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Foreword

That moment. That secret weapon moment. That I-got-lucky-and-came-across-something-that-helped-me-
win-the-game moment. This might just be it.

This book teaches you all you need to know to get going with F#, an open source, cross-platform
programming language suitable for just about every kind of programming and data processing task. And
yes, learning F# is like learning a secret weapon. Wielding it, you will find yourself doing things previously
beyond your limits: it will empower you, and with it you will do great things.

Why do I know this? Because I have seen the authors of this book, Kit Eason and Robert Pickering, learn
F# and wield it powerfully and effectively in job after job. I've seen how it has changed the way they think
about programming. In this book, they share what they have learned with you, and they want to help you
learn and use this secret weapon too.

No programming language is a “silver bullet;” F# won’t magically slay dragons in and of itself. However,
F# does an excellent job of removing the incidental complexity that bedevils so much of programming. Take
one example: the pervasive use of “null” values in languages such as C# and Java. In one real-world case
study by Simon Cousins, using F# reduced the incidence of null checks by 200x in a transaction processing
engine, with over 3,000 extra null checks in the fully object-oriented application in question. This is no
minor thing: to continue the secret weapon analogy, a null check is like a potential weapon failure at a
critical moment, a gun-jam. At any one of these 3,000 code points, that application was at risk of failing. It is
simply better-and less risky-to fight your battles with a weapon that doesn’t jam. F# reduces the number of
potential failure points, and does so systematically. Some argue that incidental complexity is not important.
This is wrong: removing incidental complexity is the first and most essential step you can take to becoming
a more productive programmer, since it liberates you to address the real heart of programming. Learning F#
will help you do this.

F# is known as a “functional-first” programming language, meaning you use simple functional
programming as the first way to solve most problems. This is simple and easy, and lets you solve most
programming problems with ease. F# programming is, however, pragmatic. Good software engineering
really matters in F#: we care about code quality, naming, documentation, and good design. This book will
show you all of these things. It will also teach you how to use F# for data access, web programming, parallel
programming, and a myriad of other practical tasks. Finally, it will show you how to contribute back to the F#
community through open source packages.

Take the moment and learn F#, and don’t look back. Thousands of people are enjoying this language
daily, and with more efficient, expressive coding, and higher productivity. And not just productivity, but
delight and happiness in craftsmanship as well.

—Don Syme
F# Language Designer and F# Community Contributor
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CHAPTER 1

Getting Started

This introductory chapter will address some of the major questions you may have about F# and functional
programming.

What Is Functional Programming?

Functional programming (FP) is the oldest of the three major programming paradigms. The first FP
language, IPL, was invented in 1955, about a year before FORTRAN. The second, Lisp, was invented in

1958, a year before COBOL. Both Fortran and Cobol are imperative (or procedural) languages, and their
immediate success in scientific and business computing made imperative programming the dominant
paradigm for more than 30 years. The rise of the object-oriented (OO) paradigm in the 1970s and the gradual
maturing of OO languages ever since have made OO programming the most popular paradigm today.

Since the 1950s there has been vigorous and continual development of powerful FP languages—SML,
Objective Caml (OCaml), APL, and Clean, among others—and FP-like languages—Erlang, Lisp, and Haskell
being the most successful for real-world applications. However, FP remained a primarily academic pursuit
until recently. The early commercial success of imperative languages made it the dominant paradigm for
decades. Object-oriented languages gained broad acceptance only when enterprises recognized the need
for more sophisticated computing solutions. Today, the promise of FP is finally being realized to solve even
more complex problems—as well as the simpler ones.

Pure functional programming views all programs as collections of functions that accept arguments
and return values. Unlike imperative and object-oriented programming, it allows no side effects and
uses recursion instead of loops for iteration. The functions in a functional program are very much like
mathematical functions because they do not change the state of the program. In the simplest terms, once a
value is assigned to an identifier, it never changes; functions do not alter parameter values; and the results
that functions return are completely new values. In typical underlying implementations, once a value is
assigned to an area in memory, it does not change. To create results, functions copy values and then change
the copies, leaving the original values free to be used by other functions and eventually to be thrown away
when no longer needed. (This is where the idea of garbage collection originated.)

