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the late sisters, Anna and Rita, and brother,
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No weather will be found in this book

Mark Twain, The American Claimant



Preface

This is the second edition of a book published about 15 years ago. Someone says
that is better to write a new book rather than work on a second edition especially
after such long time. Part of the problem is that the contract for a second edition was
signed just before my hometown was hit by a 6.3 earthquake in 2009. In any case
I think an honorable compromise was reached considering that the book is largely
rewritten.

The first five chapters are an introduction to the general topics of atmospheric
physics, and they deal with thermodynamics, radiation, dynamics with applications,
and chemistry. Then the sixth chapter introduces to remote sensing. However, each
one of these chapters contains one of the main novelties of this book, and that is the
so-called examples. These either show some applications of the matter introduced
in the chapter or represent a much more detailed explanation of the same topic.
Sometimes the examples contain simple programs (MATLAB or FORTRAN) to
solve problems.

The chapter on the origin and evolution of the atmosphere has been canceled
because this theme has advanced so much (especially in connection with the
exoplanets research) that it would require a textbook of its own.

Starting with Chap. 7 the book looks very similar to the previous edition
but contains much more material. This chapter has a quite detailed treatment
of the vorticity and its properties. Chapter 8 gives more details on the oceanic
boundary layer and some introduction to the classical concepts of turbulence.
Chapter 9 contains a complete new paragraph on clouds in planetary atmospheres.
Atmospheric waves are treated in Chap. 10, and the examples contain a rather
complete exposition about mountain waves including simple programs. Chapter 11
is very similar to the previous book with some additional information about the
wave contribution to the general circulation. Chapter 12 is about theories on general
circulation. Here we have rewritten the section on the Hadley circulation with an
explicit calculation based on the work of Sobel and Schneider. Also in the examples
the same problem is solved in the shallow water approximation.

Chapter 13 gives more detailed information about radiative transfer calculations
that are necessary for the introduction to simple climate models. These are treated
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in Chap. 14 and 15. In particular Chap. 14 ends with examples that introduce the
entropy approach to energy balance climate models, and as a preparatory step
the same method is used to calculate the temperature profile of an elementary
atmosphere. In Chap. 15 the section on the performance of GCM has been very
much expanded. It includes the most recent development about metrics and the
Bayesian point of view. This requires an elementary introduction to Bayesian
statistics. Statistics also enter in some of the examples about the evaluation of the
effect of uncertainty in model parameters.

The chemistry of the troposphere is the topic of Chap. 16. This is another chapter
largely rewritten and expanded. The simple models for tropospheric ozone have
been rewritten and used to evaluate the gas isopleth in an urban atmosphere. Chapter
17 about circulation of the middle atmosphere has not changed very much except
for some additional examples on equatorial waves and the Holton model on quasi
biennial oscillation. The same is true for the following chapter about stratospheric
ozone chemistry. In this case the examples are about the calculation of loss rate of
polar ozone and the explicit calculation of the effects of the catalytic cycle, a solved
exercise proposed in the book by Andrews.

Another major difference with the first edition is Chap. 19 that has been extended
to deal not only with chaos but also with nonlinear phenomena. As examples
of nonlinear phenomena, the Stommel model for the thermohaline circulation is
discussed in connection with climate theory, and there is an extensive treatment
of the difference equations made so popular by Edward Lorenz. Then the delayed
differential equations are discussed in connection with the ENSO and the aerosol-
cloud problem seen as predator—prey problem as developed by Koren and Feingold.
The interesting parts of this chapter are the examples with programs that solve most
of the topics described in the chapter.

Finally a new chapter was added on the controversial theme of geoengineering.
This is a huge field now, and we just discussed a few options on carbon capture
and sequestration using what we had learned in Chap. 16 about the carbon cycle.
Then we had an excuse to reintroduce the energy balance model as described by
Kleidon and Renner. Also some additional requirements are treated in the examples
concerning the radiative effects and the role of the aerosol in the cloud albedo
(Twomey effect).

