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TECHNICAL PROGRAMME CHAIR’S INTRODUCTION

M.A.BRAMER
University of Portsmouth, UK

This volume comprises the refereed technical papers presented at AI-2004, the
Twenty-fourth SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence, held in Cambridge in December 2004. The
conference was organised by SGAI, the British Computer Society Specialist Group on
Artificial Intelligence.

The papers in this volume present new and innovative developments in the field,
divided into sections on Al Techniques I and II, CBR and Recommender Systems,
Ontologies, Intelligent Agents and Scheduling Systems, Knowledge Discovery in
Data and Spatial Reasoning and Image Recognition.

This year's prize for the best refereed technical paper was won by a paper entitled
Extracting Finite Structure from Infinite Language by T. McQueen, A. A. Hopgood,
T. J. Allen and J. A. Tepper (School of Computing & Informatics, Nottingham Trent
University, UK). SGAI gratefully acknowledges the long-term sponsorship of
Hewlett-Packard Laboratories (Bristol) for this prize, which goes back to the 1980s.

This is the twenty-first volume in the Research and Development series. The
Application Stream papers are published as a companion volume under the title
Applications and Innovations in Intelligent Systems XII.

On behalf of the conference organising committee I should like to thank all those who
contributed to the organisation of this year's technical programme, in particular the
programme committee members, the executive programme committee and our
administrators Linsay Turbert and Collette Jackson.

Max Bramer
Technical Programme Chair, AI-2004
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Extracting Finite Structure
from Infinite Language

T. McQueen, A. A. Hopgood, T. J. Allen, and J. A. Tepper
School of Computing & Informatics, Nottingham Trent University,
Burton Street, Nottingham, NG1 4BU, UK
thomas.mcqueen{adrian. hopgood , tony.allen, jonathan tepper}@ntu.ac.uk
www.ntu.ac.uk

Abstract

This paper presents a novel connectionist memory-rule based model
capable of learning the finite-state properties of an input language
from a set of positive examples. The model is based upon an
unsupervised recurrent self-organizing map [1] with laterally
interconnected neurons. A derivation of functional-equivalence theory
[2] is used that allows the model to exploit similarities between the
future context of previously memorized sequences and the future
context of the current input sequence. This bottom-up learning
algorithm binds functionally-related neurons together to form states.
Results show that the model is able to learn the Reber grammar [3]
perfectly from a randomly generated training set and to generalize to
sequences beyond the length of those found in the training set.

1. Introduction

Since its inception, language acquisition has been one of the core problems in
artificial intelligence. The ability to communicate through spoken or written
language is considered by many philosophers to be the hallmark of human
intelligence. Researchers have endeavoured to explain this human propensity for
language in order both to develop a deeper understanding of cognition and also to
produce a model of language itself The quest for an automated language
acquisition model is thus the ultimate aim for many researchers [4]. Currently, the
abilities of many natural language processing systems, such as parsers and
information extraction systems, are limited by a prerequisite need for an incalculable
amount of manually derived language and domain-specific knowledge. The
development of a model that could automatically acquire and represent language
would revolutionize the field of artificial intelligence, impacting on almost every
area of computing from Internet search engines to speech-recognition systems.

Language acquisition is considered by many to be a paradox. Researchers such as
Chomsky argue that the input to which children are exposed is insufficient for them
to determine the grammatical rules of the language. This argument for the poverty
of stimulus [5] is based on Gold’s theorem [6], which proves that most classes of
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languages cannot be learnt using only positive evidence, because of the effect of
overgeneralization. Gold’s analysis and proof regarding the unfeasibility of language
acquisition thus forms a central conceptual pillar of modern linguistics. However,
less formal approaches have questioned the treatment of language identification as a
deterministic problem in which any solution must involve a guarantee of no future
errors. Such approaches to the problem of language acquisition [7] show that
certain classes of language can be learnt using only positive examples if language
identification involves a stochastic probability of success.

