently
required especially from shale gas reservoirs in order to test the newly emerging
theories.

Reservoir simulations typically solve model transport equations in the form of
advection-diffusion partial differential equations (PDE). Some of the latest models
are highly non-linear, where the apparent diffusivity D. p/ and the apparent velocity
U. p; px/ are strongly non-linear functions of the pressure and its derivative, [7]. D
and U involve compressibility factors �� of various physical parameters,

�� D @ ln �

@p
D 1

�

@�

@p
: (1)

and these must be known as functions of p and px. However, most applications to
date have been simplified by assuming constant compressibility factors. The impact
of this important assumption has not been assessed to date.

The aim here is to assess the importance of using fully pressure dependent model
parameters. This is done through numerical simulations of the transport equation
and matching the results against the data from Pong et al. [17]. A sensitivity analysis
is also carried out to assess the importance of each physical parameter in the
system.

2 Physical Properties of Shale Gas Reservoirs

Various flow regimes occur in the gas transport process through tight shale rock
formations [10]. They are classified by a Knudsen number, see Table 1 and [17, 19],
which is the ratio of mean free path of gas molecules (�) to the radius (R) of the
flow channels, Kn D �=R. � is given by [13], � D �

�

q
�

2RgT
, where � is gas density,

T is temperature, Rg is universal gas constant, and � is gas viscosity. R is given by,

[4, 6], R D 2
p
2	
q

K
�

, where 	 is the tortuosity and � is the porosity of porous

media and K is intrinsic permeability. Several recent works have focused transport
on the so-called four flow regimes, Table 1.
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Table 1 Classification of
flow regimes based on
Knudsen number, [19]

Knudsen number Flow regimes

Kn < 0:01 Continuous flow

0:01 < Kn < 0:1 Surface diffusion or slip flow

0:1 < Kn < 10 Transition flow

Kn > 10 Knudsen diffusion or free molecular flow

The correlation between porosity and intrinsic permeability is given by the
Kozeny-Carman equation [8]

s
K

�
D 
KC

�
�

˛KC � �
�ˇKC

; (2)

where � < ˛KC � 1, 0 � ˇKC <1 and 
KC � 0. ˛KC; ˇKC, and 
KC are empirical
constants which must be determined, or estimated, before hand.

For the simulation purposes, we use the following porosity-pressure correlation,

� D a� exp.�b�pc� /; (3)

where a� , b� and c� are model constants. Tortuosity is related to porosity by,

	 D 1C a	 .1� �/; (4)

where a	 is also a model constant.
There is a difference between the intrinsic permeability, K, and the apparent

permeability, Ka. K is the measured permeability from rock samples, but due
to various physical effects such as slip flow, the quantity appearing in transport
equations is Ka. Beskok [3] has derived an formula that relates the two quantities,

Ka D Kf .Kn/ (5)

where f .Kn/ is the flow condition function given by

f .Kn/ D .1C �Kn/ .1C .4 � bSF/Kn/ .1 � bSFKn/
�1; (6)

where � is called the Rarefaction Coefficient Correlation [6] given by

� D �o
�
1C A�K

�B�
n

��1
; (7)

where A� and B� are empirical constants and bSF in Eq. 6 is the slip factor.
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Some of the gas adheres (clings) to pore surfaces due to the diffusion of gas
molecules. Cui [9] and Civan [7] developed a formula for estimating the amount of
adsorbed gas based on Langmuir isotherms and is given by

q D �sMg

Vstd
qa D �sMg

Vstd

qLp

pL C p
; (8)

where �s (kg/m3) denotes the material density of the porous sample, q (kg/m3) is
the mass of gas adsorbed per solid volume, qa (std m3/kg) is the standard volume
of gas adsorbed per solid mass, qL (std m3/kg) is the Langmuir gas volume, Vstd

(std m3/kmol) is the molar volume of gas at standard temperature (273.15 K) and
pressure (101,325 Pa), p (Pa) is the gas pressure, pL (Pa) is the Langmuir gas
pressure, and Mg (kg/kmol) is the molecular weight of gas.

Gas density � (kg/m3) is given by the real-gas equation of state,

� D Mgp

ZRgT
(9)

where Z (dimensionless) is the real gas deviation factor [12] and it can be found by
using the correlation developed by Mahmoud [14] and it is given by

Z D ap2r C bpr C c (10)

a D 0:702 exp.�2:5tr/ (11)

b D �5:524 exp.�2:5tr/ (12)

c D 0:044T2r � 0:164tr C 1:15 (13)

where pc is the critical pressure and tc is the critical temperature, and pr D p=pc and
tr D t=tc are the reduced pressure and temperature respectively.

