
Beginning
F# 4.0

—
Second Edition
—
Robert Pickering
Kit Eason
Foreword by Don Syme, the inventor of F#

THE E XPER T ’S VOICE® IN .NE T

 Beginning F# 4.0
 Second Edition

 Robert Pickering

 Kit Eason

Beginning F# 4.0

Robert Pickering Kit Eason
St. Germain-En-Laye
France

ISBN-13 (pbk): 978-1-4842-1375-9 ISBN-13 (electronic): 978-1-4842-1374-2
DOI 10.1007/978-1-4842-1374-2

Copyright © 2016 by Robert Pickering and Kit Eason

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: James DeWolf
Development Editor: Douglas Pundick
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, James DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ .

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

 For Noah and Darwin.

Contents at a Glance

About the Authors ..xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

Foreword ..xxi

 ■Chapter 1: Getting Started ... 1

 ■Chapter 2: How to Obtain, Install, and Use F# ... 7

 ■Chapter 3: Functional Programming ... 19

 ■Chapter 4: Imperative Programming ... 65

 ■Chapter 5: Object-Oriented Programming ... 93

 ■Chapter 6: Organizing, Annotating, and Quoting Code 125

 ■Chapter 7: The F# Libraries ... 147

 ■Chapter 8: Data Access ... 167

 ■Chapter 9: Parallel Programming .. 197

 ■Chapter 10: Distributed Applications .. 223

 ■Chapter 11: Language-Oriented Programming .. 241

 ■Chapter 12: Compatibility and Advanced Interoperation 265

 ■Chapter 13: Type Providers ... 285

Index ... 303

v

Contents

About the Authors ..xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

Foreword ..xxi

 ■Chapter 1: Getting Started ... 1

What Is Functional Programming? ... 1

Why Is Functional Programming Important? .. 2

What Is F#? .. 2

Who Is Using F#? .. 3

Who Is This Book For? .. 4

What’s Next? .. 5

 ■Chapter 2: How to Obtain, Install, and Use F# ... 7

Obtaining F# on Microsoft Windows ... 7

Obtaining F# on Apple OS X .. 10

Obtaining F# on Linux ... 12

The Examples in This Book... 14

Summary .. 18

vii

 ■ CONTENTS

viii

 ■Chapter 3: Functional Programming ... 19

Literals ... 19

Anonymous Functions .. 21

Identifi ers and let Bindings .. 21

Identifi er Names ... 23

Scope .. 23

Capturing Identifi ers ... 27

The use Binding .. 28

Recursion ... 28

Operators .. 29

Function Application ... 31

Partial Application of Functions .. 32

Pattern Matching .. 33

Control Flow ... 37

Lists .. 38

Pattern Matching Against Lists ... 40

List Comprehensions .. 42

Types and Type Inference ... 44

Defi ning Types .. 47

Tuple and Record Types .. 47

Union or Sum Types (Discriminated Unions) ... 50

Type Defi nitions with Type Parameters ... 53

Recursive Type Defi nitions .. 55

Active Patterns ... 56

Complete Active Patterns ... 56

Partial Active Patterns .. 57

Units of Measure .. 58

Exceptions and Exception Handling ... 60

Lazy Evaluation .. 62

Summary .. 64

 ■ CONTENTS

ix

 ■Chapter 4: Imperative Programming ... 65

The Unit Type .. 65

The Mutable Keyword .. 67

Defi ning Mutable Records .. 69

The Reference Type .. 70

Arrays ... 73

Array Comprehensions ... 76

Array Slicing ... 77

Control Flow ... 77

Calling Static Methods and Properties from .NET Libraries ... 80

Using Objects and Instance Members from .NET Libraries .. 82

Using Indexers from .NET Libraries .. 85

Working with Events from .NET Libraries ... 85

Pattern Matching over .NET Types .. 88

The | > Operator ... 90

Summary .. 91

 ■Chapter 5: Object-Oriented Programming ... 93

Records As Objects .. 94

F# Types with Members ... 98

Object Expressions ... 100

Defi ning Classes ... 104

Optional Parameters ... 107

Additional Constructors .. 108

Defi ning Interfaces ... 109

Implementing Interfaces .. 110

Classes and Inheritance ... 112

Methods and Inheritance.. 112

Accessing the Base Class .. 114

 ■ CONTENTS

x

Properties and Indexers ... 115

Autoproperties .. 117

Overriding Methods from Non-F# Libraries .. 118

Abstract Classes ... 118

Classes and Static Methods ... 119

Casting ... 120

Type Tests ... 122

Defi ning Delegates ... 122

Structs .. 123

Enums .. 123

Summary .. 124

 ■Chapter 6: Organizing, Annotating, and Quoting Code 125

