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Preface

In property and casualty insurance the provisions for payment obligations from
losses that have occurred but have not yet been settled usually constitute the largest
item on the liabilities side of an insurer’s balance sheet. For this reason, the
determination and evaluation of these technical provisions, which are also called
loss reserves, is of considerable economic importance for every property and
casualty insurer. Therefore, the application of actuarial methods of loss reserving is
indispensable.

This Handbook on Loss Reserving presents the basic aspects of actuarial loss
reserving. Besides the traditional methods it also includes a description of more
recent ones and a discussion of certain problems occurring in actuarial practice, like
inflation, scarce data, large claims, slow loss development, the use of market
statistics, the need for simulation techniques, and last but not least, the task of
calculating best estimates and ranges of future losses.

The actuarial methods of loss reserving form a substantial part of this book.
These methods are presented in separate articles which are to a large extent
self-contained. In the articles on traditional methods, the description of the method
is accompanied by two numerical examples; these examples are the same for all
methods and illustrate their sensitivity with respect to a small change in the data.
While the traditional methods are univariate in the sense that they aim at prediction
for a single portfolio of risks, the new multivariate methods, developed about ten
years ago, aim at simultaneous prediction for several portfolios and take depen-
dencies between these portfolios into account. Such methods are presented as well.

Almost all of the traditional methods are related to the Bornhuetter–Ferguson
principle, which consists of an analytical part and a synthetical part. The analytical
part provides a unified form of the predictors of most traditional methods such that
the differences between these methods can be explained by the use of different
estimators of parameters related to accident years or development years, and hence
also by the use of different kinds of information, and the synthetical part consists
of the construction of new methods by using new combinations of such estimators.

v



The methods of loss reserving and their properties can only be understood on the
basis of stochastic models, which describe the generation of the run-off data and
express the assumptions on the development (run-off) behaviour. For this reason,
the articles on methods also discuss stochastic models that justify the respective
method. By contrast, some other articles emphasize a stochastic model and then use
the model together with a classical principle of mathematical statistics to construct a
method of loss reserving.

There are basically two types of stochastic models that can be used to justify a
method of loss reserving:

– Development patterns formalize the idea that, up to random fluctuations, the
development of losses is identical for all different accident years, and they
involve only assumptions on the expectations of the incremental or cumulative
losses.

– Linear models and credibility models involve assumptions not only on the
expectations but also on the variances and covariances of the incremental or
cumulative losses. They thus enable the determination of the expected squared
prediction error and its estimation.

While the traditional univariate methods result from heuristic considerations and
were justified by a stochastic model later, the new multivariate methods result from
generalizations of such models.

This book addresses actuarial students and academics as well as practicing
actuaries. It is not intended as a complete presentation of all aspects of loss
reserving, but rather as an invitation to gain an overview of the most important
actuarial methods, to understand their underlying stochastic models and to get an
idea of how to solve certain problems which may occur in practice. To proceed
further and to become acquainted with other models and methods of loss reserving
which are outside the scope of this book, the advanced reader may consult the
survey articles by England & Verrall (2002) and by Schmidt (2012) and the
monographs by Taylor (1986, 2000), and by Wüthrich & Merz (2008). We also
refer to A Bibliography on Loss Reserving

http://www.math.tu-dresden.de/sto/schmidt/dsvm/reserve.pdf

which will be completed from time to time.
This Handbook on Loss Reserving is a free translation of the second edition

of the Handbuch zur Schadenreservierung, published in 2012 as an update and
extension of its first edition which appeared in 2004. A few articles of the German
editions have been excluded since they are either outdated or specific to the German
market.

The articles of this book are arranged in alphabetical order. They allow for a
quick access to the different subjects, and the following guide How to Read This
Book contains several hints on connections between certain articles and on possible
starting points for reading this book.
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The editors are most grateful to the authors who contributed to this book and
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How to Read This Book

The articles of this book are to a large extent self-contained. Nonetheless, there are
many interconnections between the different articles, and these are accessible via
the keywords given at the end of an article.