Language acquisition, as with all aspects of natural language processing,
traditionally involves hard-coded symbolic approaches. Such top-down approaches
to cognition attempt to work backwards from formal linguistic structure towards
human processing mechanisms. However, recent advances in cognitive modelling
have led to the birth of connectionism, a discipline that uses biologically inspired
models that are capable of learning by example. In contrast to traditional symbolic
approaches, connectionism uses a bottom-up approach to cognition that attempts to
solve human-like problems using biologically inspired networks of interconnected
neurons. Connectionist models learn by exploiting statistical relationships in their
input data, potentially allowing them to discover the underlying rules for a problem.
This ability to learn the rules, as opposed to learning via rote memorization, allows
connectionist models to generalize their iearnt behaviour to unseen exemplars.
Connectionist models of language acquisition pose a direct challenge to traditional
nativist perspectives based on Gold’s theorem [6] because they attempt to learn
language using only positive examples.

2. Connectionism and Determinacy

Since the early nineties, connectionist models such as the simple recurrent network
(SRN) [8] have been applied to the language acquisition problem in the form of
grammar induction. This involves learning simple approximations of natural
language, such as regular and context-free grammars. These experiments have met
with some success [6, 7], suggesting that dynamic recurrent networks (DRNs) can
learn to emulate finite-state automata. However, detailed analysis of models trained
on these tasks show that a number of fundamental problems exist that may derive
from using a model with a continuous state-space to approximate a discrete
problem.

While DRNs are capable of learning simple formal languages, they are renowned for
their instability when processing long sequences that were not part of their training
set [8, 9]. As detailed by Kolen [10], a DRN is capable of partitioning its state space
into regions approximating the states in a grammar. However, sensitivity to initial
conditions means that each transition between regions of state space will result in a
slightly different trajectory. This causes instability when traversing state trajectories
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that were not seen during training. This i3 because slight discrepancies in the
trajectories will be compounded with each transition until they exceed the locus of
the original attractor, resulting in a transition to an erroneous region of state space.
Such behavior is characteristic of continuous state-space DRNs and can be seen as
both a power and a weakness of this class of model. While this representational
power enables the model to surpass deterministic finite automata and emulate non-
deterministic systems, it proves to be a significant disadvantage when attempting to
emulate the deterministic behavior fundamental to deterministic finite state automata

(DFA).

Attempts have been made to produce discrete state-space DRNs by using a step-
function for the hidden layer neurons [9]. However, while this technique eliminates
the instability problem, the use of a non-differentiable function means that the
weight-update algorithm’s sigmoid function can only approximate the error signal.
This weakens the power of the learning algorithm, which increases training times
and may cause the model to learn an incorrect representation of the DFA.

The instability of DRNs when generalizing to long sequences that are beyond their
training sets is a limitation that is probably endemic to most continuous state-space
connectionist models. However, when finite-state extraction techniques [9] are
applied to the weight space of a trained DRN, it has been shown that once extracted
into symbolic form, the representations learnt by the DRN can perfectly emulate the
original DFA, even beyond the training set. Thus, while discrete symbolic models
may be unable to adequately model the learning process itself, they are better suited
to representing the learnt DFA than the original continuous state-space
connectionist model.

While supervised DRNs such as the SRN dominate the literature on connectionist
temporal sequence processing, they are not the only class of recurrent network.
Unsupervised models, typically based on the self-organizing map (SOM) [11], have
also been used in certain areas of temporal sequence processing [12]. Due to their
localist nature, many unsupervised models operate using a discrete state-space and
are therefore not subject to the same kind of instabilities characteristic of supervised
continuous state-space DRNs. The aim of this research is therefore to develop an
unsupervised discrete state-space recurrent connectionist model that can induce the
finite-state properties of language from a set of positive examples.