Modules .. 125

Namespaces ... 127

Opening Namespaces and Modules ... 128

Giving Modules Aliases... 130

Signature Files ... 131

Private and Internal let Bindings and Members ... 131

Module Scope ... 132

Module Execution ... 134

Optional Compilation .. 136

Comments .. 138

Doc Comments ... 138

Comments for Cross-Compilation .. 140

Custom Attributes ... 141

Quoted Code ... 143

Summary .. 146

 ■ CONTENTS

xi

 ■Chapter 7: The F# Libraries ... 147

The Native F# Library FSharp.Core.dll .. 147

The FSharp.Core.Operators Module .. 147

The FSharp.Refl ection Module .. 152

The FSharp.Collections.Seq Module ... 154

The FSharp.Text.Printf Module.. 160

The FSharp.Control.Event Module .. 163

Summary .. 166

 ■Chapter 8: Data Access ... 167

The System.Confi guration Namespace .. 167

The System.IO Namespace .. 170

Using Sequences with System.IO ... 172

The System.Xml Namespace .. 173

ADO.NET ... 176

Data Binding ... 182

Data Binding and the DataGridView Control ... 185

Using Dapper to Access Relational Data .. 186

ADO.NET Extensions ... 189

Introducing LINQ ... 190

Using LINQ to XML .. 193

Summary .. 195

 ■Chapter 9: Parallel Programming .. 197

Threads, Memory, Locking, and Blocking ... 198

Reactive Programming ... 201

Data Parallelism ... 207

The Array.Parallel Module ... 207

The FSharp.Collections.ParallelSeq Module ... 209

 ■ CONTENTS

xii

Asynchronous Programming .. 209

Message Passing ... 213

Summary .. 222

 ■Chapter 10: Distributed Applications .. 223

Networking Overview ... 223

Using HTTP ... 224

Using HTTP with Google Spreadsheets .. 226

Using Suave.io .. 229

Creating Web Services ... 235

Summary .. 240

 ■Chapter 11: Language-Oriented Programming .. 241

What Is Language-Oriented Programming? ... 241

Data Structures as Little Languages .. 241

A Data Structure–Based Language Implementation ... 245

Metaprogramming with Quotations .. 252

Implementing a Compiler and an Interpreter for an Arithmetic Language 254

The Abstract Syntax Tree .. 255

Interpreting the AST .. 255

Compiling the AST .. 257

Compilation vs. Interpretation .. 261

Summary .. 264

 ■Chapter 12: Compatibility and Advanced Interoperation 265

Calling F# Libraries from C# ... 265

Returning Tuples ... 266

Exposing Functions That Take Functions As Parameters .. 267

Using Union Types ... 269

Using F# Lists ... 272

Defi ning Types in a Namespace .. 273

Defi ning Classes and Interfaces ... 274

 ■ CONTENTS

xiii

Calling Using COM Objects ... 276

Using COM-Style APIs ... 277

Using P/Invoke.. 279

Using F# from Native Code via COM ... 281

Summary .. 283

 ■Chapter 13: Type Providers ... 285

What Are Type Providers? ... 285

Using the CSV Type Provider .. 286

Using the HTML Type Provider .. 291

Answering Some Questions with the HTML Type Provider ... 293

Rank the Stations by Traffi c .. 293

Finding All of the Stations on the Northern Line ... 294

Which Station Has the Most Distinct Letters in Its Name? ... 294

Using the SQL Client Type Provider .. 294

Joining Datasets from Differing Data Sources ... 298

Summary .. 302

Index ... 303

 About the Authors

 Robert Pickering is a Microsoft MVP acknowledged as a community leader and a world class expert on
F#. In his ten year career as a software engineer he has participated in a wide range of projects building
large, scalable, and fault tolerant systems on the Microsoft .NET platform. He has experience in both
consulting and working as an engineer for a software house. He has been invited to speak at prestigious
events such as Microsoft TechEd, JAOO, and TechDays Paris. He has been involved in organizing
conferences as track lead for events such as Functional Programming eXchange, London, and he
organizes the ALT.NET community meetings in Paris. He has also appeared in podcast and screen casts
such as dnrtv.com and hanselminutes.com.

 Kit Eason is a software developer and educator with 30 years of experience in industries from automotive
engineering through university supercomputing to energy trading. He currently works as a senior developer