With regard to actuarial practice, many articles focus on methods. In spite of this
there is a close relationship between methods, stochastic models, and general
principles of statistics. For example, many methods can be justified by the
assumption of an underlying development pattern, which presents an elementary
stochastic model, and for some methods it is even possible to show that the pre-
dictors of future losses are optimal in a certain sense since they turn out to be the
Gauss–Markov predictors in a suitable linear model.

For a general background and a systematic approach to methods and models of
loss reserving, and to become familiar with the notation, it is useful to start with the
articles Run-Off Data and Run-Off Triangles as well as Development Patterns
(Basics), Development Patterns (Estimation) and Loss Ratios:

Marginal Sum
Method

Multiplicative
Models

Poisson
Model

Development
Patterns

(Estimation)

Development
Patterns
(Basics)

Run-Off
Triangles

Loss
Ratios

Tail
Estimation

Run-Off
Data

ix



A central group of articles presents the basic methods of loss reserving and the
Bornhuetter–Ferguson principle, which provides a general framework for a unified
presentation and possible extensions of these methods:

Some of these methods can also be justified by a linear model or can be extended to
the multivariate case involving different lines of business or different kinds of data
of the same line of business:

Loss Development
Method

Chain Ladder
Method (Basics)

Bornhuetter–
Ferguson Principle

Bornhuetter–
Ferguson Method

Panning
Method

Cape Cod
Method

Additive
Method

Munich Chain
Ladder Method

Chain Ladder
Method (Models)

Credibility
Models

(Loss Reserving)

Credibility
Models
(Basics)

Multivariate
Methods

Panning
Method

Linear
Models

(Loss Reserving)

Linear
Models
(Basics)

Paid & Incurred
Problem

Additive
Method

Lognormal
Loglinear Model
(Loss Reserving)

Lognormal
Loglinear Model

(Basics)
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Of course, there are many other possible paths through the variety of methods and
models of loss reserving.

The notions and also the notation used in loss reserving are far from being
uniform in the literature. In this book we have tried to use uniform notions and
notation as far as possible in order to simplify the recognition of interrelations
between the different topics. The subject index should be helpful in this regard.

We have also tried not to burden the book too much with technicalities. For
example, in an identity like

a ¼ b=c

it is tacitly assumed that c 6¼ 0. This remark is far from being trivial since many
methods of loss reserving involve divisions and are thus not applicable when the
data lead to a division by 0.

How to Read This Book xi
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Additive Method

Klaus D. Schmidt and Mathias Zocher

Consider the run-off square of incremental losses:

Accident Development year
year 0 1 … k … n−i … n−1 n
0 Z0,0 Z0,1 … Z0,k … Z0,n−i … Z0,n−1 Z0,n
1 Z1,0 Z1,1 … Z1,k … Z1,n−i … Z1,n−1 Z1,n
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

i Zi,0 Zi,1 … Zi,k … Zi,n−i … Zi,n−1 Zi,n
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

n−k Zn−k,0 Zn−k,1 … Zn−k,k … Zn−k,n−i … Zn−k,n−1 Zn−k,n
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

n−1 Zn−1,0 Zn−1,1 … Zn−1,k … Zn−1,n−i … Zn−1,n−1 Zn−1,n
n Zn,0 Zn,1 … Zn,k … Zn,n−i … Zn,n−1 Zn,n

We assume that the incremental losses Zi,k are observable for i + k ≤ n and that
they are non-observable for i + k ≥ n + 1. For i, k ∈ {0, 1, . . . , n} we denote by

Si,k :=
k∑

l=0

Zi,l

the cumulative loss from accident year i in development year k.

