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Preface

Variational and boundary integral equation techniques are two of the most
useful methods for solving time-dependent problems described by systems of
equations of the form

∂2u

∂t2
= Au,

where u = u(x, t) is a vector-valued function, x is a point in a domain in R
2 or

R
3, and A is a linear elliptic differential operator. To facilitate a better under-

standing of these two types of methods, below we propose to illustrate their
mechanisms in action on a specific mathematical model rather than in a more
impersonal abstract setting. For this purpose, we have chosen the hyperbolic
system of partial differential equations governing the nonstationary bending
of elastic plates with transverse shear deformation. The reason for our choice
is twofold. On the one hand, in a certain sense this is a “hybrid” system, con-
sisting of three equations for three unknown functions in only two independent
variables, which makes it more unusual—and thereby more interesting to the
analyst—than other systems arising in solid mechanics. On the other hand,
this particular plate model has received very little attention compared to the
so-called classical one, based on Kirchhoff’s simplifying hypotheses, although,
as acknowledged by practitioners, it represents a substantial refinement of the
latter and therefore needs a rigorous discussion of the existence, uniqueness,
and continuous dependence of its solution on the data before any construction
of numerical approximation algorithms can be contemplated.

The first part of our analysis is conducted by means of a procedure that
is close in both nature and detail to a variational method, and which, for this
reason, we also call variational. Once the results have been established in the
general setting of Sobolev spaces, we carry out the second part of the study by
seeking useful, closed-form integral representations of the solutions in terms
of dynamic (retarded) plate potentials.



VIII Preface

The problems discussed in this book include those with Dirichlet and Neu-
mann boundary conditions (corresponding, in particular, to the clamped-edge
and free-edge plate), with elastic (Robin), mixed, and combined displacement-
traction (simply supported edge) boundary data, transmission (contact) prob-
lems, problems for plates with homogeneous inclusions, plates with cracks, and
plates on a generalized elastic foundation. For each of them, the variational
version is formulated and its solvability is examined in spaces of distribu-
tions; subsequently, the solutions are found in the form of time-dependent
single-layer and double-layer potentials with distributional densities that sat-
isfy nonstationary integral equations. The analysis technique consists in us-
ing the Laplace transformation to reduce the original problems to boundary
value problems depending on the transformation parameter, and on estab-
lishing estimates for the solutions of the latter that allow conclusions to be
drawn about the existence and properties of the solutions to the given initial-
boundary value problems. The transformed problems are solved by means
of specially constructed algebras of singular integral operators defined by the
boundary values of the transformed potentials.

The distributional setting has the advantage over the classical one in that
it enables the method to be applied in less smooth domains—for example,
in regions with corners and cuts. Furthermore, Sobolev-type norms are par-
ticularly useful in the global error analysis of numerical schemes, but such
analysis falls outside the scope of this book and we do not pursue it.

To the authors’ knowledge, this is the first time that so many typical
initial-boundary value problems have been considered in the same book for
a model in conjunction with both variational and boundary integral equa-
tion methods. The text provides full details of the proofs and is aimed at
researchers interested in the use of applied analysis as a tool for investigating
mathematical models in mechanics. The presentation assumes no specialized
knowledge beyond a basic understanding of functional analysis and Sobolev
spaces.

We want to emphasize that the book does not intend to explain the me-
chanical background of plate theory. Details of that nature and a fuller dis-
cussion of the limitations of the model that we have chosen as our object of
study can be found in the article

J.R. Cho and J.T. Oden, A priori modeling error estimate of hi-
erarchical models for elasticity problems for plate and shell-like
structures, Math. Comput. Modelling 23 (1996), 117–133.

Ours is a purely mathematical that aims to acquaint the interested reader
with two of the most powerful and general techniques of solution for this
type of linear problem. We reiterate that the theory of bending of plates
with transverse shear deformation has been selected merely as an application
vehicle because of its unusual features and lack of previous strict mathematical
treatment. The book is a natural complement to our earlier monograph [7],
where we investigated the corresponding equilibrium problems.
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Some of the results discussed below have already been announced in concise
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1

Formulation of the Problems and Their
Nonstationary Boundary Integral Equations

1.1 The Initial-Boundary Value Problems

All problem statements in this chapter are formal; rigorous versions will be
presented after the introduction of the necessary function spaces.

Below we consider initial-boundary value problems for the time-dependent
homogeneous equations of the model with homogeneous initial data. In Chap-
ter 9, we indicate how the general case can be reduced to the homogeneous
one.