The mathematical basis for pure functional programming is elegant, and FP therefore provides beautiful,
succinct solutions for many computing problems. That said, the stateless and recursive nature of FP can make
it seem harder to apply for many common programming tasks. However, one of F#’s great strengths is that you
can use multiple paradigms and mix them to solve problems in the way you find most convenient.

Electronic supplementary material The online version of this chapter (doi:10.1007/978-1-4842-1374-2_1)
contains supplementary material, which is available to authorized users.

© Robert Pickering and Kit Eason 2016 1
R. Pickering and K. Eason, Beginning F# 4.0, DOI 10.1007/978-1-4842-1374-2_1


http://dx.doi.org/10.1007/978-1-4842-1374-2_1

CHAPTER 1 * GETTING STARTED

Why Is Functional Programming Important?

When people think of functional programming, they often view its statelessness as a fatal flaw without
considering its advantages. One could argue that since an imperative program is often 90 percent
assignment and since a functional program has no assignment, a functional program could be 90 percent
shorter. However, not many people are convinced by such arguments or attracted to the ascetic world

of stateless recursive programming, as John Hughes pointed out in his classic paper “Why Functional
Programming Matters.”

The functional programmer sounds rather like a medieval monk, denying himself the
pleasures of life in the hope that it will make him virtuous.

John Hughes, Chalmers University of Technology
(www.cse.chalmers.se/~rjmh/Papers/whyfp.html)

To see the advantages of functional programming, you must look at what FP permits rather than what
it prohibits. For example, functional programming allows you to treat functions themselves as values and
pass them to other functions. This might not seem all that important at first glance, but its implications
are extraordinary. Eliminating the distinction between data and functions means that many problems
can be more naturally solved. Functional programs can be shorter and more modular than corresponding
imperative and object-oriented programs.

In addition to treating functions as values, functional languages offer other features that borrow from
mathematics and are not commonly found in imperative languages. For example, functional programming
languages often offer curried functions, where arguments can be passed to a function one at a time and,
if all arguments are not given, the result is a residual function waiting for the rest of its parameters. It’s also
common for functional languages to offer type systems with much better power-to-weight ratios, providing
more performance and correctness for less effort.

Further, a function might return multiple values, and the calling function is free to consume them as it
likes. We'll discuss these ideas, along with many more, in detail and with plenty of examples in Chapter 3.

What Is F#?

Functional programming is the best approach to solving many thorny computing problems, but pure FP
isn’t suitable for general-purpose programming. So FP languages have gradually embraced aspects of the
imperative and OO paradigms, remaining true to the FP model but incorporating features needed to easily
write any kind of program. F# is a natural successor on this path. It is also much more than just an FP language.

Some of the most popular functional languages, including OCaml, Haskell, Lisp, and Scheme,
have traditionally been implemented using custom runtimes, which leads to problems such as lack of
interoperability. F# is a general-purpose programming language for .NET (a general-purpose runtime) and
for .NET’s open source counterparts. It smoothly integrates all three major programming paradigms. With
F#, you can choose whichever approach works best to solve problems in the most effective way. You can do
pure FP if you're a purist, but you can easily combine functional, imperative, and object-oriented styles in
the same program and exploit the strengths of each. Like other typed functional languages, F# is strongly
typed but also uses inferred typing, so programmers don’t need to spend time explicitly specifying types
unless an ambiguity exists. Further, F# seamlessly integrates with the .NET Framework Base Class Library
(BCL). Using the BCL in F# is as simple as using it in C# or Visual Basic (and maybe even simpler).

F# was modelled on OCaml, a successful object-oriented FP language, and then tweaked and extended
to mesh well technically and philosophically with .NET. It fully embraces .NET and enables users to do
everything that .NET allows. The F# compiler can compile for all implementations of the Common Language
Infrastructure (CLI) and it supports .NET generics without changing any code. The F# compiler not only
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produces executables for any CLI but can also run on any environment that has a CLI, which means F# is not
limited to Windows but can run on Linux, Apple Mac OS X, Apple iOS, FreeBSD, and Android. (Chapter 2
covers some routes to using F# on these diverse platforms.)