K.D. Schmidt (B) · M. Zocher
Technische Universität Dresden, Dresden, Germany
e-mail: klaus.d.schmidt@tu-dresden.de

© Springer International Publishing Switzerland 2016
M. Radtke et al. (eds.), Handbook on Loss Reserving,
EAA Series, DOI 10.1007/978-3-319-30056-6_1
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2 K.D. Schmidt and M. Zocher

The additive method, which is also called the incremental loss ratio method,
involves known volume measures v0, v1, . . . , vn of the accident years and is based
on the development pattern for incremental loss ratios:

Development Pattern for Incremental Loss Ratios: There exist parameters ζ0, ζ1,

. . . , ζn such that the identity

E

[
Zi,k

vi

]
= E[Zi,k ]

vi
= ζk

holds for all k ∈ {0, 1, . . . , n} and for all i ∈ {0, 1, . . . , n}.
In this article, we assume that there exists a development pattern for incremental

loss ratios. Then the parameters ϑ0,ϑ1, . . . ,ϑn given by

ϑk := ζk∑n
l=0 ζl

form a development pattern for incremental quotas and the parameters γ0, γ1, . . . , γn
given by

γk :=
∑k

l=0 ζl∑n
l=0 ζl

form a development pattern for quotas. Moreover, the identity

E[Zi,k] = viζk

yields the existence of a multiplicative model, and the identity

E

[
Si,n
vi

]
=

n∑

l=0

E

[
Zi,l

vi

]
=

n∑

l=0

ζl

shows that the expected ultimate loss ratios of all accident years are identical.
The additive method consists of two steps:

• For every development year k ∈ {0, 1, . . . , n}, the expected incremental loss ratio
ζk is estimated by the additive incremental loss ratio

ζAD
k :=

∑n−k
j=0 Z j,k

∑n−k
j=0 v j

Since

ζAD
k =

n−k∑

j=0

v j∑n−k
h=0 vh

Z j,k

v j



Additive Method 3

the additive incremental loss ratio ζAD
k is a weighted mean of the observable indi-

vidual incremental loss ratios Z j,k/v j of development year k, with weights pro-
portional to the volume measures of the accident years.

• For every accident year i and every development year k such that i + k ≥ n + 1,
the future incremental loss Zi,k is predicted by the additive predictor

ZAD
i,k := viζ

AD
k

The definition of the additive predictors of the incremental losses reflects the identity

E[Zi,k] = viζk

which results from the development pattern for incremental loss ratios.
Using the additive predictors of the future incremental losses, we define the addi-

tive predictors

SAD
i,k := Si,n−i +

k∑

l=n−i+1

ZAD
i,l = Si,n−i + vi

k∑

l=n−i+1

ζAD
l

of the future cumulative losses Si,k and the additive predictors

RAD
i :=

n∑

l=n−i+1

ZAD
i,l

RAD
(c) :=

n∑

l=c−n

ZAD
c−l,l

RAD :=
n∑

l=1

n∑

j=n−l+1

ZAD
j,l

of the accident year reserves Ri with i ∈ {1, . . . , n}, the calender year reserves R(c)

with c ∈ {n+1, . . . , 2n} and the aggregate loss reserve R. The additive predictors of
reserves are also called additive reserves. Moreover, the additive ultimate loss ratio

κAD :=
n∑

l=0

ζAD
l

is an estimator of the expected ultimate loss ratio

κ := E

[
Si,n
vi

]
=

n∑

l=0

E

[
Zi,l

vi

]
=

n∑

l=0

ζl

which is identical for all accident years.



4 K.D. Schmidt and M. Zocher

Example A. Calculation of the additive predictors of incremental losses:

Accident Development year k Volume Sum
year i 0 1 2 3 4 5 vi

0 1001 854 568 565 347 148 4025
1 1113 990 671 648 422 164 4456
2 1265 1168 800 744 482 195 5315
3 1490 1383 1007 849 543 220 5986
4 1725 1536 1068 984 629 255 6939
5 1889 1811 1256 1157 740 300 8158

ζAD
k 0.24 0.22 0.15 0.14 0.09 0.04 0.89

ϑAD
k 0.27 0.25 0.17 0.16 0.10 0.04 1

γAD
k 0.27 0.52 0.70 0.86 0.96 1

Reserves:

Accident year i Reserve RAD
i

1 164
2 677
3 1612
4 2937
5 5264

total 10654

Calendar year c ReserveRAD
(c)

6 4374
7 2979
8 2007
9 995

10 300

total 10654

The estimators of the development pattern for incremental quotas and quotas are not
needed for the additive method and are given only for the sake of comparison with
other methods.