By an elastic plate we understand an elastic body that occupies a region
S̄ × [−h0/2, h0/2] in R

3, where S is a domain in R
2 bounded by a simple

closed curve ∂S and 0 < h0 = const � diamS is called the thickness.
Throughout the book we use the following notation and conventions.

Unless otherwise specified, Greek and Latin subscripts and superscripts in
all formulas take the values 1, 2 and 1, 2, 3, respectively, and summation over
repeated indices is adopted.

The standard inner product in R
3 is (a, b) = aibi.

A generic point in R
2 referred to a Cartesian system of coordinates in the

middle plane x3 = 0 of the plate is written as x = (x1, x2).
X = (x, t), where t is the time variable.
Partial derivatives are denoted by ∂α = ∂/∂xα and ∂t = ∂/∂t.
A superscript T denotes matrix transposition. A superscript ∗ denotes

conjugation and transposition of a complex matrix.
The columns of a matrix M are denoted by M (i).
Both matrix-valued functions and scalar functions are simply referred to

as functions. If Y is a space of scalar functions and g is a matrix-valued
function, then g ∈ Y means that each entry of g belongs to Y.

A three-component vector q = (q1, q2, q3)T may be written alternatively
as q = (q̄T, q3)T, where q̄ = (q1, q2)T.

S+ is the finite domain enclosed by ∂S, and S− = R
2 \ (S+ ∪ ∂S).



2 1 Formulation of the Problems

The boundary ∂S is a C2-curve with a uniquely defined outward (with
respect to S+) normal n = (n1, n2)T.

We write

G = S × (0,∞), G± = S± × (0,∞), Γ = ∂S × (0,∞).

If ϕ is a smooth function defined in S+ (S−), then ϕ+ (ϕ−) denotes the
limiting value (if it exists) of ϕ as its argument tends to ∂S from within S+

(S−). If ϕ is not smooth but has a trace on ∂S, then the latter is denoted by
γ+ϕ (γ−ϕ). Since there is no danger of ambiguity, the notation remains the
same for functions defined in G+ (G−) and their limiting values (traces) on
the boundary Γ.

The operators of restriction from R
2 (or S+∪S−) to S±, or from R

2×(0,∞)
(or G+ ∪ G−) to G±, are denoted by π±.

Operators of extension from ∂S to S±, or from Γ to G±, are denoted by
l±, respectively.

∆ is the Laplacian and δij is the Kronecker delta.
L and L−1 are, respectively, the Laplace transformation with respect to

t, and its inverse. The Laplace transform of a function u(x, t) is denoted by
û(x, p), where p is the transformation parameter.

Other notation will be introduced as the need arises.

Suppose that the material is homogeneous and isotropic, of density ρ and
Lamé constants λ and µ, which satisfy the inequalities [9]

λ + µ > 0, µ > 0, ρ > 0. (1.1)

If we denote by tij , εij , vi, and fi, respectively, the components of the stress
tensor, deformation tensor, displacement vector, and body force vector, then
the behavior of the plate as a three-dimensional elastic body under prescribed
initial and boundary conditions is governed by three main groups of equations,
namely (see [14] and [17]),

the kinematic formulas

εij = 1
2 (∂ivj + ∂jvi); (1.2)

the stress-strain relations (generalized Hooke’s law)

tij = λεkkδij + 2µεij ; (1.3)

the equations of motion
∂jtij + fi = ρ∂2

t vi. (1.4)

In addition,

ti = tijnj

are the components of the stress vector on ∂S.
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The model of bending of plates with transverse shear deformation that we
intend to study here postulates a displacement field of the form

vα(x, x3, t) = x3uα(X),

v3(x, x3, t) = u3(X).
(1.5)

This assumption is valid only for plates whose ratio of thickness to diameter
falls within a certain range (see the Preface).

Expressions (1.5) and the geometry of the plate suggest a way of simpli-
fying equations (1.2)–(1.4). This is done by means of a well-known procedure
that involves the use of the averaging operators Iα and Jα, α = 0, 1, defined
by

(Iαg)(X) = h−1
0

[
xα

3 g(x, x3, t)
]x3=h0/2
x3=−h0/2,

(Jαg)(X) = h−1
0

h0/2∫
−h0/2

xα
3 g(x, x3, t) dx3.

Specifically, setting

Nαβ = J1tαβ ,

N3α = J0t3α,

qα = J1fα + I1tα3,

q3 = J0f3 + I0t33,

h2 = h2
0/12,

system (1.4) yields the plate equations of motion

∂βNαβ − N3α + qα = ρh2∂2
t uα,

∂αN3α + q3 = ρ∂2
t u3.