3. A Memory-Rule Based Theory of Linguistics

Many leading linguists, such as Pinker [13] and Marcus [14], have theorized that
language acquisition, as well as other aspects of cognition, can be explained using a
memory-rule based model. This theory proposes that cognition uses two separate
mechanisms that work together to form memory. Such a dual-mechanism approach
is supported by neuro-biological research, which suggests that human memory
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operates using a declarative fact-based system and a procedural skill-based system
[15]. In this theory, rote memorization is used to learn individual exemplars, while a
rule-based mechanism operates to override the original memorizations in order to
produce behaviour specific to a category. This memory-rule theory of cognition is
commonly explained in the context of the acquisition of the English past tense [13].
Accounting for children’s over-regularizations during the process of learning
regular and irregular verbs constitutes a well-known battlefield for competing
linguistic theories. Both Pinker [13] and Marcus [14] propose that irregular verbs
are learnt via rote-memorization, while regular verbs are produced by a rule. The
evidence for this rule-based behaviour is cited as the over-regularization errors
produced when children incorrectly apply the past tense rule to irregular verbs (e.g.
runned instead of ran).

The model presented in this paper is a connectionist implementation of a memory-
rule based system that extracts the finite-state properties of an input language from
a set of positive example sequences. The model’s bottom-up learning algorithm uses
functional-equivalence theory [2] to construct discrete-symbolic representations of
grammatical states (Figure 1).

4. STORM (Spatio Temporal Self-Organizing
Recurrent Map)

STORM is a recurrent SOM [1] that acts as a temporal associative memory, initially
producing a localist-based memorization of input sequences. The model’s rule-
based mechanism then exploits similarities between the future context of memorized
sequences and the future context of input sequences. These similarities are used to
construct functional-relationships, which are equivalent to states in the grammar.
The next two sections will detail the model’s memorization and rule-based
mechanisms separately.

4.1 STORM'’s Memorization Mechanism

STORM maintains much of the functionality of the original SOM [11], including the
winning-neuron selection algorithm (Equation 1), weight-update algorithm
(Equation 2) and neighbourhood function (Equation 3). The model’s localist
architecture is used to represent each element of the input sequence using a separate
neuron. In this respect, STORM exploits the SOM’s abilities as a vector
quantization system rather than as a topological map. Equation 1 shows that for
every input to the model (X), the neuron whose weight vector has the lowest
distance measure from the input vector is selected as the winning neuron (Y). The
symbol d denotes the distance between the winning neuron and the neuron in
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question. As shown in fig 1, each input vector consists of the current input symbol
and a context vector, representing the location of the previous winning neuron.

y; = argmin; (d(x,w;)) 6]

The weight update algorithm (equation 2) is then applied to bring the winning
neuron’s weight vector (W), along with the weight vectors of neighbouring
neurons, closer to the input vector (X) (equation 2). The rate of weight change is
controlled by the learning rate a, which is linearly decreased through training.

Wit +1) =wy (1) + ol (x(1) — wy (1) ¥3)

The symbol 4 in equation 2 denotes the neighbourhood function (equation 3). This
standard Gaussian function is used to update the weights of neighbouring neurons in
proportion to their distance from the winning neuron. This weight update function,
in conjunction with the neighbourhood function, has the effect of mapping similar
inputs to similar locations on the map and also minimizing weight sharing between
similar inputs. The width of the kernel ¢ is linearly decreased through training.

—d?
hy; = exp| —2 3)
y 20_2 .

The model uses an orthogonal input vector to represent the grammar’s terminal
symbols. Each of the seven terminal symbols are represented by setting the
respective binary value to 1 and setting all the other values to 0 (table 1).-

Grammatical symbol Orthogonal vector
16000000
0100000
0010000
0001000
0000100
0000010
0000001

m| < % »| v = W

Table 1 - Orthegonal vector representations for input symbols
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Fig. 1 — Diagram showing conceptual overview of model. The left
side shows STORM’s representation of a FSM, while the right
side of the diagram shows the FSM for the Reber grammar.

