

Developing the Next Generation Spaceplane

Erik Seedhouse

XCOR, Developing the Next Generation Spaceplane

Published in association with **Praxis Publishing** Chichester, UK

Erik Seedhouse Assistant Professor, Commercial Space Operations Embry-Riddle Aeronautical University Daytona Beach, Florida, USA

SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION

 Springer Praxis Books
 ISBN 978-3-319-26110-2
 ISBN 978-3-319-26112-6
 (eBook)

 DOI 10.1007/978-3-319-26112-6

Library of Congress Control Number: 2016930303

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Cover designer: Jim Wilkie Project copy editor: Christine Cressy

Printed on acid-free paper

Praxis is a brand of Springer Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

Contents

Dedication		ix xi xiii xv xv xix
1	XCOR: A Brief History	1
	Space Travel 2.0	20
	The Suborbital Commercial Space Race	21
	Midland	22
2	Key Players	25
	Jeff Greason	27
	Dan DeLong	32
	Doug Jones	33
	Aleta Jackson	34
	The Test Pilots	34
	NASA astronaut Rick Searfoss	34
	Commercial astronaut Brian Binnie	35
3	Industry	39
	The Tauri Group	40
	The Federal Aviation Administration's Office of Commercial	
	Space Transportation (AST)	42
	Applying for a Launch License	43
	Applying for a Re-entry License	46
	Spaceports	48
	The International Traffic on Arms Regulations (ITAR)	49

4	Next-Generation Spacecraft	53
	Lynx Variants	54
	Lynx Performance	56
	Lynx Mark I	57
	Lynx Mark II	60
	Lynx Mark III	62
	Payloads	62
	Payload A	62
	Payload B	66
	Payload Cowling Port and Cowling Starboard	67
	Payload D: Dorsal Pod	67
	Building the Lynx	67
	Rocket Power	72
	The Reaction Control System (RCS)	73
5	Spaceports	75
	Midland Development Corporation	75
	Midland International Airport	78
	International Spaceports	80
	Australia	80
	Scotland	80
	Curaçao	81
6	Missions and Payload Integration	83
	Science and Payload Missions	84
	Funding Opportunities: A Brief History	85
	Project PoSSUM	88
	Payload Integration	89
	The Payload Integration Process	89
	Payload Development	91
	Mission Integration	91
	Engineering Integration	92
	Payload Software	92
	Payload Operations	93
	Payload Safety Review	94
	Export Control	94
	Payload Processing	94
	Payload Integration Considerations	95
	Cabin Characteristics	95
	Payload Characteristics	96
	Structural Interfaces	98
	Environmental Conditions	98
	Emergency Decompression	99
	8 7 1	

	Electrical Power Interfaces	99
	Electromagnetic Compatibility	99
	Overview	100
7	Passenger Training and Certification	101
	Spacesuit	104
	Altitude Physiology	109
	High-Altitude Indoctrination (HAI) Training	116
	Acceleration Physiology	121
	Space Motion Sickness	129
	Pharmacotherapy	131
	Perception	131
	Radiation	133
	Parabolic Flight	134
8	STEM	137
	Steve Heck	138
	STEM	138
	NASA and STEM	139
	Arête STEM	139
	Milford School's "Right Stuff"	140
	Citizens in Space	144
	Suborbital Applications Researchers Group	145
9	How to Fly	149
	XCOR's Rich and Famous	151
	Fly a Payload	155
	Project PoSSUM: A Suborbital Research Program Designed	
	Around the Lynx	156
	Why Study Noctilucent Clouds?	158
	Origins: The Noctilucent cloud Imagery and Tomography	
	Experiment (NITE)	160
	From NITE to PoSSUM	161
	Expanding the PoSSUM Story	161
	The PoSSUM Tomography Experiment	163
	PoSSUM Educational Programs	163
	The PoSSUM Scientist-Astronaut Program	164
	PoSSUM: A Comprehensive Suborbital Research Program	169
Ар	pendix I: Statement of Michael Kelly, Before the House	
Tra	ansportation Committee	171
Ар	pendix II: President, XCOR Aerospace	175

Appendix III: Payload Development Guide	179
Appendix IV: The PoSSUM Suborbital Spaceflight Simulator	185
Appendix V: Microgravity Experiment Developer's Kit	201
Appendix VI: Neurological Assessment for Suborbital Crewmembers	205
Index	211

To: Jeff Greason and his team of dedicated engineers for bringing the Lynx to reality

Acknowledgments

In writing this book, the author has been fortunate to have had five reviewers who made such positive comments concerning the content of this publication. He is also grateful to Maury Solomon at Springer and to Clive Horwood and his team at Praxis for guiding this book through the publication process. The author also gratefully acknowledges all those who gave permission to use many of the images in this book, especially XCOR. Thanks also to Jeff Greason for agreeing to be interviewed for this book and to Steve Heck, Jason Reimuller, and Rick Searfoss, who provided valuable insight and input.