All these took a considerable effort (all the figures were drawn or redrawn by
the author), and I asked many times during these years if the game was worth the
candle especially when there is so much material around. After 14 years the field of
atmospheric physics and chemistry has expanded impressively, and there are many
excellent books published not considering the amount of material available on the
Internet. Our intent is to take the reader through an approach that deepens some
of the most unknown aspect of the field that many times are buried in “historical”
forgotten paper that remains very instructive. A classical example is the problem
of the breezes that most of the books limit to a couple of pages but contain many
useful insights. Similar examples could be found in the tropospheric chemistry and
nonlinear problems. Our ideas were to use very simple arguments wherever possible
that could be translated in simple and comprehensible calculations.
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Preface ix

Other important reasons for a second edition are errors. Reading back the first
edition, I found many mistakes, some of them the results of simple distraction but
others had some deep and wrong roots. Most of them have been corrected, but
nothing guarantees that we have not introduced new ones. On the other hand the
gigantic amount of material referred before contains often errors that went beyond
even the referees (this is the perverse side of the peer review).

As before the contribution of students and friends has been fundamental. Frank
Marzano (who should have been a coauthor) suggested many features of this edition.
Former students, now in the professional lineage, have very much contributed, in
particular Gabriele Curci and Paolo Ruggieri. I have to give them all the credits they
deserve to help out especially with the MATLAB scripts.

The support of my family must be acknowledged considering that we all went
through the stress of a destructive earthquake from which neither the city nor the
university have recovered yet. Their encouragement has been constant, and this is
one of the reasons this work is dedicated to them.

L’ Aquila, Italy Guido Visconti
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Chapter 1
Fundamentals: Thermodynamics
of the Atmosphere

In order to introduce even the most simple questions about atmospheric physics, we
need to refresh some basic physics concept. We will start with thermodynamics and
continue with radiation (Chap. 2) and very essential fluid dynamics (Chap. 3). This
scheme will give us the possibility to compare some characteristics of the planetary
atmospheres. We all have studied thermodynamics as a part of general physics and
we may have wondered about the purpose of all those theorems and demonstrations.
Are they of any utility, for example, for changing a tire on our car or talking to the
plumber? Actually one of the most enlightening applications of thermodynamics
is to study the atmosphere or, in general, complex systems. Of course we need to
study more deeply real gases like water vapor because, in a sense, it is the fuel of the
atmosphere. Also the atmosphere is actually a mix of different gases and one should
know under which conditions this mix may be treated as a perfect or real gas. We
will start from the most elementary concepts and then, as always, we will be very
careful about the jargon.

1.1 Simple Laws

The applications we have in mind for those things learned in the early years are not
many. It will be useful to introduce definitions more typical of meteorologists; for
example, we start from the equation of a perfect gas

V= (%) RT (1.1)

Electronic supplementary material The online version of this chapter (doi:
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users.
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Fig. 1.1 The gas contained
in a cylindrical box closed . . .
with a piston . ..
V. = 7
X

where p is the pressure, V the volume, and m, and M the mass of the gas and its
molecular mass, respectively. R is the gas constant and 7 the temperature. Usually,
Eq. (1.1) is simplified introducing the specific volume o and a new gas constant
defined as R’ = R/M. In the case of air, we consider a molecular mass obtained as
a weight average of the two major gases composing the atmosphere (nitrogen and
oxygen). We get M =0.78 28 4 0.21 32 =28.9 and the value of the new constant
R’ becomes 8314/28.9 =286.7 ] kg~! K™'. Equation (1.1) becomes

pa = RT (1.2)

where R has been substituted for R'.

It is quite interesting to obtain the same law from the kinetic theory of gases that
applies simple mechanics laws to a gas contained for simplicity in a box (Fig. 1.1).