As shown in Figures 1 and 2, STORM extends Kohonen’s SOM [11] into the
temporal domain by using recurrent connections. The recurrency mechanism feeds
back a representation of the previous winning neuron’s location on the map using a
10-bit Gray-code vector. By separately representing the column and row of the
previous winning neuron in the context vector, the recurrency mechanism creates a
2D representation of the neuron’s location. Further details of the recurrency
mechanism, along with its advantages, are provided in [1]. This method of explicitly
representing the previous winner’s location as part of the input vector has the effect
of selecting the winning neuron based not just on the current input, but also
indirectly on all previous inputs in the sequence. The advantage of this method of
recurrency is that it is more efficient than alternative methods (e.g. [16]), because
only information pertaining to the previous winning neuron’s location is fed back.
Secondly, the amount of information fed back isn’t directly related to the size of the
map (i.e. recursive SOM [16] feeds back a representation of each neuron’s
activation). This allows the model to scale up to larger problems without
exponentially increasing computational complexity.



Fig. 2 — Diagram showing STORM’s input representation. The model’s
weight vector consists of a 7-bit orthogonal symbol vector representing
the terminal symbol in the grammar, along with a 10-bit Gray code
context vector, representing the column and row of the previous winning
neuron.

4.2 STORM’s Rule-Based Construction Mechanism

The model’s location-based recurrency representation and localist architecture
provide it with a very important ability. Unlike using conventional artificial neural
networks, the sequences learnt by STORM can be extracted in reverse order. This
makes it possible to start with the last element in an input sequence and work
backwards to find the winning neurons corresponding to the previous inputs in the
sequence. STORM uses this ability, while processing input sequences, to find any
existing pre-learnt sequences that end with the same elements as the current input
sequence. For example, Figure 3 shows that the winning neuron for the symbol ‘T’
in sequence 1 has the same future context (‘XSE’) as the winning neuron for the
first symbol ‘S’ in sequence 2.

Functional-equivalent theory [2] asserts that two states are said to be equivalent if,
for all future inputs, their outputs are identical. STORM uses the inverse of this
theory to construct states in a bottom-up approach to grammar acquisition. By
identifying neurons with consistently identical future inputs, the model’s temporal
Hebbian learning mechanism (THL) mechanism binds together potential states via
lateral connections. By strengthening the lateral connections between neurons that
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have the same future context, this THL mechanism constructs functional-
relationships between the winning neuron for the current input and the winning
neuron for a memorized input (referred to as the alternative winner) whose future-
context matches that of the current input sequence (Figure 4). In order to prevent
lateral weight values from becoming too high, a negative THL value is applied every
time a winning neuron is selected. This has the effect of controlling lateral weight
growth and also breaking down old functional relationships that are no longer used.

1.LBTXSE
2BTSXSE

Fig. 3 — Diagram showing the memorized winning neurons for two
sequences that end with the same sub-sequence ‘XSE’

Once states have formed, they override the recurrency mechanism, forcing the
model to use a single representation for the future inputs in the sequence rather than
the original two representations (Figure 4). The advantage of forming states in this
manner is that it provides the model with a powerful ability to generalize beyond its
original memorizations. The model’s THL mechanism conforms to the SOM’s
winner-take-all philosophy by selecting the alternative winner as the neuron whose
future-context is the best match to that of the current input sequence. Given that
tracing back through the future-context may identify multiple alternative winners,
the criteria of best matching winner classifies the strongest sequence stored in the
model as the winner. Furthermore, THL is only used to enhance the functional
relationship between the winner and the alternative winner, if the future-context for
the alternative winner is stronger than that of the winner itself. Thus, the model has
a preference for always using the dominant sequence and it will use the THL
mechanism to re-wire its internal pathways in order to use any dominant sequence.
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Constructing the lateral connections between functionally-related neurons is
equivalent to identifying states in a grammar. Once the strength of these lateral
connections exceeds a certain threshold they override the standard recurrency
mechanism, affecting the representation of the previous winning neuron that is fed
back (Figure 4). Instead of feeding back a representation of the previous winning
neuron, the lateral connections may force the model to feed back a representation of
the functionally-related neuron. The consequence of this is that the rest of the
sequence is processed as if the functionally-related neuron had been selected rather
than the actual winner. For example, Figure 4 shows that when the first ‘S’ symbol
in sequence 2 is presented to STORM, its winning neuron is functionally linked to
the winner for the ‘T” symbol from sequence 1. As the latter winning neuron is the
dominant winner for this state, its location is fed back as context for the next
symbol in sequence 2.