The author also expresses his deep appreciation to Project Manager, Sasi Reka, to Christine Cressy, whose attention to detail and patience greatly facilitated the publication of this book, and to Jim Wilkie for creating yet another striking cover. Thanks Jim! Thanks also to Vasco for allowing me to include the material in Appendix IV and to Justin for allowing me to include the material in Appendix V.

About the Author

Erik Seedhouse is a fully trained commercial suborbital astronaut. After completing his first degree, he joined the 2nd Battalion the Parachute Regiment. During his time in the "Para's," Erik spent six months in Belize, where he was trained in the art of jungle warfare. Later, he spent several months learning the intricacies of desert warfare in Cyprus. He made more than 30 jumps from a Hercules C130 aircraft, performed more than 200 helicopter abseils, and fired more light anti-tank weapons than he cares to remember!

Upon returning to academia, the author embarked upon a master's degree which he supported by winning prize money in 100 km running races. After placing third in the World 100 km Championships in 1992, Erik turned to ultra-distance triathlon, winning the World Endurance Triathlon Championships in 1995 and 1996. For good measure, he won the World Double Ironman Championships in 1995 and the infamous Decatriathlon – an event requiring competitors to swim 38 kilometers, cycle 1,800 kilometers, and run 422 kilometers. Non-stop!

In 1996, Erik pursued his Ph.D. at the German Space Agency's Institute for Space Medicine. While studying, he found time to win Ultraman Hawai'i and the European Ultraman Championships as well as completing Race Across America. Due to his success as the world's leading ultra-distance triathlete, Erik was featured in dozens of magazine and television interviews. In 1997, *GQ* magazine nominated him as the "Fittest Man in the World."

In 1999, Erik took a research job at Simon Fraser University. In 2005, he worked as an astronaut training consultant for Bigelow Aerospace and wrote *Tourists in Space*, a training manual for spaceflight participants. Between 2008 and 2013, he served as director of Canada's manned centrifuge and hypobaric operations and, in 2009, he was one of the final 30 candidates in the Canadian Space Agency's Astronaut Recruitment Campaign. Erik has a dream job as a professor in Commercial Space Operations at Embry-Riddle Aeronautical University in Daytona Beach, Florida. In his spare time, he works as an astronaut instructor for Project PoSSUM, a professional speaker, a triathlon coach, and an author. *XCOR* is his 24th book. When not enjoying the sun and rocket launches on Florida's Space Coast, he divides his time between his second home in Sandefjord, Norway, and Waikoloa on the Big Island of Hawai'i.

Acronyms

AASA	Axe Apollo Space Academy
AEM	Animal Enclosure Module
AFT	Autogenic Feedback Training
AGSM	Anti-G Straining Maneuver
AIM	Aeronomy of Ice in the Mesosphere
ARC	Ames Research Center
ATV	Atmospheric Test Vehicle
BPPV	Benign Paradoxical Positional Vertigo
CAA	Civil Aviation Administration
CCL	Commerce Control List
CEF	Change Evaluation Form
COMSTAC	Commercial Space Transportation Advisory Committee
СР	Cowling Port
CRM	Crew Resource Management
CRuSR	Commercial Reusable Suborbital Research
CS	Cowling Starboard
CSF	Commercial Spaceflight Federation
CSLA	Commercial Space Launch Amendments
DARPA	Defense Advanced Research Projects Agency
ECG	Electrocardiogram
ECLSS	Environmentally Controlled Life-Support System
EPT	Effective Performance Time
ERAU	Embry-Riddle Aeronautical University
FAA	Federal Aviation Administration
FAI	Fédération Aéronautique Internationale
FAR	Federal Aviation Regulations
FFD	Final Frontier Design
FOP	Flight Opportunities Program
FRR	Flight Readiness Review