Example B. In this example the incremental loss Z4,1 is increased by 1000:

Accident Development year k Volume Sum
year i 0 1 2 3 4 5 vi

0 1001 854 568 565 347 148 4025
1 1113 990 671 648 422 164 4456
2 1265 1168 800 744 482 195 5315
3 1490 1383 1007 849 543 220 5986
4 1725 2536 1068 984 629 255 6939
5 1889 2116 1256 1157 740 300 8158

ζAD
k 0.24 0.26 0.15 0.14 0.09 0.04 0.93

ϑAD
k 0.26 0.28 0.17 0.15 0.10 0.04 1

γAD
k 0.26 0.54 0.71 0.86 0.96 1
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Reserves:

Accident year Reserve Calendar year Reserve

The outlier Z4,1 affects the estimator of the parameter ζ1 and hence the predictors of
the incremental loss Z5,1, the cumulative losses S5,k with k ∈ {1, . . . , 5}, the accident
year reserve R5 and the calendar year reserve R(6).

Bornhuetter–Ferguson Principle

Define now

γAD
k :=

∑k
l=0 ζAD

l∑n
l=0 ζAD

l

and αAD
i := vi

n∑

l=0

ζAD
l

Then the additive predictors of the future cumulative losses satisfy

SAD
i,k = Si,n−i + (

γAD
k − γAD

n−i

)
αAD
i

Therefore, the additive method is subject to the Bornhuetter–Ferguson principle.
Because of the definition of κAD, we also have αAD

i = viκ
AD and hence

SAD
i,k = Si,n−i + (

γAD
k − γAD

n−i

)
viκ

AD

Moreover, if the Cape Cod ultimate loss ratio κCC is computed by using the additive
quotas γAD

k , then it satisfies

κCC = κAD

This means that the additive method is a special case of the Cape Cod method. Fur-
thermore, since the development pattern for incremental loss ratios yields a devel-
opment pattern γ0, γ1, . . . , γn for quotas, we have
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E

[
Si,k
viγk

]
= E

[
Si,n
vi

]
= κ

for all i, k ∈ {0, 1, . . . , n}. This is an assumption of the Cape Cod model.

Linear Model

The development pattern for incremental loss ratios concerns the structure of the
expectations of the incremental losses. This elementary model can be refined by
adding an assumption on the structure of their covariances. Such an assumption is
part of the additive model:

Additive Model: There exist known volume measures v0, v1, . . . , vn of the accident years
as well as unknown parameters ζ0, ζ1, . . . , ζn and parameters σ2

0,σ
2
1, . . . ,σ

2
n such that the

identities

E

[
Zi,k

vi

]
= ζk

cov

[
Zi,k

vi
,
Z j,l

v j

]
= 1

vi
σ2
k δi, j δk,l

hold for all i, j, k, l ∈ {0, 1, . . . , n}.
The conditions of the additive model can be also represented in the form

E[Zi,k] = vi ζk

cov[Zi,k, Z j,l] = vi σ
2
k δi, j δk,l

Therefore, the additive model is a linear model and it is obvious that all additive
predictors are linear in the observable incremental losses. Further properties of the
additive predictors result from the theory of linear models:

Theorem. In the additive model, the additive predictor of the future incremental loss Zi,k is
unbiased, it is optimal in the sense that it minimizes the expected squared prediction error

E
[(
Ẑi,k − Zi,k

)2]

over all unbiased linear predictors Ẑi,k of Zi,k , and it is the only predictor having this
property. These properties also hold for the additive predictors of cumulative losses and
reserves.