Each molecule that strikes the piston will give up part of its momentum and will
exert a force on the surface that will result in the pressure p. If the component of the
velocity is vy, then it will give up a momentum 2mv,. The number of molecules per
second striking the surface A is the one contained in a cylinder with volume and is
equal to nAv, where n is the number density. The force is then

F = nAmv,2mv;, (1.3)

The pressure is obtained by dividing by the surface A. We need also to consider
that only half of the molecules are directed toward the piston and also we need to
consider the average quadratic value for v,. We then get

p= nm(vz) (1.4)

X

There is nothing special about the x direction so that we can easily assume that

02) = 3 (03] + 2)+ (2) = 5 (1)

so that the pressure is simply
2 my?
== —_— 1.6
= (3){5) 19

If we multiply this equation by the volume V, we get

2
pV = (%)N<%> (1.7)



1.1 Simple Laws 3

where N is the total number of molecules in the volume. The temptation is too strong
to compare (1.7) with (1.1) and get

my 2 mv?
(—) RT = (Z)N({Z
M 3 2
And we can define the kinetic energy as

m\ _ 3er 1.8
<T>‘§ (-9

with k the Boltzmann constant k = R/N,, where N, is the Avogadro number and R
the gas constant.

A very insightful application of (1.8) can be made to find how the pressure
changes with altitude. First of all we write (1.2) in a different way introducing the
Boltzmann constant k defined as k = R/N,. It is easy to show that

p = nkT (1.9)

where n is the number of molecules for unit volume

We consider two parallel planes in the atmosphere separated by a distance dz,
and then the force on each molecule times their density must be balanced by the
change in pressure

Fndz = dp = kTdn
that is equivalent to

Fe= i 7L iny] = —L(PE) (1.10)
= —_——_— = _— n = —— .
nde g dz

where we have assumed that the force derived from some potential, that is, the
difference in potential energy (PE). Then

d(In n) = —d(PE)/kT
that can be integrated to give
n = cost e PE/T (1.11)
This equation gives the number density (pressure) as a function of the potential
energy of a molecule, that is, mgz/kT, but it also constitutes the Boltzmann law, that

is, the probability of finding a molecule in a determined energy state is proportional
to the exponential of that energy divided by k7.
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The pressure change with altitude is also an application of Equation (1.2). We
start from the equation of hydrostatic equilibrium. The pressure change across a
layer of thickness dz must be equal to the weight for unit surface of the atmospheric
column of the same thickness:

dp = —pgdz (1.12)

The z coordinate is oriented upward from the ground. Equation (2.3) can be easily
integrated to give

p(2) = / gpd? (1.13)

From this equation we see that the pressure as a function of altitude must depend on
the density and then on the temperature.

1.1.1 The Scale Height

A very important connection can be made between thermodynamic quantities and
a typical meteorological variable like the geopotential. This actually coincides with
the gravitational potential when we take as reference the sea level. We can write

d® = gdz = —adp (1.14)

where @ is the geopotential whose units are m~2s~2. A quantity which is often used
in meteorology is the geopotential height Z defined as

) Y
Z=—=— gd? (1.15)
80 8o0Jz

The geopotential height differs from the geometric altitude insofar as the accel-
eration of gravity decreases with altitude. However, in order to find appreciable
differences, we need to consider altitudes of several tens of kilometers. In any case
the introduction of the geopotential gives some useful relations. Starting from the
gas equation and using the hydrostatic equilibrium we get

dp rg
£ __5 1.16
dz RT ( )
from which we get
dp
d® = —RT— 1.17)

p
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and this can be integrated between pressure levels py,p»

g
<I>1—<I>2:R/ 7% (1.18)
p1 p
If we divide both sides by go, we obtain
R (7 _d
Z—7 = —f 7% (1.19)
80 1 p
The integral can be easily solved for an isothermal atmosphere to give
Z,— 7, = Hln (’2) (1.20)
P2

which is the same as

p2 =pirexp [~ (2, — Zy) /H]

where H = RT/g is the scale height. H gives an indication how fast atmospheric
density and pressure decrease with altitude and has been defined only for an
isothermal atmosphere. For example, for a temperature of 290 K, H is about 8 km.
If we consider a layer defined by the pressures p; and p, to which correspond the
geopotential heights Z; and Z,, then we can define an average scale height H through
Eq. (2.11)

Z,—7 =—Hln (’2) (121)
P1

where H is the scale height calculated for 7.