G-LOC	Gravity-Induced Loss of Consciousness
GOR	Gradual Onset Rate
HAI	High-Altitude Indoctrination
HEPA	High-Efficiency Particulate Air
HFA	Hardware Feasibility Assessment
HMD	Head-Mounted Display
HSG	High Sustained G
HTPB	Hydroxyl-Terminated Polybutadiene
ICB	Informal Consent Briefing
ICD	Interface Control Document
ICP	Intracranial Pressure
IPP	Innovative Partnership Program
ISS	Integrated Spaceflight Service
ITAR	International Trade on Arms Regulations
LEO	Low Earth Orbit
LoV	Loss of Vision
LPMR	Layered Phenomena in the Mesopause Region
MASS	Mesospheric Aerosol Sampling Spectrometer
MCAT	Mesospheric Clear Air Turbulence
MCC	Mission Control Center
MCP	Mechanical Counter Pressure
MRI	Magnetic Resonance Imaging
NAUI	National Association of Underwater Instructors
NITE	Noctilucent cloud Imagery and Tomography Experiment
NSRC	Next Generation Suborbital Researchers Conference
PAR	Payload Anomaly Report
PGSC	Payload and General Support Computer
PI	Principal Investigator
PIM	Payload Integration Manager
PLL	Peripheral Light Loss
PMC	Polar Mesospheric Clouds
PMR	Post-Mission Report
PoSSUM	Polar Suborbital Science in the Upper Mesosphere
PSD	Physiological Support Division
PSI	Planetary Space Institute
PUG	Payload Users Guide
RCS	Reaction Control System
RD	Rapid Decompression
REM	Research Education Mission
RLV	Reusable Launch Vehicle
ROR	Rapid Onset Rate
ROSES	Research Opportunities in Space and Earth Sciences
RRL	Rocket Racing League
SARG	Suborbital Applications Researchers Group
SD	Slow Decompression

- SMS Space Motion Sickness
- sRLV Suborbital Reusable Launch Vehicle
- SSI Space Science Institute
- SSME Space Shuttle Main Engine
- SSTO Single Stage to Orbit
- SSTP Suborbital Scientist Training Program
- STEM Science Technology Engineering and Mathematics
- STMD Space Technology Mission Directorate
- SwRI Southwest Research Institute
- USAF United States Air Force
- USML United States Munitions List
- USRA Universities Space Research Association
- VFR Visual Flight Regulations
- WFI Wide Field Imager

Preface

For years after SpaceShipOne won the X-Prize, all you ever heard in the commercial spaceflight business was when SpaceShipTwo would begin revenue flights. Initially, Paris Hilton and her celebrity friends were due to take their suborbital joyride in 2007, but an explosion that killed three workers put paid to that deadline. Then 2010 was announced as the start of revenue operations but, by the end of 2010, still no passengers had flown. 2010 became 2011, which became 2012 and still there were no flights. Then, tragically, in October 2014, SpaceShipTwo crashed, killing one of the pilots and injuring the other. The public wondered whether passengers would ever fly in space, oblivious to the work of a company that also had suborbital aspirations and which was located just a stone's throw down the flight line from Virgin Galactic. That company's name is XCOR and its snappy little spaceship is the Lynx.

The Lynx has been in the works for years, but XCOR, unlike some companies, prefer to let their deeds to the talking. No bold pronouncements of when revenue flights will start from this company. Over the years, XCOR has amassed invaluable expertise in the building of suborbital vehicles: in addition to having developed and built 13 different rocket engines, XCOR has also accumulated more than 4,000 engine firings and more than eight hours of run time on their engines. With the travails of Virgin Galactic putting the future of SpaceShipTwo on a back foot, XCOR has been thrust into the spotlight of the commercial space industry and is on the cusp of conducting flight testing of the Lynx Mark I.