at Adbrain (www.adbrain.com), a leading data intelligence company that empowers marketers to regain
control of their customer relationships in today’s hyperconnected yet highly fragmented world. Kit also
works as an author for Pluralsight: his courses there include “F# Jumpstart” and “F# Functional Data
Structures.” He has also appeared on the “.NET Rocks!” podcast.

xv

http://www.adbrain.com/

 About the Technical Reviewer

 Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for Blu Arancio (www.bluarancio.com). He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer topics.

xvii

http://www.bluarancio.com/

 Acknowledgments

 The first vote of thanks must go to the person who changed my professional life, and those of many others:
Don Syme, the “father of F#.” Don does invaluable work in mentoring and encouraging me and the whole F#
community. He sets a positive tone that is reflected in everything the community does.

 Huge thanks also to Fabio Claudio Ferracchiati, our technical reviewer, who has turned around reams of
material in what seems like record time.

 Thanks also to the various employers who have supported me (admittedly with varying degrees of
scepticism!) during my journey into F#. Extra special thanks to Edoardo Turelli and all the team at Adbrain,
who have somehow unlocked the secret of having the right people working on the right problems in the
right way.

 I’m deeply indebted to the many members of the F# community (both open source and within
Microsoft) who have grown F# from an academic project to a thriving commercial and scientific language
with a broad-based ecosystem. Every commit counts!

 I’d like to thank everyone at Apress who contributed to this book, notably James DeWolf, Melissa
Maldonado, and Douglas Pundick. Thank you for your patience, professionalism, and support.

 Finally, huge appreciation to my wife, Val, for her unstinting support in everything I do; and to my
children, Matt and Kate, both of them frankly more talented developers than I, for keeping me on my toes.

xix

 Foreword

 That moment. That secret weapon moment. That I-got-lucky-and-came-across-something-that-helped-me-
win-the-game moment. This might just be it.

 This book teaches you all you need to know to get going with F#, an open source, cross-platform
programming language suitable for just about every kind of programming and data processing task. And
yes, learning F# is like learning a secret weapon. Wielding it, you will find yourself doing things previously
beyond your limits: it will empower you, and with it you will do great things.

 Why do I know this? Because I have seen the authors of this book, Kit Eason and Robert Pickering, learn
F# and wield it powerfully and effectively in job after job. I’ve seen how it has changed the way they think
about programming. In this book, they share what they have learned with you, and they want to help you
learn and use this secret weapon too.

 No programming language is a “silver bullet;” F# won’t magically slay dragons in and of itself. However,
F# does an excellent job of removing the incidental complexity that bedevils so much of programming. Take
one example: the pervasive use of “null” values in languages such as C# and Java. In one real-world case
study by Simon Cousins, using F# reduced the incidence of null checks by 200x in a transaction processing
engine, with over 3,000 extra null checks in the fully object-oriented application in question. This is no
minor thing: to continue the secret weapon analogy, a null check is like a potential weapon failure at a
critical moment, a gun-jam. At any one of these 3,000 code points, that application was at risk of failing. It is
simply better–and less risky–to fight your battles with a weapon that doesn’t jam. F# reduces the number of
potential failure points, and does so systematically. Some argue that incidental complexity is not important.
This is wrong: removing incidental complexity is the first and most essential step you can take to becoming
a more productive programmer, since it liberates you to address the real heart of programming. Learning F#
will help you do this.