Under the assumptions of the additive model, the theorem asserts that the additive
predictors are precisely the Gauss–Markov predictors. In particular, it is possible to
determine the expected squared prediction errors of the additive reserves and one
obtains
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E
[(
RAD
i − Ri

)2] = v2
i

n∑

l=n−i+1

(
1

∑n−l
h=0 vh

+ 1

vi

)
σ2
l

E
[(
RAD
(c) − R(c)

)2] =
n∑

l=c−n

v2
c−l

(
1

∑n−l
h=0 vh

+ 1

vc−l

)
σ2
l

E
[(
RAD − R

)2] =
n∑

l=1

⎛

⎝
n∑

j=n−l+1

v j

⎞

⎠
2 (

1
∑n−l

h=0 vh
+ 1

∑n
h=n−l+1 vh

)
σ2
l

To estimate the prediction errors, one has to replace the variance parameters
σ2

1, . . . ,σ
2
n occurring in these formulae by appropriate estimators. Usually, the unbi-

ased estimators

σ̂2
k := 1

n − k

n−k∑

j=0

v j

(
Z j,k

v j
− ζAD

k

)2

are chosen for k ∈ {1, . . . , n − 1}, and an estimator σ̂2
n is determined by extrapolation.

Remarks

The structure of the additive method is very similar to that of the chain ladder method
and that of the Panning method. Correspondingly, the additive model is quite similar
to the chain ladder model of Schnaus and the Panning model.

The additive method can be modified by changing the weights in the additive
incremental loss ratios

ζAD
k =

n−k∑

j=0

v j∑n−k
h=0 vh

Z j,k

v j

and such a change of the weights can be captured by an appropriate change of the
accident year factors 1/vi in the covariance condition

cov

[
Zi,k

vi
,
Z j,l

v j

]
= 1

vi
σ2
k δi, j δk,l

of the additive model.
It is interesting to note that there is also a micro model leading to the additive

model:

• Assume that the volume measures are positive integers.
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• Assume further that for every cell (i, k) with i, k ∈ {0, 1, . . . , n} there exists a
family of random variables {Xi,k,l}l∈{1,...,vi } with E[Xi,k,l] = ζk and var[Xi,k,l] =
σ2
k as well as

Zi,k =
vi∑

l=1

Xi,k,l

• Assume also that any two of the random variables Xi,k,l are uncorrelated.

Then the family {Zi,k}i,k∈{0,1,...,n} satisfies the assumptions of the additive model. The
quantities of this micro model may be interpreted as follows: In accident year i there
are vi contracts, and for contract l ∈ {1, . . . , vi } from accident year i the incremental
loss in development year k is given by Xi,k,l .

Notes

Keywords: Aggregation, Bornhuetter–Ferguson Method, Bornhuetter–Ferguson
Principle, Cape Cod Method, Chain Ladder Method (Basics), Development Pat-
tern (Basics), Development Pattern (Estimation), Linear Models (Loss Reserving),
Loss Ratios, Multiplicative Models, Multivariate Methods, Paid & Incurred Problem,
Panning Method, Run-Off Triangles, Volume Measures.

References: Ludwig, Schmeißer & Thänert [2009], Mack [2002], Schmidt [2009,
2012], Schmidt & Zocher [2008].
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Consider the run-off square of incremental losses:

Accident Development year
year 0 1 … k … n−i … n−1 n
0 Z0,0 Z0,1 … Z0,k … Z0,n−i … Z0,n−1 Z0,n
1 Z1,0 Z1,1 … Z1,k … Z1,n−i … Z1,n−1 Z1,n
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

i Zi,0 Zi,1 … Zi,k … Zi,n−i … Zi,n−1 Zi,n
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

n−k Zn−k,0 Zn−k,1 … Zn−k,k … Zn−k,n−i … Zn−k,n−1 Zn−k,n
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

n−1 Zn−1,0 Zn−1,1 … Zn−1,k … Zn−1,n−i … Zn−1,n−1 Zn−1,n
n Zn,0 Zn,1 … Zn,k … Zn,n−i … Zn,n−1 Zn,n

We assume that the incremental losses Zi,k are observable for i + k ≤ n and that
they are non-observable for i + k ≥ n + 1. For i, k ∈ {0, 1, . . . , n}, let

Si,k :=
k∑

l=0

Zi,l

denote the cumulative loss from accident year i in development year k.