1.LBTXSE .

2.BTSXSEC>§
P
N\

Fig. 4 — Functional override in winning-neuron selection algorithm. The
functional relationship (shown in grey) between the third symbol ‘S’ in the
second sequence and the second symbol ‘T’ in the first sequence, forces the
model to process the remaining elements in the second sequence (namely
‘XSE’) using the same winning neurons as for the first sequence.

While a state is formed based on similarities in future context, there may be cases
where the future context, for the respective input symbols that make up the state, is
dissimilar (Table 2). However, once a state been constructed, the future context in
subsequent sequences containing that state will be processed in an identical manner,
regardless of the future context itself. For example, when trained on the sequences
in Table 2, the ‘T’ symbol from sequence 1 will form a state with the first ‘S’
symbol from sequence 2. This will result in both sequences 1 and 2 sharing the same
winning neurons for their final three inputs (X S E). STORM will then be able to
generalize this learnt state to its memorization of sequence 3, resulting in the same
winning neurons being activated for the X X V V E’ in test sequence 4 as in
training sequence 3.
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# | Training sequence
1 |BTXSE

2 |BTSXSE

3 |{BTXXVVE

Test sequence
4 | BTSXXVVE

Table 2 — Generalization example. When trained on the first three
sequences, STORM is able to construct a state between the ‘T’ in
sequence I and the first ‘S’ in sequence 2. By generalizing this learnt
state to its memorization of sequence 3, STORM is able to correctly
process sequence 4 by activating the same winning neurons for the
sub-sequence ‘X X VV E’ as would be activated in sequence 3.

S. Experiments

In order to quantify STORM’s grammar induction abilities, the model was applied
to the task of predicting the next symbols in a sequence from the Reber grammar
(Figure 1). Similar prediction tasks have been used in [8] and [3] to test the SRN’s
grammar-induction abilities. The task involved presenting the model with symbols
from a randomly generated sequence that was not encountered during training. The
model then had to predict the next possible symbols in the sequence that could
follow each symbol according to the rules of the grammar. STORM’s predictions
are made by utilizing the locational representational values used in its context
vector. As further explained in [1], the winning neuron for an input is the neuron
whose weight vector best matches both the input symbol and the context
representation of the last winning neuron’s location. STORM predicts the next
symbol by finding the neuron whose context representation best matches that of the
current winning neuron (i.e. the symbol part of the weight vector is ignored in the
Euclidean distance calculation). This forces the model to find the neuron that is
most likely to be the next winner. The symbol part of this neuron’s weight vector
provides the next predicted symbol itself. This process is then repeated to find the
second-best matching winner and the corresponding second predicted next symbol.

In accordance with established training criteria for artificial neural network models
[17], the experiments were conducted on randomly generated separate training and
test sets (i.e. sequences were unique with respect to all other sequences in both
sets). Such an approach ensures that the model’s performance, assessed from the
test set, is a true measure of its generalization abilities because the test sequences
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were not encountered during training. The experiment was run ten times using
models with randomly generated initial weights, in order to ensure that the starting
state did not adversely influence the resuits.

The recursive depth parameter, as listed in Table 3, denotes the maximum number
of sequential recursive transversals a sentence may contain (i.e. how many times it
can go around the same loop). In order to ensure that the training and test
sequences are representative of the specified recursive depth, the sets are divided
equally between sequences of each recursive depth (i.e. a set of six sequences with a
recursive depth (RD) of 2 will contain two sequences with an RD of 0, two
sequences with an RD of 1 and two sequences with an RD of 2).