 F# is known as a “functional-first” programming language, meaning you use simple functional
programming as the first way to solve most problems. This is simple and easy, and lets you solve most
programming problems with ease. F# programming is, however, pragmatic. Good software engineering
really matters in F#: we care about code quality, naming, documentation, and good design. This book will
show you all of these things. It will also teach you how to use F# for data access, web programming, parallel
programming, and a myriad of other practical tasks. Finally, it will show you how to contribute back to the F#
community through open source packages.

 Take the moment and learn F#, and don’t look back. Thousands of people are enjoying this language
daily, and with more efficient, expressive coding, and higher productivity. And not just productivity, but
delight and happiness in craftsmanship as well.

 —Don Syme
 F# Language Designer and F# Community Contributor

xxi

1© Robert Pickering and Kit Eason 2016
R. Pickering and K. Eason, Beginning F# 4.0, DOI 10.1007/978-1-4842-1374-2_1

 CHAPTER 1

 Getting Started

 This introductory chapter will address some of the major questions you may have about F# and functional
programming.

 What Is Functional Programming?
 Functional programming (FP) is the oldest of the three major programming paradigms. The first FP
language, IPL, was invented in 1955, about a year before FORTRAN . The second, Lisp, was invented in
1958, a year before COBOL . Both Fortran and Cobol are imperative (or procedural) languages, and their
immediate success in scientific and business computing made imperative programming the dominant
paradigm for more than 30 years. The rise of the object-oriented (OO) paradigm in the 1970s and the gradual
maturing of OO languages ever since have made OO programming the most popular paradigm today.

 Since the 1950s there has been vigorous and continual development of powerful FP languages—SML,
Objective Caml (OCaml), APL, and Clean, among others—and FP-like languages—Erlang, Lisp, and Haskell
being the most successful for real-world applications . However, FP remained a primarily academic pursuit
until recently. The early commercial success of imperative languages made it the dominant paradigm for
decades. Object-oriented languages gained broad acceptance only when enterprises recognized the need
for more sophisticated computing solutions. Today, the promise of FP is finally being realized to solve even
more complex problems—as well as the simpler ones.

 Pure functional programming views all programs as collections of functions that accept arguments
and return values. Unlike imperative and object-oriented programming, it allows no side effects and
uses recursion instead of loops for iteration. The functions in a functional program are very much like
mathematical functions because they do not change the state of the program. In the simplest terms, once a
value is assigned to an identifier, it never changes; functions do not alter parameter values; and the results
that functions return are completely new values. In typical underlying implementations, once a value is
assigned to an area in memory, it does not change. To create results, functions copy values and then change
the copies, leaving the original values free to be used by other functions and eventually to be thrown away
when no longer needed. (This is where the idea of garbage collection originated.)

 The mathematical basis for pure functional programming is elegant, and FP therefore provides beautiful,
succinct solutions for many computing problems. That said, the stateless and recursive nature of FP can make
it seem harder to apply for many common programming tasks. However, one of F#’s great strengths is that you
can use multiple paradigms and mix them to solve problems in the way you find most convenient.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1374-2_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1374-2_1

CHAPTER 1 ■ GETTING STARTED

2

 Why Is Functional Programming Important?
 When people think of functional programming, they often view its statelessness as a fatal flaw without
considering its advantages. One could argue that since an imperative program is often 90 percent
assignment and since a functional program has no assignment, a functional program could be 90 percent
shorter. However, not many people are convinced by such arguments or attracted to the ascetic world
of stateless recursive programming, as John Hughes pointed out in his classic paper “Why Functional
Programming Matters.”

 The functional programmer sounds rather like a medieval monk, denying himself the
pleasures of life in the hope that it will make him virtuous.

 John Hughes, Chalmers University of Technology
 (www.cse.chalmers.se/~rjmh/Papers/whyfp.html)

 To see the advantages of functional programming, you must look at what FP permits rather than what
it prohibits. For example, functional programming allows you to treat functions themselves as values and
pass them to other functions. This might not seem all that important at first glance, but its implications
are extraordinary. Eliminating the distinction between data and functions means that many problems
can be more naturally solved. Functional programs can be shorter and more modular than corresponding
imperative and object-oriented programs.