(1.6)

Also, from (1.2), (1.3), and (1.5), we obtain the plate constitutive relations

Nαβ = h2[λ(∂γuγ)δαβ + µ(∂αuβ + ∂βuα)
]
,

N3α = µ(∂αu3 + uα).
(1.7)

Finally, substituting (1.7) into (1.6) leads to the alternative equations of mo-
tion

B(∂2
t u)(X) + (Au)(X) = q(X), X ∈ G+ or X ∈ G−, (1.8)

where
B = diag{ρh2, ρh2, ρ},
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A is the matrix differential operator with entries [9]

Aαα = −h2µ∆ − h2(λ + µ)∂2
α − µ (α not summed),

A33 = −µ∆,

A12 = A21 = −h2(λ + µ)∂1∂2,

Aα3 = −A3α = µ∂α,

and
u = (ūT, u3)T,

q = (q̄T, q3)T.

It is easily verified that, under conditions (1.1), A is a strongly elliptic operator
and satisfies G̊arding’s inequality [18].

The quantities Nαβ and Nα3 are the averages across the thickness of the
plate of the bending and twisting moments with respect to the middle plane
x3 = 0, and of the transverse shear forces [9]; qα and q3 are combinations of
the body moments and forces and of the moments and forces acting on the
faces x3 = ±h0/2.

Similarly, setting
Nα = J1tα,

N3 = J0t3,

we obtain

N1 = h2[(λ∂αuα + 2µ∂1u1)n1 + µ(∂1u2 + ∂2u1)n2
]
,

N2 = h2[µ(∂1u2 + ∂2u1)n1 + (λ∂αuα + 2µ∂2u2)n2
]
,

N3 = µ(∂αu3 + uα)nα,

which can be written as
Ni = (Tu)i,

where T is the matrix boundary operator with entries

T11 = h2[(λ + 2µ)n1∂1 + µn2∂2
]
,

T22 = h2[(λ + 2µ)n2∂2 + µn1∂1
]
,

T33 = µnα∂α,

T12 = h2(λn1∂2 + µn2∂1),

T21 = h2(µn1∂2 + λn2∂1),

T3α = µnα,

Tα3 = 0.

From what has been said above, it is obvious that Tu is the vector of the av-
eraged moments and shear force acting on the lateral part ∂S × (−h0/2, h0/2)
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of the boundary. The vector u is referred to as the displacement vector since
it characterizes the latter uniquely in terms of the assumption (1.5).

In Chapters 2–8, we deal almost exclusively with the homogeneous equa-
tion (1.8), that is,

B(∂2
t u)(X) + (Au)(X) = 0, X ∈ G+ or X ∈ G−. (1.9)

To (1.9) we adjoin appropriate boundary conditions and homogeneous initial
conditions. The functions occurring on the right-hand side in all the boundary
conditions below are prescribed.

The symbolic name of each problem that we consider starts with a “D”
to indicate that it is a dynamic problem. The remaining letters are fairly
obvious initials related to the problem type and/or boundary condition type.

Thus, the classical interior and exterior problems (DD±) with Dirichlet
boundary conditions consist, respectively, in finding functions u ∈ C2(G±) ∩
C1(Ḡ±) such that

B(∂2
t u)(X) + (Au)(X) = 0, X ∈ G±,

u(x, 0+) = (∂tu)(x, 0+) = 0, x ∈ S±,

u±(X) = f(X), X ∈ Γ.

In the interior and exterior initial boundary-value problems (DN±) with
Neumann boundary conditions, we seek solutions u ∈ C2(G±) ∩ C1(Ḡ±) of

B(∂2
t u)(X) + (Au)(X) = 0, X ∈ G±,

u(x, 0+) = (∂tu)(x, 0+) = 0, x ∈ S±,

(Tu)±(X) = g(X), X ∈ Γ.

Consider two open arcs ∂S1 and ∂S2 of ∂S such that

mes(∂Sα) > 0,

∂S1 ∪ ∂S2 = ∂S,

∂S1 ∩ ∂S2 = ∅.