Chain Ladder Method

The chain ladder method is usually described by means of the cumulative losses. It
is based on the chain ladder factors

ϕCL
k :=

∑n−k
j=0 Sj,k

∑n−k
j=0 Sj,k−1

with k ∈ {1, . . . , n} and it consists primarily in the prediction of the future cumulative
losses Si,k with i + k ≥ n + 1 by the chain ladder predictors

SCL
i,k := Si,n−i

k∏

l=n−i+1

ϕCL
l

For the prediction of the future incremental losses Zi,k with i + k ≥ n + 1 one uses
the chain ladder predictors

ZCL
i,k := Si,n−i (ϕ

CL
k −1)

k−1∏

l=n−i+1

ϕCL
l
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(with ZCL
i,n−i+1 = Si,n−i (ϕ

CL
n−i+1−1)) from which the chain ladder predictors of the

reserves result by summation.
By analogy with the chain ladder factors, we define for i ∈ {1, . . . , n} the dual

chain ladder factors

ψCL
i :=

∑i
j=0 Sj,n−i

∑i−1
j=0 Sj,n−i

Here the analogy and the notion of duality result from the identities

ϕCL
k =

∑n−k
j=0

∑k
l=0 Z j,l

∑n−k
j=0

∑k−1
l=0 Z j,l

and ψCL
i =

∑n−i
l=0

∑i
j=0 Z j,l

∑n−i
l=0

∑i−1
j=0 Z j,l

The dual chain ladder factors are exactly the chain ladder factor in the reflected
run-off triangle of incremental losses, in which the roles of accident years and of
development years are interchanged. Therefore they describe the development over
accident years instead of development years.

We consider now two sub-portfolios with the respective incremental losses
Z̄i,k > 0 and Z̃i,k > 0 as well as the total portfolio with the incremental losses
Zi,k := Z̄i,k + Z̃i,k . We also denote all other quantities of the sub-portfolios in the
same way as the incremental losses.

Theorem.

(1) If ϕ̄CL
k > ϕ̃CL

k and ψ̄CL
i > ψ̃CL

i holds for all i, k ∈ {1, . . . , n}, then the inequality

Z̄CL
i,k + Z̃CL

i,k > ZCL
i,k

holds for all i, k ∈ {1, . . . , n} such that i + k ≥ n + 1.

(2) If ϕ̄CL
k = ϕ̃CL

k holds for all i, k ∈ {1, . . . , n}, then the identity

Z̄CL
i,k + Z̃CL

i,k = ZCL
i,k

holds for all i, k ∈ {1, . . . , n} such that i + k ≥ n + 1.

(3) If ϕ̄CL
k < ϕ̃CL

k and ψ̄CL
i > ψ̃CL

i holds for all i, k ∈ {1, . . . , n}, then the inequality

Z̄CL
i,k + Z̃CL

i,k < ZCL
i,k

holds for all i, k ∈ {1, . . . , n} such that i + k ≥ n + 1.

By summation, the results of the theorem for the chain ladder predictors of incre-
mental losses yield corresponding results for the chain ladder predictors of cumulative
losses and for the chain ladder reserves.
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Example. Sub-portfolio I: Incremental losses and predictors of incremental losses:

Accident Development year k

year i 0 1 2 3 ψ̄CL
i

0 230 110 60 20
1 240 120 80 22 2.10
2 230 120 70 21 1.50
3 280 140 84 25 1.40

ϕ̄CL
k 1.50 1.20 1.05

Sub-portfolio II: Incremental losses and predictors of incremental losses:

Accident Development year k

year i 0 1 2 3 ψ̄CL
i

0 780 140 80 10
1 760 120 100 10 1.98
2 410 130 54 6 1.30
3 390 78 47 5 1.20

ϕ̃CL
k 1.20 1.10 1.01

Sums of the predictors of the two sub-portfolios:

Accident Development year

Total portfolio: Incremental losses and predictors of incremental losses:

Accident Development year

The results confirm assertion (1) of the theorem.
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The chain ladder method is based on the assumption of the existence of a devel-
opment pattern for factors.
• If the existence of a development pattern for factors is assumed for each of the

sub-portfolios, then there exist parameters ϕ̄k and ϕ̃k such that

E[S̄i,k] = E[S̄i,k−1] ϕ̄k

E[S̃i,k] = E[S̃i,k−1] ϕ̃k

holds for all k ∈ {1, . . . , n} and i ∈ {0, 1, . . . , n}.
• If the existence of a development pattern for factors is assumed for the total port-

folio, then there exist parameters ϕk such that

E[Si,k] = E[Si,k−1] ϕk

holds for all k ∈ {1, . . . , n} and i ∈ {0, 1, . . . , n}.
It thus follows that a development pattern for factors exists for each of the sub-
portfolios and also for the total portfolio if and only if there exists, for every
k ∈ {1, . . . , n}, some ck−1 such that the identity

E[S̄i,k−1]
E[S̃i,k−1]

= ck−1

holds for all i ∈ {0, 1, . . . , n}. As this proportionality condition is not plausible in
general, this raises the problem of a consistent modelling of the sub-portfolios and
the total portfolio.

One possibility of a consistent modelling of the sub-portfolios and the total port-
folio is provided by the multivariate chain ladder model, which provides a justifica-
tion of the multivariate chain ladder method. The multivariate chain ladder model
describes not only the individual sub-portfolios, but also the correlations between
the sub-portfolios.

In actuarial practice, the application of the multivariate chain ladder method may
cause problems, but the method represents a benchmark and in many cases the
multivariate chain ladder predictors are approximated quite well by the univariate
chain ladder predictors for the individual sub-portfolios.

Additive Method

The additive method uses known volume measures v0, v1, . . . , vn of the accident
years. It is based on the additive incremental loss ratios
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ζAD
k :=

∑n−k
j=0 Z j,k

∑n−k
j=0 v j

with k ∈ {0, 1, . . . , n} and it consists primarily in the prediction of the future incre-
mental losses Zi,k with i + k ≥ n + 1 by the additive predictors

ZAD
i,k := viζ

AD
k

from which the additive predictors of the future cumulative losses and of the reserves
result by summation.

We consider now two sub-portfolios with the respective incremental losses Z̄i,k >

0 and Z̃i,k > 0 and the respective volume measures v̄i > 0 and ṽi > 0 as well as
the total portfolio with the incremental losses Zi,k := Z̄i,k + Z̃i,k and the volume
measures vi := v̄i + ṽi . We also denote all other quantities of the sub-portfolios in
the same way as the incremental losses and the volume measures.

Lemma. For all i, k ∈ {1, . . . , n} such that i + k ≥ n + 1 there exists a constant vi,k > 0
determined by the volume measures such that

Z̄AD
i,k + Z̃AD

i,k − ZAD
i,k = vi,k

(
v̄i∑n−k
j=0 v̄ j

− ṽi∑n−k
j=0 ṽ j

) (
ζ̄AD
k − ζ̃AD

k

)

This lemma provides a complete solution to the problem of additivity for the additive
method (and even for the additive predictors of the individual future incremental
losses). In particular, the additive method is always additive if there exists some c
such that the identity

v̄i/ṽi = c

holds for all i ∈ {0, 1, . . . , n}.
An analogon to the theorem on the additivity in the chain ladder method results

immediately from the lemma:

Theorem.

(1) If ζ̄AD
k > ζ̃AD

k and v̄i/
∑n−k

j=0 v̄ j > ṽi/
∑n−k

j=0 ṽ j holds for all i, k ∈ {1, . . . , n} such that
i + k ≥ n + 1, then the inequality

Z̄AD
i,k + Z̃AD

i,k > ZAD
i,k

holds for all i, k ∈ {1, . . . , n} such that i + k ≥ n + 1.