Mahmoud [14] also gave correlations for determining the gas viscosity,

� D �Sc exp.A�B/ (14)

A D 3:47C 1588T�1 C 0:0009Mg

B D 1:66378� 0:04679A

�Sc D
1

.10:5/4

�
M3p4c
Tc

�1=6
�

�
0:807T0:618r � 0:357 exp.0:449Tr/C 0:34 exp.�4:058Tr/C 0:018
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3 Mathematical Formulation

The ultra low permeability and the occurrence of various flow regimes are key
features of unconventional gas reservoirs (UGR). The PDE’s that are used to
describe transport process in conventional gas reservoirs (CGR) are based on
Darcy’s law u D .�K=�/dp=dx and continuity equation �.�u/x D 0, where K, �,
and � are constants, but such models do not produce satisfactory results in UGRs.
Civan [7] has proposed a transport model for gas flow through tight porous media
which incorporates all flow regimes that occur in the reservoirs. Civan’s model is a
non-linear advection-diffusion PDE for the pressure field p.x; t/, which is given by,

@p

@t
CU. p; px/

@p

@x
D D. p/

@2p

@x2
: (15)

The apparent diffusivity D (m2/s) is given by,

D D �Ka

�
f���1. p/C .1 � �/q�2. p/g�1 ; (16)

and the apparent convective flux (velocity) U (m/s) is given by,

U D ��3. p/D@p
@x
: (17)

where the �1, �2 and �3 appearing in D and U are given by

�1. p/ D ��. p/C ��. p/; (18)

�2. p/ D �q. p/�
�

�

1 � �
�
��. p/; (19)

�3. p/ D Œ��. p/C �Ka. p/� ��. p/�: (20)

where �Ka D �K C �f which is obtained from Eq. (5).
A numerical solver for the system equations (15), (16), (17), (18), (19), and (20)

has been developed. We use a finite volume implicit method with constant grid size
and constant time step. The system is linearised and iterated to convergence before
advancing to the next time step. The implicit nature of the solver gives stability to
the solver which is essential for such a highly non-linear system. The solver can also
be applied to the steady state system, see below.
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4 Model Validation Under Steady State Conditions

The steady state solution for the pressure field is obtained by solving, (see [1, 7]),

La

�
@p

@x

�
D @2p

@x2
; 0 � x � L; (21)

where

La D �
�
��. p/C �K. p/C �f . p/� ��. p/

	 @p
@x
; (22)

with boundary conditions, p.0/ D pL and p.L/ D pR; pL and pR assumed known.
Sixteen different models were considered, Table 2. An entry of ‘0’ means that

the compressibility factor is zero, �� D 0; an entry of ‘p’ means that �� 6D 0 and the
associated physical parameter is a function of pressure, � D �. p/. The final column
shows the relative error between the simulated values and the experimental values
of Pong et al. [16], given by,

Relative Error D
NX
iD1

�
pcali � pmeasi

pcali

�2
: (23)

where the summation is over the N D 30 data-points in [16]. Case 1 in Table 2
corresponds to the Darcy law where all the physical parameters are constant and

Table 2 List of models
considered. In columns 2–5,
an entry of 0 means that the
compressibility factor is zero;
an entry of p means that it is
nonzero and the associated
physical parameter is function
of pressure p. The final
column shows the relative
error from simulations using
Eq. (23)

Cases �� �K �f �� Error

1 0 0 0 0 2.69e�02

2 p 0 0 0 2.68e�02

3 0 p 0 0 4.05e�03

4 0 0 p 0 3.16e�01

5 0 0 0 p 2.69e�02

6 p p 0 0 1.17e�01

7 p 0 p 0 3.19e�02

8 p 0 0 p 2.68e�02

9 0 p p 0 1.84eC00

10 0 p 0 p 4.05e�03

11 0 0 p p 3.17e�01

12 p p p 0 1.37e�04

13 p p 0 p 1.17e�01

14 0 p p p 3.19e�02

15 p 0 p p 1.84eC00

16 p p p p 1.36e�04
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�� D 0. Case 16 is the fully pressure-dependent case. An additional case, from
Civan [8] with constant factors for �K , �� , ��, and �	 , was also carried out.

Figure 1 shows the comparisons of the simulated results (solid lines) for the
pressure against the distance for selected models (see captions) against the data
of Pong et al. [16] (symbols). The inlet pressures for the different simulations
are, respectively from bottom to top, 135, 170, 205, 240, and 275 kPa. Figure 1a
compares with Darcy’s Law Case 1, and it shows significant errors. Figure 1b
compares with Civan’s case, and Fig. 1c compares with Case 16, which is the best
fit to the data. Figure 1d shows the relative error on log-scale for the 16 cases in
Table 2. We refer to Case 16 as the Base Case henceforth (Table 3).