The F# compiler is distributed with Visual Studio 2015: you simply need to select the F# option during
installation. It is also available in Xamarin Studio (http://xamarin.com/studio). Although there are
commercial versions of Visual Studio and Xamarin Studio, in both cases the free edition fully supports F#.
Alternatively, Ionide (http://ionide.io) provides an F# IDE for the Atom and Visual Studio Code editors.
You can also download and integrate F# with other editors and IDEs such as Emacs and Vim. F# supports
IntelliSense expression completion and automatic expression checking. It also gives tool tips to show what
types have been inferred for expressions. Programmers often comment that this really helps bring the
language to life.

F# was first implemented by Dr. Don Syme at Microsoft Research (MSR) in Cambridge. There is
an F# team within Microsoft, but the F# compiler itself and most of the tools in its ecosystem are open
source, and there is a very vibrant and friendly open source community around the language. Generally,
the term “Visual F#” is used when referring to the Microsoft implementation of F# and its integration with
Microsoft Visual Studio. The wider term “F#” refers both to the Microsoft implementation and related
activity, and to the wide variety of open implementations and tools.

Although other FP languages run on .NET, F# has established itself as the de facto .NET functional
programming language because of the quality of its implementation and its superb integration with .NET
and Visual Studio.

No other .NET language is as easy to use and as flexible as F#!

Who Is Using F#?

F# was initially marketed by Microsoft as a language for use in mathematics and the more math-oriented
aspects of finance. Unfortunately, the legacy of this initial perception persists today. The reality is that
developers are using F# in a remarkable variety of arenas, from quantum computing to scientific instrument
control to music. Here, for example, is a testimonial from Tachyus, a startup that creates technology to
optimize energy production for the oil and gas industry:

F# has allowed us to deliver enterprise-grade software on a rapid, start-up cadence.
The F# type system makes it not just a great language for implementation, but also for
design: once you've built a domain model with F# types, you've got the compiler’s
guarantee your model is consistent. Strong typing and functional-first programming have
eliminated huge classes of runtime bugs, whereas most languages require voluminous test
suites to catch them. The ability to write concise, expressive, and safe code has allowed us
to break into a competitive enterprise software market faster than we'd ever expected.

Paul Orland, Tachyus
(http://fsharp.org/testimonials/#kaggle-1)
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Meanwhile Rachel Reese, at jet.com, a US-based online retail startup, explains their rationale for using F#:

We started building two solutions, a C# solution and an F# solution, to see where they
would take us. In the end, we chose to stick with the F# path. The main reason: we were
able to deliver the same functionality with far less code. This clearly eases maintainability
and reduces bugs. If you've been part of the F# community for any length of time, you
know that this is a very well known feature of the language and a commonly cited reason
to switch to F#.

Rachel Reese, jet.com
(http://techgroup.jet.com/blog/2015/03-22-on-how-jet-chose/)

In a very different application area, Anton Tcholakov uses F# to control scientific equipment:

Over the past few years, I have worked in a research lab at the University of Warwick where
we often develop custom instrumentation for our experiments. Along the way, I've found
that good experiment control software presents many interesting challenges: it requires a
combination of concurrent control of several external devices and real-time data charting.
Cancellation support is essential because experiments can be long-running and you may
want to stop them part way through without losing your data. Good error handling and
logging are needed to find the causes of failure when it occurs. Sometimes it’s necessary to
implement computationally demanding signal processing in software as well. Fortunately,
I discovered F#, which is the perfect Swiss army knife for many of these problems.

Anton Tcholakov, University of Warwick
(https://medium.com/@ant_pt/using-f-for-scientific-instrument-control-biefo4d20dao#.nokyfi865)

The common thread for almost all F# adoptions is not that the applications are mathematical or
functional: it’s that the developers wanted to concentrate on the problem to be solved, not on the noise
or patterns imposed by any particular language. F# has a great habit of “getting out of the way,” as you'll
soon discover.