 In addition to treating functions as values, functional languages offer other features that borrow from
mathematics and are not commonly found in imperative languages. For example, functional programming
languages often offer curried functions, where arguments can be passed to a function one at a time and,
if all arguments are not given, the result is a residual function waiting for the rest of its parameters. It’s also
common for functional languages to offer type systems with much better power-to-weight ratios, providing
more performance and correctness for less effort.

 Further, a function might return multiple values, and the calling function is free to consume them as it
likes. We’ll discuss these ideas, along with many more, in detail and with plenty of examples in Chapter 3 .

 What Is F# ?
 Functional programming is the best approach to solving many thorny computing problems, but pure FP
isn’t suitable for general-purpose programming. So FP languages have gradually embraced aspects of the
imperative and OO paradigms, remaining true to the FP model but incorporating features needed to easily
write any kind of program. F# is a natural successor on this path. It is also much more than just an FP language.

 Some of the most popular functional languages, including OCaml, Haskell, Lisp, and Scheme,
have traditionally been implemented using custom runtimes, which leads to problems such as lack of
interoperability. F# is a general-purpose programming language for .NET (a general-purpose runtime) and
for .NET’s open source counterparts. It smoothly integrates all three major programming paradigms. With
F#, you can choose whichever approach works best to solve problems in the most effective way. You can do
pure FP if you’re a purist, but you can easily combine functional, imperative, and object-oriented styles in
the same program and exploit the strengths of each. Like other typed functional languages, F# is strongly
typed but also uses inferred typing, so programmers don’t need to spend time explicitly specifying types
unless an ambiguity exists. Further, F# seamlessly integrates with the .NET Framework Base Class Library
(BCL). Using the BCL in F# is as simple as using it in C# or Visual Basic (and maybe even simpler).

 F# was modelled on OCaml, a successful object-oriented FP language, and then tweaked and extended
to mesh well technically and philosophically with .NET. It fully embraces .NET and enables users to do
everything that .NET allows. The F# compiler can compile for all implementations of the Common Language
Infrastructure (CLI) and it supports .NET generics without changing any code. The F# compiler not only

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.html
http://dx.doi.org/10.1007/978-1-4842-1374-2_3

CHAPTER 1 ■ GETTING STARTED

3

produces executables for any CLI but can also run on any environment that has a CLI, which means F# is not
limited to Windows but can run on Linux, Apple Mac OS X, Apple iOS, FreeBSD, and Android. (Chapter 2
covers some routes to using F# on these diverse platforms.)

 The F# compiler is distributed with Visual Studio 2015: you simply need to select the F# option during
installation. It is also available in Xamarin Studio (http://xamarin.com/studio). Although there are
commercial versions of Visual Studio and Xamarin Studio, in both cases the free edition fully supports F#.
Alternatively, Ionide (http://ionide.io) provides an F# IDE for the Atom and Visual Studio Code editors.
You can also download and integrate F# with other editors and IDEs such as Emacs and Vim. F# supports
IntelliSense expression completion and automatic expression checking. It also gives tool tips to show what
types have been inferred for expressions. Programmers often comment that this really helps bring the
language to life.

 F# was first implemented by Dr. Don Syme at Microsoft Research (MSR) in Cambridge. There is
an F# team within Microsoft, but the F# compiler itself and most of the tools in its ecosystem are open
source, and there is a very vibrant and friendly open source community around the language. Generally,
the term “Visual F#” is used when referring to the Microsoft implementation of F# and its integration with
Microsoft Visual Studio. The wider term “F#” refers both to the Microsoft implementation and related
activity, and to the wide variety of open implementations and tools.

 Although other FP languages run on .NET, F# has established itself as the de facto .NET functional
programming language because of the quality of its implementation and its superb integration with .NET
and Visual Studio.

 No other .NET language is as easy to use and as flexible as F#!