Parameter Value
Number of epochs 1600
Learning rate a (linearly decreasing) 0.1
Initial neighbourhood o (linearly decreasing) 5
Positive / negative temporal Hebbian learning rate 0.5/0.005
Number of training sequences 21
Number of test sequences 7
Maximum recursive depth (RD) of sequences 6
Model size 10 x 10

Table 3 - Experimental parameters for the first experiment

As shown in figure 5, six models learnt the grammar with over 89% accuracy during
training and three of them became perfect grammar recognizers. However, this
number fell by the end -of training, with -only two perfect models-and an additional
two models with over 90% performance accuracy. This equates to an average post-
training performance of 71%. While less than half the models successfully learnt the
grammar, it is worth noting that this is significantly better than for SRNs where
Sharkey [18] showed that only two out of 90 SRNs became finite-state grammar
recognisers in a similar experiment using the Reber grammar.

One of the proposed advantages of a discrete state-space model (page 3), is its
ability to generalize to sequences longer than those encountered during training
without the instabilities characteristic of standard DRN models. In order to test this
proposition, a perfect finite-state recognizer (i.e. a model that scored 100%



14

prediction accuracy) from the first experiment (figure 5) was tested on a further
three test sets. These sets contained sequences with recursive depths of 8, 10 and 12
and should constitute a much harder problem for any model trained only on
sequences with a recursive depth of 6. These models that achieved 100%
performance accuracy in the original experiments also achieved 100% accuracy on
training sets with higher recursive depths. This proves that these models act as
perfect grammar recognizers that are capable of generalizing to sequences of
potentially any length.
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F o0 N T N Y
g 50 +H N %-—* NEm
8 40 + N §——~ —
= 30 H N N |
ESINSNEhEhS
10 H N~ N —
o T -\< T - T
1 2 4

Test number

O Highest prediciton accuracy during training
& Prediction accuracy after training

Fig 5 — Results from ten models trained on randomly generated separate
training and test sets.

6. Conclusions and Future Work

We have presented a novel connectionist memory-rule based model capable of
inducing the finite-state properties of an input language from a set of positive
example sequences. In contrast with the majority of supervised connectionist
models in the literature, STORM is based on an unsupervised recurrent SOM [1]
and operates using a discrete state-space.

The model has been successfully applied to the task of learning the Reber grammar
by predicting the next symbols in a set of randomly generated sequences. The
experiments have shown that over half the models trained are capable of learning a
good approximation of the grammar (over 89%) during the training process.
However, by the end of training, only a fifth of the models were capable of
operating as perfect grammar recognizers. This suggests that the model is unstable
and that partial or optimal solutions reached during training may be lost by the end
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of the training process. Despite this instability, 8 comparison between STORM and
the SRN, when applied to a similar problem [3], shows that STORM is capable of
learning the grammar perfectly much more often than its counterpart. Furthermore,
experiments show that STORM’s discrete state-space allow it to generalize its
grammar recognition abilities to sequences far beyond the length of those
encountered in the training set, without the instabilities experienced in continucus
state-space DRN.

Future work will initially involve analyzing the model to find where it fails. Once the
model’s abilities have been fully explored, its stability will be improved to increase
the number of models that successfully become perfect grammar recognizers.
STORM will then be enhanced to allow it to process more advanced grammars.
Given that regular grammars are insufficient for representing natural language [19],
the model must be extended to learn at least context-free languages if it is to be
applied to real-world problems. However, despite such future requirements
STORM’s current ability to explicitly learn the rules of a regular grammar
distinguish its potential as a language acquisition model.
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Abstract

Some types of animals exploit the external environment to support
their cognitive processes, in the sense of patterns created in the
environment that function as external mental states and serve as an
extension to their mind. In the case of social animals the creation and
exploitation of such patterns can be shared, thus obtaining a form of
shared mind or collective intelligence. This paper explores this
shared extended mind principle for social animals in more detail. The
focus is on the notion of representational content in such cases.
Proposals are put forward and formalised to define collective
representational content for such shared external mental states. A
case study in social ant behaviour in which shared extended mind
plays an important role is used as illustration. For this case
simulations are described, representation relations are specified and
are verified against the simulated traces.