The Lynx has two seats – one for a pilot and one for a spaceflight participant. Its low weight and high-octane fuel confer important advantages over SpaceShipTwo that include direct runway launches without the complication and expense of a mother ship and the ability to fly several times per day. Like SpaceShipTwo, the Lynx is a rocket-powered airplane, but that's about the only similarity. Powered by four XCOR-built kerosene and liquid-oxygen engines, the Lynx's take-off speed is 190 knots, and it can get airborne with only 350 meters of runway. The all-liquid design is more efficient than SpaceShipTwo's hybrid propulsion, providing more thrust per pound of fuel. All-liquid fuel should also give the Lynx a fast turnaround between flights because crews can just top up the tanks and fly again, whereas SpaceShipTwo's engine must be replaced between flights.

xx Preface

Passengers paying US\$150,000 (\$100,00 less than Virgin Galactic's ticket price) will ride beside the pilot. Both pilot and passenger will wear pressure suits as a safety measure in case cabin pressure is lost during the flight. Unlike SpaceShipTwo customers, Lynx passengers will not be able to unstrap and float about the cabin after the engine cut-off. All being well, revenue flights could start sometime in 2019. That's 15 years after the X-Prize-winning flight of SpaceShipOne and there may be some who are wondering why this suborbital spaceflight business has taken so long. The answer is money. XCOR never had the deep pockets of a Virgin Galactic, a SpaceX, or a Blue Origin. This is a company that has accomplished what many industry wags thought impossible on a budget that NASA uses to put together a few PowerPoint presentations. And it has done so thanks to the incredible dedication and perseverance of a handful of extraordinarily talented individuals who had the intestinal fortitude to take risks and to dream big. Take Jeff Greason for example. We'll talk about Jeff at some length in this book but here's a snapshot of the man with the vision that morphed into what XCOR is today.

The XCOR team. Credit: XCOR

Jeff has been space enthusiast his whole life so, when an opportunity to take the job as head of propulsion with Rotary Rockets came about in 1997, he jumped at the chance. It was a bold – some may say reckless – move, given that he left a lucrative career as an

engineer with Intel, but "bold" is what Jeff does. Two years later, Rotary folded and Greason, together with a small group of Rotary engineers, formed XCOR. More than 16 years later, they are still together¹ and are on the cusp of making history as the first company to start a suborbital flight service. And, when that service starts, the pilot at the controls will likely be three-time Shuttle astronaut Rick Searfoss. With Searfoss and his passenger ensconced in their pressure suits, the Lynx will taxi off the ramp and wait for clearance from the tower at Midland. Once clearance has been given, the Lynx will get airborne in seconds thanks to the eye-popping acceleration provided by those engines. Less than a minute after take-off, the Lynx will be accelerating through Mach 1 and the sky that was blue just a few seconds earlier will rapidly fade to black. With the flip of a few switches, Searfoss will shut down the engines and momentum will do the rest as the vehicle coasts to its apex more than 100 kilometers above Earth. There, for up to four minutes, passengers – now astronauts – will take in the jaw-dropping view, unless they happen to be scientists, in which case they will have to knuckle down to following their checklists. All too soon, the suborbital joyride will be over and the Lynx will glide back to its home airport, ready to do it all over again.

¹ In November 2015 it was announced that Jeff, together with two other founders of XCOR Aerospace, were leaving the company to form Agile Aero. While Jeff remains on the board, he is no longer involved in XCOR's day-to-day operations.

1 XCOR: A Brief History

Credit: XCOR

2 XCOR: A Brief History

In 1999, XCOR comprised four employees who had just been laid off from Rotary Rocket. With no money, no investors, and little in the way of a business plan, they decided to strike out on their own and founded XCOR (*www.xcor.com*). Fifteen years and US\$45 million (mostly raised from venture funds) later, XCOR is on the threshold of commercial suborbital passenger operations – all for US\$150,000 a ticket.

XCOR has never been a large company, but what it lacks in size it more than makes up for in innovation. While other companies in the New Space era have crashed and burned – think Kistler and Starchaser – XCOR has grown from strength to strength. The reason is simple: XCOR is one of the few companies in the commercial spaceflight arena that can successfully translate their plans to products – a skill they have repeated over and over again since the company's inception in 1999. Back then, the Mojave-based company's project was the NeX-1. The Nex-1, a replica of Chuck Yeager's Bell X-1 (Figure 1.1), was a much more down-to-earth affair compared with the Lynx, since it was merely intended to be shown at air shows. As part of the NeX-1 project, XCOR redesigned the XLR-11 engine that provided the power for the X-1.

Why the NeX-1? At the time, XCOR's plan was to provide high-altitude, Mach-speed joyrides – a precursor to space tourism. It was a bold move back in 1999 because space tourism was a decidedly risky business proposition given that it would be five years before

1.1 The X-1 rocket plane. Credit: NASA