 Who Is Using F#?
 F# was initially marketed by Microsoft as a language for use in mathematics and the more math-oriented
aspects of finance. Unfortunately, the legacy of this initial perception persists today. The reality is that
developers are using F# in a remarkable variety of arenas, from quantum computing to scientific instrument
control to music. Here, for example, is a testimonial from Tachyus, a startup that creates technology to
optimize energy production for the oil and gas industry:

 F# has allowed us to deliver enterprise-grade software on a rapid, start-up cadence.
The F# type system makes it not just a great language for implementation, but also for
design: once you’ve built a domain model with F# types, you’ve got the compiler’s
guarantee your model is consistent. Strong typing and functional-first programming have
eliminated huge classes of runtime bugs, whereas most languages require voluminous test
suites to catch them. The ability to write concise, expressive, and safe code has allowed us
to break into a competitive enterprise software market faster than we’d ever expected.

 Paul Orland, Tachyus
 (http://fsharp.org/testimonials/#kaggle-1)

http://dx.doi.org/10.1007/978-1-4842-1374-2_2
http://xamarin.com/studio
http://ionide.io/
http://fsharp.org/testimonials/#kaggle-1

CHAPTER 1 ■ GETTING STARTED

4

 Meanwhile Rachel Reese, at jet.com, a US-based online retail startup, explains their rationale for using F#:

 We started building two solutions, a C# solution and an F# solution, to see where they
would take us. In the end, we chose to stick with the F# path. The main reason: we were
able to deliver the same functionality with far less code. This clearly eases maintainability
and reduces bugs. If you’ve been part of the F# community for any length of time, you
know that this is a very well known feature of the language and a commonly cited reason
to switch to F#.

 Rachel Reese, jet.com
 (http://techgroup.jet.com/blog/2015/03-22-on-how-jet-chose/)

 In a very different application area, Anton Tcholakov uses F# to control scientific equipment:

 Over the past few years, I have worked in a research lab at the University of Warwick where
we often develop custom instrumentation for our experiments. Along the way, I’ve found
that good experiment control software presents many interesting challenges: it requires a
combination of concurrent control of several external devices and real-time data charting.
Cancellation support is essential because experiments can be long-running and you may
want to stop them part way through without losing your data. Good error handling and
logging are needed to find the causes of failure when it occurs. Sometimes it’s necessary to
implement computationally demanding signal processing in software as well. Fortunately,
I discovered F#, which is the perfect Swiss army knife for many of these problems.

 Anton Tcholakov, University of Warwick
 (https://medium.com/@ant_pt/using-f-for-scientific-instrument-control-b1ef04d20da0#.nokyfi865)

 The common thread for almost all F# adoptions is not that the applications are mathematical or
functional: it’s that the developers wanted to concentrate on the problem to be solved, not on the noise
or patterns imposed by any particular language. F# has a great habit of “getting out of the way,” as you’ll
soon discover.

 Who Is This Book For?
 This book is aimed primarily at IT professionals who want to get up to speed quickly on F#. A working
knowledge of the .NET Framework and some knowledge of either C# or Visual Basic would be nice,
but it’s not necessary. To be comfortable learning F#, all you really need is some experience programming
in any language.

 Even complete beginners who’ve never programmed before and are learning F# as their first computer
language should find this book very readable. Though it doesn’t attempt to teach introductory programming
per se, it does carefully present all the important details of F#.

http://techgroup.jet.com/blog/2015/03-22-on-how-jet-chose/
https://medium.com/@ant_pt/using-f-for-scientific-instrument-control-b1ef04d20da0#.nokyfi865

CHAPTER 1 ■ GETTING STARTED

5

 What’s Next?
 Chapter 2 gives you just enough knowledge about setting up an F# development environment to get you
going. Chapters 3 , 4 , 5 , and 6 cover the core F# syntax. I deliberately keep the code simple, because this will
give you a better introduction to how the syntax works. Chapter 7 looks at the core libraries distributed with
 F# to introduce you to their flavor and power, rather than to describe each function in detail.

 Then you’ll dive into how to use F# for the bread-and-butter problems of the working programmer.
Chapter 8 covers data access, Chapter 9 covers concurrency and parallelism, and Chapter 10 covers how
applications can take advantage of a network.