1.1.2 The Potential Temperature

Application of the first law of thermodynamics gives the relation between the change
in internal energy du, heat provided to the system 8¢, and work done dw

8q—dw = du (1.22)

Equation (2.13) has some interesting consequences. Using the specific volume, it
can be rewritten as §¢ = pda + C,dT, where C,, is the specific heat per unit mass at
constant pressure. We notice that pdo = —adp and we get an expression equivalent
to the first law:


http://dx.doi.org/10.1007/978-3-319-29449-0_2
http://dx.doi.org/10.1007/978-3-319-29449-0_2
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8q = C,dT + RdT — adp = C,dT — adp (1.23)
It is convenient at this point to define the enthalpy h
h=u-+ pa (1.24)

and we find immediately dh = C,dT. From the definition of geopotential, it follows
another form of the first law of thermodynamics:

dg=d(h+ ®) =d(C,T + ) (1.25)

This very simple equation implies that if the motion of an air parcel is adiabatic
(dg = 0), then the sum of the enthalpy and geopotential is conserved. Actually, we
can get a very useful relation just putting dg = 0 in Eq. (1.25):

ar g

i C) =TIy (1.26)
This represents the dry adiabatic lapse rate, that is, the rate of change of temperature
with altitude when the motion of the air parcel can be considered adiabatic. If we
substitute g =9.81 ms™2 and C, = 1004 j kg™' K~', we get [; = 9.8 K km™".
Actually, the average gradient observed in the atmosphere is lower than this value,
being about 6.5 K km™' and will be denoted by I' = —dT/dz. Once we have
introduced the adiabatic gradient, it is very simple to define the potential temperature
6. This would be the temperature assumed by an air parcel initially at pressure p
brought adiabatically at pressure py assumed as reference at 1000 hPa. Using Eq.
(2.14) for an adiabatic and eliminating the specific volume through the gas equation,
we have

Gpdl _dp _
RT p

which can be integrated from the reference pressure py where the temperature is the
potential temperature 6 to the level p where the temperature is 7. We get

C T
—pln—zln£
R 0 0

and then for the potential temperature

R/C,
6 = T(@) (1.27)

The exponent R/C, is about 0.286. The importance of the potential temperature is
that it is a conservative quantity as we will see in the course of the book.
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Fig. 1.2 The static stability: z z
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stability; on the right Al i (a) B (b)
positive stability P IS
D Do
[ | 1 1 .
P P T
[ 1 1
AR ¥ P Iy
|| L
T, T T T T T

1.1.3 Static Stability

Consider an air parcel at some altitude where the measured temperature gradient is
I', with the dry adiabatic gradient being I';. The air parcel does not contain water
vapor and it is lifted from point O to A (Fig. 1.2a). Its temperature will change
according to the dry adiabat and will assume the value T4. This value is lower than
the surrounding atmospheric temperature T, and at this point the density of the air
parcel is greater than that of the surrounding air and will tend to return to the initial
position. On the other hand, if I'; is less than I', the opposite will happen, and, as
shown in Fig. 1.2b, the air parcel will move away from the initial point. The first
case corresponds to a situation of positive static stability, while the second case is an
example of negative static stability. It is interesting to relate the stability to the rate
of change of the potential temperature with altitude. Suppose the air parcel of the
previous examples has a volume dV, density o', and temperature T’. The surrounding
atmosphere, in hydrostatic equilibrium, satisfies the equation dp/dz = —pg. The air
parcel will be subjected to a force per unit volume given by — (o’ — p) g and to
acceleration — (o’ — p) g/ 0. As a function of temperature, we will get

d281_ ry,—r
aw - 5T

8z (1.28)

In writing Eq. (1.28), we have considered that the pressure inside and outside the
air parcel is the same. Also T =~ T"and T — T’ = (I'y — I') §z and 4z is the vertical
displacement of the air parcel.