It is important to note that although the Civan case Fig. 1b and the Base Case
Fig. 1c appear to yield similar results, the rock properties obtained in the two cases
are quite different. Civan used � D 0:2 independent of pressure and he predicted
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Fig. 1 Pressure, p against the distance along the core sample, x, from numerical solutions of the
Steady State Model, Eqs. (21), (22), for different inlet pressures, Pin, as indicated by color. Solids
lines are from the simulations, and symbols are data from Pong et al. [16]. (a) Darcy’s law, Case 1
in Table 2, with compressibility factors, �� D 0. (b) Civan’s model with constant compressibility
factors, �� D Const, for some parameters, see [7]. (c) Case 16 in Table 2 (new model) with pressure
dependent parameters and non-constant compressibility factors, �� . p/. (d) Relative errors for the
16 cases in Table 2
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Table 3 Reservoir model
parameters used in the Base
Case, Case 16 in Table 2

Parameter Parameter

L (m) 0:003 ˛KC 1

Nx 100 ˇKC 1

Rg (J kmol�1 K�1) 8314:4 
KC 1

Mg (kg kmol�1 K�1) 16 a� 0:2

T (K) 350 b� �1� 10�6

pc (kPa) 3:1� 103 c� 1:96

tc (K) 125 �0 10

bSF �1 A� 0:2

a	 1:5 B� 0:4

Table 4 The range of
parameters that are used to
determine the values of
permeability, and porosity in
Fig. 3, from Eqs. (2) and (3)

Cases ˛KC ˇKC 
KC a� b� c�
1 1:0 1:0 1.0 0:20 �1e�6 1:96

2 1:0 0:65 1e�7 0:08 �1e�6 2:09

3 0:75 0:66 1e�7 0:15 �1e�6 2:09

4 0:25 0:4 1e�8 0:15 �1e�6 1:96

5 0:5 0:5 0.1 0:10 �1e�6 2:1112

6 0:5 1:5 1.0 0:05 �1e�8 2:90

7 0:45 0:65 1e�6 0:01 �1e�8 2:88

K D 1� 10�15 m2. From the present calculations the porosity is pressure dependent
and in the range 0:01 � � � 0:2, and the permeability is also pressure dependent
and in the range 10�20 � K � 10�3 m2, which are more realistic (Table 4).

5 Sensitivity Analysis and Estimation of Model Parameters

It is important to determine how much the results and predicted rock properties
change due to small changes in model parameters. A sensitivity analysis was carried
out by adjusting one model parameter at a time by factors of 2 and 1=2, starting
with Case 16 as the base case – One-at-a-Time (OAT) methodology. Sensitivity is
measured by monitoring the changes in the model output.

Figure 2 shows sensitivity to selected parameters: (a) pc (critical pressure), (b)
T (temperature), (c) a	 (constant in the tortuosity model), (d) a� (constant in the
porosity model). Except for the temperature, Fig. 2b, all results show significant
sensitivity to changes in the selected parameter especially at higher inlet pressures.

Figure 3 illustrates the sensitivity of the calculated permeability, and porosity
against the pressure, for different combinations of ˛KC, ˇKC, and 
KC, Eq. (2).
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6 Summary

The Base Case 16 in Table 2, which is the fully pressure-dependent non-linear
model, performs better than other models giving the smallest error against available
data, Fig. 1c. Darcy’s Law performs the worst illustrating its limitations for gas
transport in tight porous media. A OAT sensitivity analysis shows that rock
properties such as the porosity, and permeability, are very sensitive to most of the
model parameters, Figs. 2 and 3. In the future, the sensitivity analysis for all of the
model parameters will be completed.
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Solutions of Time-Fractional Diffusion Equation
with Reflecting and Absorbing Boundary
Conditions Using Matlab

Iftikhar Ali, Nadeem A. Malik, and Bilal Chanane

Abstract The main objective of this work is to develop Matlab programs for
solving the time-fractional diffusion equation (TFDE) with reflecting and absorbing
boundary conditions on finite and infinite domains. Essentially, there are three
major codes, one for finding the exact solution of the TFDE and other two are
for finding the numerical solution of the TFDE. The code for finding the exact
solutions is based on the fundamental solution of the TFDE, whereas the codes
for finding the numerical solutions are based on the explicit and the implicit finite
difference schemes, respectively. Finally, we illustrate the effectiveness of the codes
by applying them to TFDEs with sharp initial data and for various reflecting and
absorbing boundary conditions both on finite and infinite domains. The results show
the difference of solutions between the standard diffusion equation and the time-
fractional diffusion equation.