The interior and exterior initial-value problems (DM±) with mixed boundary
conditions consist in finding u ∈ C2(G±) ∩ C1(Ḡ±) satisfying

B(∂2
t u)(X) + (Au)(X) = 0, X ∈ G±,

u(x, 0+) = (∂tu)(x, 0+) = 0, x ∈ S±,

u±(X) = f(X), X ∈ ∂S1 × (0,∞),

(Tu)±(X) = g(X), X ∈ ∂S2 × (0,∞).
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In the interior and exterior initial-boundary value problems (DC±
1 ) with

combined boundary conditions of the first kind, we look for u ∈ C2(G±) ∩
C1(Ḡ±) such that

B(∂2
t u)(X) + (Au)(X) = 0, X ∈ G±,

u(x, 0+) = (∂tu)(x, 0+) = 0, x ∈ S±,

u±
3 (X) = f3(X), X ∈ Γ,

(Tu)±
α (X) = gα(X), X ∈ Γ.

If the boundary conditions are of the second kind, then the solution u ∈
C2(G±) ∩ C1(Ḡ±) satisfies

B(∂2
t u)(X) + (Au)(X) = 0, X ∈ G±,

u(x, 0+) = (∂tu)(x, 0+) = 0, x ∈ S±,

u±
α (X) = fα(X), X ∈ Γ,

(Tu)±
3 (X) = g3(X), X ∈ Γ.

If the regions S± × [−h0/2, h0/2] are occupied by two different elastic
materials with Lamé constants λ±, µ± and densities ρ±, respectively, then the
initial-boundary value problem (DT) with transmission (contact) boundary
conditions consists in finding a pair of functions u± ∈ C2(G±)∩C1(Ḡ±) such
that

B±(∂2
t u±)(X) + (A±u±)(X) = 0, X ∈ G±,

u±(x, 0+) = (∂tu±)(x, 0+) = 0, x ∈ S±,

u+
+(X) − u−

−(X) = f(X), X ∈ Γ,

(T+u+)+(X) − (T−u−)−(X) = g(X), X ∈ Γ,

where A±, B±, and T± have the obvious meaning.
Consider an open arc ∂S0 of ∂S that models a crack, and let

Ω = R
2 \ ∂S0,

∂S1 = ∂S \ ∂S0,

G = Ω × (0,∞),

Γi = ∂Si × (0,∞), i = 0, 1.

We write u ∈ Ck(Ḡ), k = 0, 1, 2, . . . , if the restrictions u± of u to G± are,
respectively, of class Ck(Ḡ±) and the limiting values on Γ1 of u+ and all its
derivatives up to the order k coincide with those of u−. (These values may
differ on Γ0.) In the initial-boundary value problem (DKD) with Dirichlet
boundary conditions, we seek u ∈ C2(G) ∩ C1(Ḡ) satisfying
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B(∂2
t u)(X) + (Au)(X) = 0, X ∈ G,

u(x, 0+) = (∂tu)(x, 0+) = 0, x ∈ Ω,

u+
+(X) = f+(X), X ∈ Γ0,

u−
−(X) = f−(X), X ∈ Γ0.

The problem (DKN) with Neumann boundary conditions consists in find-
ing u ∈ C2(G) ∩ C1(Ḡ) such that

B(∂2
t u)(X) + (Au)(X) = 0, X ∈ G,

u(x, 0+) = (∂tu)(x, 0+) = 0, x ∈ Ω,

(Tu+)+(X) = g+(X), X ∈ Γ0,

(Tu−)−(X) = g−(X), X ∈ Γ0.

Let K be a (3 × 3)-matrix of the form

K =
(

K̄ 0
0 k33

)
,

where k33 > 0 and the (2 × 2)-matrix K̄ = h2(kαβ) is positive definite. In
the interior and exterior initial-boundary value problems (DD±

K) for a plate
on an elastic foundation with Dirichlet boundary conditions, we look for u ∈
C2(G±) ∩ C1(Ḡ±) such that

B(∂2
t u)(X) + (Au)(X) + Ku(X) = 0, X ∈ G±,

u(x, 0+) = (∂tu)(x, 0+) = 0, x ∈ S±,

u±(X) = f(X), X ∈ Γ.

The corresponding problems (DN±
K) with Neumann boundary conditions con-

sist in finding functions u ∈ C2(G±) ∩ C1(Ḡ±) satisfying

B(∂2
t u)(X) + (Au)(X) + Ku(X) = 0, X ∈ G±,

u(x, 0+) = (∂tu)(x, 0+) = 0, x ∈ S±,

(Tu)±(X) = g(X), X ∈ Γ.

Throughout what follows, we work frequently with the Laplace transforms
of vector-valued functions u(X) = u(x, t), t ∈ R, which vanish for t < 0; that
is,

û(x, p) = Lu(x, t) =

∞∫
0

e−ptu(x, t) dt.