1. Introduction

Behaviour is often not only supported by internal mental structures and cognitive
processes, but also by processes based on patterns created in the external
environment that serve as external mental structures; cf. [5, 6, 7 & 8]. Examples of
this pattern of behaviour are the use of ‘to do lists’ and ‘lists of desiderata’. Having
written these down externally (e.g., on paper, in your diary, in your organizer or
computer) makes it unnecessary to have an internal memory about all the items.
Thus internal mental processing can be kept less complex. Other examples of the
use of extended mind are doing mathematics or arithmetic, where external
(symbolic, graphical, material) representations are used; e.g., [4 & 12]. In [16] a
collection of papers can be found based on presentations at the conference ‘The
Extended Mind: The Very Idea’ that took place in 2001, Clark {6] points at the
roles played by both internal and external representations in describing cognitive
processes: ‘Internal representations will, almost certainly, feature in this story. But so will external
representations, ...’[6, p. 134]. From another, developmental angle, also Griffiths and
Stotz {9] endorse the importance of using both internal and external
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representations; they speak of ‘a larger representational environment which extends beyond the
skin’, and claim that ‘culture makes humans as much as the reverse’ [9, p. 45].

Allowing mental states, which are in the external world and thus accessible for any
agent around, opens the possibility that other agents also start to use them. Indeed,
not only in the individual, single agent case, but also in the social, multi-agent case
the extended mind principle can be observed, e.g., one individual creating a pattern
in the environment, and one or more other individuals taking this pattern into
account in their behaviour. For the human case, examples can be found everywhere,
varying from roads, and traffic signs to books or other media, and to many other
kinds of cultural achievements. Also in [17] it is claimed that part of the total team
knowledge in distributed tasks (such as air traffic control) comprises external
memory in the form of artefacts. In this multi-agent case the extended mind
principle serves as a way to build a form of social or collective intelligence, that
goes beyond (and may even not require) social intelligence based on direct one-to-
one communication.

Especially in the case of social animals external mental states created by one
individual can be exploited by another individual, or, more general, the creation
and maintenance, as well as the exploitation of external mental states can be
activities in which a number of individuals participate. For example, presenting
slides on a paper with multiple authors to an audience. In such cases the external
mental states cross, and in a sense break up, the borders between the individuals
and become shared extended mental states. An interesting and currently often
studied example of collective intelligence is the intelligence shown by an ant
colony [2]. Indeed, in this case the external world is exploited as an extended mind
by using pheromones. While they walk, ants drop pheromones on the ground. The
same or other ants sense these pheromones and follow the route in the direction of
the strongest sensing. Pheromones are not persistent for long times; therefore such
routes can vary over time.

In [3] the shared extended mind principle is worked out in more detail. The paper
focusses on formal analysis and formalisation of the dynamic properties of the
processes involved, both at the local level (the basic mechanisms) and the global
level (the emerging properties of the whole), and their relationships. A case study
in social ant behaviour in which shared extended mind plays an important role is
used as illustration.

In the current paper, as an extension to [3], the notion of representational content is
analysed for mental processes based on the shared extended mind principle. The
analysis of notions of representational content of internal mental state properties is
well-known in the literature on Cognitive Science and Philosophy of Mind. In this
literature a relevant internal mental state property m is taken and a representation
relation is identified that indicates in which way m relates to properties in the
external world or the agent’s interaction with the external world; cf. [1, 10 & 15,
pp- 184-210]. For the case of extended mind an extension of the analysis of notions
of representational content to external state properties is needed. Moreover, for the
case of external mental state properties that are shared, a notion of collective
representational content is needed (in contrast to a notion of representational
content for a single agent).
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Thus, by addressing the ants example and its modelling from an extended mind
perspective, a number of challenging new issues on cognitive modeiling and
representational content are encountered:

¢ How to define representational content for an external mental state property
¢ How to handle decay of a mental state property
o How can joint creation of a shared mental state property be modelled

o What is an appropriate notion of collective representational content of a
shared external mental state property

e How can representational content be defined in a case where a behavioural
choice depends on a number of mental state properties

In this paper these questions are addressed. To this end the shared extended mind
principle is analysed in more detail, and a formalisation is provided of its dynamics.
It is discussed in particular how a notion of collective representational content for a
shared external mental state property can be formulated. In the literature notions of
representational content are usually restricted to internal mental states of one
individual. The notion of collective representational content developed here
extends this in two manners: (1) for external instead of internal mental states, and
(2) for groups of individuals instead of single individuals. It is reported how in a
case study of social behaviour based on shared extended mind (a simple ant colony)
the proposals put forward have been evaluated. The analysis of this case study
comprises multi-agent simulation based on identified local dynamic properties,
identification of dynamic properties that describe collective representational
content of shared extended mind states, and verification of these dynamic
properties.