 The final chapters take you through the topics you really need to know to master F#. Chapter 11 looks
at support for creating little languages or domain-specific languages (DSLs) , a powerful and very common
programming pattern in F#. Chapter 12 explores advanced interoperation issues. Finally, Chapter 13 shows
how to use F# type providers to access external data sources in a beautifully fluent way.

http://dx.doi.org/10.1007/978-1-4842-1374-2_2
http://dx.doi.org/10.1007/978-1-4842-1374-2_3
http://dx.doi.org/10.1007/978-1-4842-1374-2_4
http://dx.doi.org/10.1007/978-1-4842-1374-2_5
http://dx.doi.org/10.1007/978-1-4842-1374-2_6
http://dx.doi.org/10.1007/978-1-4842-1374-2_7
http://dx.doi.org/10.1007/978-1-4842-1374-2_8
http://dx.doi.org/10.1007/978-1-4842-1374-2_9
http://dx.doi.org/10.1007/978-1-4842-1374-2_10
http://dx.doi.org/10.1007/978-1-4842-1374-2_11
http://dx.doi.org/10.1007/978-1-4842-1374-2_12
http://dx.doi.org/10.1007/978-1-4842-1374-2_13

7© Robert Pickering and Kit Eason 2016
R. Pickering and K. Eason, Beginning F# 4.0, DOI 10.1007/978-1-4842-1374-2_2

 CHAPTER 2

 How to Obtain, Install, and Use F#

 This chapter is designed to get you up and running with F# as quickly as possible. You’ll learn how to obtain
F#, and how to install it on Windows, Apple OS X, and Linux. There are many ways to edit and build F#
projects on the various supported platforms. Rather than cover every permutation, I’ll concentrate on the most
straightforward route to get you up and running with an IDE on each platform. If you have a favorite editor that
I don’t cover, such as Emacs, Vim, or Visual Studio Code , rest assured that these programs have bindings to let
you use F# effectively. The F# website, fsharp.org , has up-to-date information on the various options.

 Obtaining F# on Microsoft Windows
 The most common IDE in use for Windows .NET projects is Visual Studio. Visual Studio comes in many
editions depending on your requirements (and budget!), but all of them from the free Community edition
upwards support F#. (F# is not supported by Visual Studio Express.) Search on www.visualstudio.com and
download the edition that suits you. During the install you can select F# as one of the languages you want
to work with. However, if you do not do this, or if you already had Visual Studio installed without having
selected F#, don’t worry. As soon as you create or open an F# project, an on-demand install will occur.

 The next step is to install the Visual F# Power Tools. This is a suite of enhancements for Visual Studio
that make it much easier to work with F# code. Although it’s sometimes treated as an optional extra, you
should definitely install Visual F# Power Tools. Without it you won’t have basics such as “Go to definition”
and “Refactor Rename.” To install Power Tools, run Visual Studio and go to Tools ➤ Extensions and Updates
➤ Online, then search for FSharp Power Tools. You can also find the Power Tools in the Visual Studio
Gallery. Once Power Tools is installed, exit from Visual Studio and rerun it as Administrator. You can do so by
right-clicking the Visual Studio icon while holding down the Shift key, and selecting “Run as administrator”
(see Figure 2-1).

http://www.visualstudio.com/

CHAPTER 2 ■ HOW TO OBTAIN, INSTALL, AND USE F#

8

 Once Visual Studio is running as Administrator, go to Tools ➤ Options ➤ F# Power Tools ➤ General and
turn on all the options (see Figure 2-2). Restart Visual Studio so that the changes come into effect. If any of
the Power Tools behaviors aren’t compatible with your workflow, you can always come back to this dialogue
and turn them off, but most of them are stable, useful, and unobtrusive.

 Figure 2-1. Running Visual Studio as Administrator

CHAPTER 2 ■ HOW TO OBTAIN, INSTALL, AND USE F#

9

 Verify your setup by going into Visual Studio and selecting File ➤ New ➤ Project. You should be able to
find a number of F# project templates under Installed ➤ Templates ➤ Visual F# or Installed ➤ Templates ➤
Other Languages ➤ F# (Figure 2-3).

 Figure 2-2. Configuring Visual F# Power Tools