(2) If ζ̄AD
k = ζ̃AD

k or v̄i/
∑n−k

j=0 v̄ j = ṽi/
∑n−k

j=0 ṽ j holds for all i, k ∈ {1, . . . , n} such that
i + k ≥ n + 1, then the identity

Z̄AD
i,k + Z̃AD

i,k = ZAD
i,k

holds for all i, k ∈ {1, . . . , n} such that i + k ≥ n + 1.



Aggregation 15

(3) If ζ̄AD
k < ζ̃AD

k and v̄i/
∑n−k

j=0 v̄ j > ṽi/
∑n−k

j=0 ṽ j holds for all i, k ∈ {1, . . . , n} such
that i + k ≥ n + 1, then the inequality

Z̄AD
i,k + Z̃AD

i,k < ZAD
i,k

holds for all i, k ∈ {1, . . . , n} such that i + k ≥ n + 1.

By summation, the results of the theorem for the additive predictors of incremental
losses yield corresponding results for the additive predictors of cumulative losses
and for the additive reserves.

The additive method is based on the assumption of the existence of a development
pattern for incremental loss ratios.

• If the existence of a development pattern for incremental loss ratios is assumed
for each of the sub-portfolios, then there exist parameters ζ̄k and ζ̃k such that

E[Z̄i,k] = v̄i ζ̄k

E[Z̃i,k] = ṽi ζ̃k

holds for all k ∈ {0, 1, . . . , n} and i ∈ {0, 1, . . . , n}.
• If the existence of a development pattern for incremental loss ratios is assumed

for the total portfolio, then there exist parameters ζk such that

E[Zi,k] = viζk

holds for all k ∈ {0, 1, . . . , n} and i ∈ {0, 1, . . . , n}.
It thus follows that development patterns for incremental loss ratios exist for each of
the sub-portfolios and also for the total portfolio if and only if there exists some c
such that the identity

v̄i/ṽi = c

holds for all i ∈ {0, 1, . . . , n}.
Example. Depending on the choice of the volume measure, different effects arise
from the application of the additive method in motor third party liability insurance:
If the number of contracts is chosen as the volume measure, the separation of bodily
injury claims and pure property damage claims can be omitted, as the same volume
measure is used for both types of losses and since the additive method is additive in
this case.1 By contrast, if the corresponding expected number of claims is chosen as
the volume measure, then the volume measures for bodily injury claims and for pure
property damage claims are usually not proportional and in this case the additive
method is not additive in general.

1Let wi denote the number of contracts in accident year i . Then one has v̄i = wi and ṽi = wi , and
hence vi = 2wi . The additive method applied to either vi and wi produces the same results since
scaling of the volume measures does not affect the predictors.
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One possibility of a consistent modelling of the sub-portfolios and the total portfolio
is provided by the multivariate additive model, which provides a justification of the
multivariate additive method.

The remarks made on the multivariate chain ladder method also apply to the
multivariate additive method.

Remarks

Assertion (1) of both theorems essentially states that, for every future incremental
loss, the sum of the predictors from the sub-portfolios is always greater than the
predictor from the total portfolio when one of the two sub-portfolios has at the
same time a lower development speed and a higher expansion speed than the other.
Similar interpretations can be given for assertions (2) and (3) of these theorems. The
expansion over accident years is sometimes called accident year inflation.

The theoretical results of this article provide sufficient conditions for underesti-
mation or overestimation of the reserves caused by the aggregation of sub-portfolios.
Presumably, in actuarial practice these conditions will only be checked once the pre-
dictors have been computed and compared. If, however, it then turns out that the
appropriate sufficient condition is fulfilled, then this check provides some useful
information on the sub-portfolios.

Notes

Keywords:Additive Method, Chain Ladder Method (Basics), Development Patterns
(Basics), Multivariate Methods, Volume Measures.

References: Ajne [1994], Barnett, Zehnwirth & Dubossarski [2005], Fuchs [2014],
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