Who Is This Book For?

This book is aimed primarily at IT professionals who want to get up to speed quickly on F#. A working
knowledge of the .NET Framework and some knowledge of either C# or Visual Basic would be nice,
but it’s not necessary. To be comfortable learning F#, all you really need is some experience programming
in any language.

Even complete beginners who've never programmed before and are learning F# as their first computer
language should find this book very readable. Though it doesn’t attempt to teach introductory programming
per se, it does carefully present all the important details of F#.
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What’s Next?

Chapter 2 gives you just enough knowledge about setting up an F# development environment to get you
going. Chapters 3, 4, 5, and 6 cover the core F# syntax. I deliberately keep the code simple, because this will
give you a better introduction to how the syntax works. Chapter 7 looks at the core libraries distributed with
F# to introduce you to their flavor and power, rather than to describe each function in detail.

Then you'll dive into how to use F# for the bread-and-butter problems of the working programmer.
Chapter 8 covers data access, Chapter 9 covers concurrency and parallelism, and Chapter 10 covers how
applications can take advantage of a network.

The final chapters take you through the topics you really need to know to master F#. Chapter 11 looks
at support for creating little languages or domain-specific languages (DSLs), a powerful and very common
programming pattern in F#. Chapter 12 explores advanced interoperation issues. Finally, Chapter 13 shows
how to use F# type providers to access external data sources in a beautifully fluent way.
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CHAPTER 2

How to Obtain, Install, and Use F#/

This chapter is designed to get you up and running with F# as quickly as possible. You'll learn how to obtain
F#, and how to install it on Windows, Apple OS X, and Linux. There are many ways to edit and build F#

projects on the various supported platforms. Rather than cover every permutation, I'll concentrate on the most
straightforward route to get you up and running with an IDE on each platform. If you have a favorite editor that
I don’t cover, such as Emacs, Vim, or Visual Studio Code, rest assured that these programs have bindings to let
you use F# effectively. The F# website, fsharp.org, has up-to-date information on the various options.

Obtaining F# on Microsoft Windows

The most common IDE in use for Windows .NET projects is Visual Studio. Visual Studio comes in many
editions depending on your requirements (and budget!), but all of them from the free Community edition
upwards support F#. (F# is not supported by Visual Studio Express.) Search on www.visualstudio.comand
download the edition that suits you. During the install you can select F# as one of the languages you want
to work with. However, if you do not do this, or if you already had Visual Studio installed without having
selected F#, don’t worry. As soon as you create or open an F# project, an on-demand install will occur.

The next step is to install the Visual F# Power Tools. This is a suite of enhancements for Visual Studio
that make it much easier to work with F# code. Although it’s sometimes treated as an optional extra, you
should definitely install Visual F# Power Tools. Without it you won’t have basics such as “Go to definition”
and “Refactor Rename.” To install Power Tools, run Visual Studio and go to Tools » Extensions and Updates
» Online, then search for FSharp Power Tools. You can also find the Power Tools in the Visual Studio
Gallery. Once Power Tools is installed, exit from Visual Studio and rerun it as Administrator. You can do so by
right-clicking the Visual Studio icon while holding down the Shift key, and selecting “Run as administrator”
(see Figure 2-1).
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Figure 2-1. Running Visual Studio as Administrator

Once Visual Studio is running as Administrator, go to Tools » Options » F# Power Tools » General and
turn on all the options (see Figure 2-2). Restart Visual Studio so that the changes come into effect. If any of
the Power Tools behaviors aren’t compatible with your workflow, you can always come back to this dialogue
and turn them off, but most of them are stable, useful, and unobtrusive.
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Figure 2-2. Configuring Visual F# Power Tools

Verify your setup by going into Visual Studio and selecting File » New » Project. You should be able to
find a number of F# project templates under Installed » Templates » Visual F# or Installed » Templates »
Other Languages » F# (Figure 2-3).