2. State Properties and Dynamic Properties

Dynamics will be described in the next section as evolution of states over time. The
notion of state as used here is characterised on the basis of an ontology defining a
set of physical and/or mental (state) properties that do or do not hold at a certain
point in time. For example, the internal state property ‘the agent A has pain’, or the
external world state property ‘the environmental temperature is 7° C’, may be
expressed in terms of different ontologies. To formalise state property descriptions,
an ontology is specified as a finite set of sorts, constants within these sorts, and
relations and functions over these sorts. The example properties mentioned above
then can be defined by nullary predicates (or proposition symbols) such as pain, or
by using n-ary predicates (with n=1) like has_temperature(environment, 7). For a given
ontology Ont, the propositional language signature consisting of all state ground
atoms (or atomic state properties) based on Ont is denoted by APROP(Ont). The state
properties based on a certain ontology oOnt are formalised by the propositions that
can be made (using conjunction, negation, disjunction, implication) from the
ground atoms. A sfate S is an indication of which atomic state properties are true
and which are false, i.e., a mapping S: APROP(Ont) — {true, false}.
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To describe the internal and external dynamics of the agent, explicit reference is
made to time. Dynamic properties can be formulated that relate a state at one point
in time to a state at another point in time. A simple example is the following
dynamic property specification for belief creation based on observation:

‘at any point in time t1 if the agent observes at t1 that it is raining, then there exists a point in time t2
after t1 such that at 2 the agent believes that it is raining’.

To express such dynamic properties, and other, more sophisticated ones, the
temporal trace language TTL is used; cf. [11]. To express dynamic properties in a
precise manner a language is used in which explicit references can be made to time
points and traces. Here trace or trajectory over an ontology Ont is a time-indexed
sequence of states over Ont. The sorted predicate logic temporal trace language TTL
is built on atoms referring to, e.g., traces, time and state properties. For example,
‘in the output state of A in trace v at time t property p holds’ is formalised by state(r, t,
output(A)) |= p. Here |= is a predicate symbol in the language, usually used in infix
notation, which is comparable to the Holds-predicate in situation calculus. Dynamic
properties are expressed by temporal statements built using the usual logical
connectives and quantification (for example, over traces, time and state properties).
For example the following dynamic property is expressed:

‘in any trace 7, if at any point in time t1 the agent A observes that it is raining, then there exists a point
in time t2 after t1 such that at t2 in the trace the agent A believes that it is raining’.

In formalised form:

Vi1 [ state(y, t1, input(A)) |= agent_observes_itsraining =
3t2 211 state(y, t2, intemal(A)) |= belief_itsraining |

Language abstractions by introducing new (definable) predicates for complex
expressions are possible and supported.

A simpler temporal language has been used to specify simulation models. This
language (the leads to language) offers the possibility to model direct temporal
dependencies between two state properties in successive states. This executable
format is defined as follows. Let o and B be state properties of the form
‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real
numbers. In the leads to language @ —», , . , B, means:

If  state property o holds for a certain time interval with duration g,
then after some delay (between e and f) state property B will hold
Jor a certain time interval of length h.

For a precise definition of the leads to format in terms of the language TTL, see [14].
A specification of dynamic properties in leads to format has as advantages that it is
executable and that it can often easily be depicted graphically.

3. Representation for Shared Extended Mind

Originally, the different types of approaches to representational content that have
been put forward in the literature on Cognitive Science and Philosophy of Mind, {1,
13 & 15, pp. 191-193, 200-202] are all applicable to internal (mental) states. They
have in common that the occurrence of the internal (mental) state property m at a