1 Introduction

Many physical processes evolve in spaces that are heterogeneous in nature, such as,
crowded system, protein diffusion within cells, anomalous diffusion through porous
media, see [3, 4, 6, 17]. Mathematical models, based on standard calculus, have
failed to describe such intricate processes whereas mathematical models, based on
fractional calculus techniques, have proven their effectiveness in explaining such
complex processes, [1, 2, 5, 10, 15].

Time-fractional diffusion equation have been derived in the framework of Con-
tinuous Time Random Walk (CTRW) model. It is based on the idea of considering
the transport processes as the flow of particles in the form of packets and then
assigning a probability of locating a packet at position x at time t. Law of Total
Probability is used to determine probability P.x; t/. Luchko has derived the time-
fractional diffusion equation by using these concept, see the details in [8, 9]. The
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equation is given by,

	@tP.x; t/ D @1�˛t Œ�v@xP.x; t/C k2@2xP.x; t/� (1)

as t ! 1 and jxj ! 1. Equation (1) is called time-fractional advection-diffusion
equation and in the case v D 0 it reduces to time-fractional diffusion equation. For
more detailed derivation, see [9, 11].

In this work, we develop Matlab programs for finding exact and numerical
solutions of the time fractional diffusion equation (TFDE) on finite and infinite
domains, and also with various boundary conditions. The manuscript is organized
as follows; in Sect. 2, procedure for finding the fundamental solution of the TFDE is
explained; in Sect. 3, the numerical schemes are discussed; in Sect. 4, Matlab codes
are provided; in Sect. 5, several examples are given to illustrate the effectiveness of
Matlab programs; finally, in Sect. 6, conclusions are given.

2 Fundamental Solution of Time Fractional Diffusion
Equation

Consider the time fractional diffusion equation, in Caputo form, over the whole real
line with given initial data,

@˛

@t˛
u.x; t/ D @2

@x2
u.x; t/; 0 < ˛ � 1 (2)

u.x; 0/ D f .x/: (3)

Equation (2) can be written in the integral form as follows,

u.x; t/ D f .x/C 1


 .˛/

Z t

0

.t � 	/˛�1uxx.x; 	/d	: (4)

Application of Laplace transform yields a second order linear differential equation

Quxx.x; p/� p˛ Qu.x; p/ D �f .x/p˛�1: (5)

The solution of Eq. (5) is given by

Qu.x; p/ D
Z 1
�1
Qk.jx � yj; p˛=2/p˛�1f .y/dy; (6)
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where k.jxj; �/ D 1p
2��
jxj1=2k1=2.�jxj/ is modified Bessel function of second kind

[16]. Furthermore, Eq. (6) can be expressed as

Qu.x; p/ D
Z 1
�1
QG˛.jx � yj; p/f .y/dy; (7)

where QG˛.jxj; p/ D Qk.jxj; p˛=2/p˛�1:
Note that directly taking the inverse Laplace transform is not feasible, so we use

the relationship between the Laplace and Mellin transforms to obtain

QG˛.jxj; s/ D 1


 .1 � s/

Z 1
0

p�s QG˛.jxj; p/dp

D jxj1=2p
2�
 .1 � s/

Z 1
0

p3˛=4�s�1 Qk1=2.jxjp˛=2/dp: (8)

Using the results,

M Œx�f .axb/� D 1

b
a�

sC�
b Qf

�
sC �
b

�
;

Qk� .s/ D 2s�2

h s � �

2

i



�
sC �
2

�
;

Equation (8) becomes

QG˛.jxj; s/ D 1

˛
p
�
2�2s=˛jxj2s=˛�1 
 Œ1 � s=˛�
 Œ1=2� s=˛�


 Œ1 � s�
: (9)

Taking the inverse Mellin transform and using Fox function, we obtain

G˛.jxj; t/ D 1

˛
p
�
jxj�1H20

12

� jxj2=˛
22=˛t

.1; 1/

.1=2; 1=˛/; .1; 1=˛/

�
: (10)

The general solution of the time fractional diffusion equation is given by

u.x; t/ D
Z 1
�1

G˛.jx � yj; t/f .y/dy: (11)

If the initial data is given as delta potential, that is, u.x; 0/ D ı.x/, then the
solution (11) becomes

u.x; t/ D 1

˛
p
�
jxj�1H20

12

� jxj2=˛
22=˛t

.1; 1/

.1=2; 1=˛/; .1; 1=˛/

�
: (12)

For more details, readers are referred to Wyss [18] and Schneider & Wyss [14].