The right-hand side of Eq. (2.18) has the dimension of frequency squared and it
can be related to the potential temperature. Using the logarithmic derivative of the
potential temperature

190 1dT  Rpg Ty—T

—— =4 == 1.29
00z Tdz * Cp T (1.29)
and comparing Eqs. (2.18) and (2.19), we get
do
N =822 (1.30)

_5dz
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N is called the Brunt-Viiisdld frequency and is a measure of the static stability. From
Eq. (2.18), we have §z = A exp(iNt), so that for N> > 0 the air parcel will oscillate
around its equilibrium position (positive stability) and if N> < 0 the air parcel will
move away from the equilibrium position (negative stability). These two conditions
correspond to

do do
N>0—>—>0 N<0—>—<0
dz dz

In the case of positive stability, the potential temperature will increase with altitude
and the opposite will happen for negative stability.

1.2 The Thermodynamics of Water Vapor

A topic in thermodynamics that is often neglected in general physics courses is that
of the properties of condensable gases. In studying atmospheric physics, the obvious
condensable gas is water vapor, at least for the atmosphere of the Earth. The pressure
and atmospheric conditions on our planet are such as to allow the existence of water
in its three main phases (gas, liquid, and solid). This peculiarity has a fundamental
influence on the weather and the climate of our planet.

We will again start with a brief review of elementary thermodynamics. A good
starting point is the introduction of the equation of Clausius—Clapeyron, which gives
the saturation pressure of water vapor as a function of temperature.

1.2.1 The Equation of Clausius—Clapeyron

Water (just one chemical component) can appear on three different phases, that is,
liquid, gas, and ice (solid). Once we have specified the number of component y and
the number of phases, ¢, the Gibbs law gives the number of independent variable f
needed to specify the system:

f=r—¢+2 (1.31)

In the particular case of water, y =1, so that f = 3 — ¢. This means that if the
phase is just one (like gas), we need two variables to specify the state like pressure
and temperature. If the phases are two like liquid and vapor, then we need to specify
only one variable like temperature 7. If all three phases are in equilibrium with
f =0, that means there is only one value for the variables. This is illustrated in
Fig. 1.3 where we have traced the boundaries between the phase in a p, T plane.
We now consider a liquid in equilibrium with its vapor phase and we consider
two isotherms as shown in Fig. 1.4a. When there is only the gas phase, the pressure



1.2 The Thermodynamics of Water Vapor 9
Fig. 1.3 The phase diagram
. 14 +
for water in the p, T plane. o
The three curves indicate 12l liquid
those points for which two ©
. e o .
phases coexist at equilibrium £ 10+ solid
is
S 8
A vapor
w 6r
o
a
4 L
2 L
-30 -20 0 10 20 30
TEMPERATURE (C)
w
[ie
D
! Aeg
w C
T B
o A D
Liquid
Liquid and T-AT
Vapor Vapor
VOLUME Vi VOLUME Ve

Fig. 1.4 Isothermal lines for water vapor (a, on the left) and the elementary Carnot cycle obtained
by connecting the two isothermal at constant pressure. The liquid volume (Vi) and gas volume
(Vi) are also indicated

increases as the volume decreases. When the vapor starts to condense and the liquid
and gas phase coexist, then the pressure remains constant up to the point where all
the gas has condensed. After that the pressure increases rapidly. We consider two
isotherms, one at T and the other at T — AT, and connect them with two adiabats
to constitute an elementary Carnot cycle (see Fig. 1.4b). Starting from point A at
pressure e; — de; (with e; being the saturation pressure) and temperature 7 — AT,
we execute a slight compression to pressure e, to which corresponds a volume
VL (point B). In order to increase the saturation pressure, the temperature will
increase to 7. At constant temperature the gas expands to volume Vi (point C);
from this point a new expansion is carried out to pressure e; — de; and temperature
T — AT (point D). Finally through adiabatic compression, the gas goes back to
the initial condition. The isothermal expansion from B to C requires that some
heat be provided: this is the latent heat of condensation L (2.5 10° J kg=!). In
the same expansion, the work done is e; (Vg — Vp). On the other isotherm (D-
A), heat must be subtracted and the work done will be (e, — dey) (Vg — Vy). If



