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TECHNICAL PROGRAMME CHAIR'S INTRODUCTION 

M.A.BRAMER 
University of Portsmouth, UK 

This volume comprises the refereed technical papers presented at AI-2004, the 
Twenty-fourth SGAI International Conference on Innovative Techniques and 
Applications of Artificial Intelligence, held in Cambridge in December 2004. The 
conference was organised by SGAI, the British Computer Society Specialist Group on 
Artificial Intelligence. 

The papers in this volume present new and innovative developments in the field, 
divided into sections on AI Techniques I and II, CBR and Recommender Systems, 
Ontologies, Intelligent Agents and Scheduling Systems, Knowledge Discovery in 
Data and Spatial Reasoning and Image Recognition. 

This year's prize for the best refereed technical paper was won by a paper entitled 
Extracting Finite Structure from Infinite Language by T. McQueen, A. A. Hopgood, 
T. J. Allen and J. A. Tepper (School of Computing & Informatics, Nottingham Trent 
University, UK). SGAI gratefully acknowledges the long-term sponsorship of 
Hewlett-Packard Laboratories (Bristol) for this prize, which goes back to the 1980s. 

This is the twenty-first volume in the Research and Development series. The 
Application Stream papers are published as a companion volume under the title 
Applications and Innovations in Intelligent Systems XII. 

On behalf of the conference organising committee I should like to thank all those who 
contributed to the organisation of this year's technical programme, in particular the 
programme committee members, the executive programme committee and our 
administrators Linsay Turbert and Collette Jackson. 

Max Bramer 
Technical Programme Chair, AI-2004 
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Abstract 

This paper presents a novel connectionist memory-rule based model 
capable of learning the finite-state properties of an input language 
fi-om a set of positive examples. The model is based upon an 
unsupervised recurrent self-organizing map [1] with laterally 
interconnected neurons. A derivation of functional-equivalence theory 
[2] is used that allows the model to exploit similarities between the 
future context of previously memorized sequences and the future 
context of the current input sequence. This bottom-up learning 
algorithm binds fimctionally-related neurons together to form states. 
Results show that the model is able to leam the Reber grammar [3] 
perfectly fi-om a randomly generated training set and to generalize to 
sequences beyond the length of those found in the training set. 

1. Introduction 
Since its inception, language acquisition has been one of the core problems in 
artificial intelligence. The ability to communicate through spoken or written 
language is considered by many philosophers to be the hallmark of human 
intelligence. Researchers have endeavoured to explain this human propensity for 
language in order both to develop a deeper understanding of cognition and also to 
produce a model of language itself The quest for an automated language 
acquisition model is thus the ultimate aim for many researchers [4]. Currently, the 
abilities of many natural language processing systems, such as parsers and 
information extraction systems, are limited by a prerequisite need for an incalculable 
amount of manually derived language and domain-specific knowledge. The 
development of a model that could automatically acquire and represent language 
would revolutionize the field of artificial intelligence, impacting on almost every 
area of computing fi*om Intemet search engines to speech-recognition systems. 

Language acquisition is considered by many to be a paradox. Researchers such as 
ChomslQr argue that the mput to which children are exposed is insufficient for them 
to determine the grammatical rules of the language. Ilus argument for the poverty 
of stimulus [5] is based on Gold's theorem [6], which proves that most classes of 



languages cannot be learnt using only positive evidence, because of the effect of 
overgeneralization. Gold's analysis and proof regarding the unfeasibility of language 
acquisition thus forms a central conceptual pillar of modem linguistics. However, 
less formal approaches have questioned the treatment of language identification as a 
deterministic problem m which any solution must involve a guarantee of no future 
ETCH'S. Such approaches to the problem of language acquisition [7] show that 
certain classes of language can be learnt using only positive examples if language 
identification involves a stochastic probability of success. 

Language acquisition, as with all aspects of natural language processing, 
traditionally mvolves hard-coded symbolic approaches. Such top-down approaches 
to cognition attempt to work backwards fi-om formal linguistic structure towards 
human processing mechanisms. However, recent advances in cognitive modelling 
have led to the birth of connectionism, a discipline that uses biologically inspired 
models that are capable of leammg by example. In contrast to traditional symbolic 
approaches, connectionism uses a bottom-up approach to cognition that attempts to 
solve human-like problems using biologically inspired networks of interconnected 
neurons. Connectionist models learn by exploiting statistical relationships in their 
input data, potentially allowing them to discover the underlying rules for a problem. 
This ability to learn the rules, as opposed to learning via rote memorization, allows 
connectionist models to generalize their learnt behaviour to unseen exemplars. 
Connectionist models of language acquisition pose a direct challenge to traditional 
nativist perspectives based on Gold's theorem [6] because they attempt to learn 
language using only positive examples. 

2. Connectionism and Determinacy 
Since the early nineties, connectionist models such as the simple recurrent network 
(SRN) [8] have been applied to the language acquisition problem in the form of 
grammar induction. This involves learning simple approximations of natural 
language, such as regular and context-fi'ee grammars. These experiments have met 
with some success [6, 7], suggestmg that dynamic recurrent networks (DRNs) can 
learn to emulate finite-state automata. However, detailed analysis of models trained 
on these tasks show that a number of fiindamental problems exist that may derive 
fi-om using a model with a continuous state-space to approxhnate a discrete 
problem. 

While DRNs are capable of learning simple formal languages, they are renowned for 
their instability when processing long sequences that were not part of their training 
set [8, 9]. As detailed by Kolen [10], a DRN is capable of partitioning its state space 
into regions approximating the states in a grammar. However, sensitivity to initial 
conditions means that each transition between regions of state space will result m a 
slightly different trajectory. This causes instability when traversing state trajectories 



that were not seen during training. This is because slight discrepancies in the 
trajectories will be compounded with each transition until they exceed the locus of 
the original attractor, resulting in a transition to an erroneous region of state space. 
Such behavior is characteristic of continuous state-space DRNs and can be seen as 
both a power and a weakness of this class of model. While this representational 
power enables the model to surpass deterministic finite automata and emulate non-
deterministic systems, it proves to be a significant disadvantage when attempting to 
emulate the deterministic behavior fundamental to deterministic finite state automata 
(DFA). 

Attempts have been made to produce discrete state-space DRNs by using a step-
function for the hidden layer neurons [9]. However, while this technique eliminates 
the instability problem, the use of a non-diflferentiable function means that the 
weight-update algorithm's sigmoid function can only approximate the error signal. 
This weakens the power of the learning algorithm, which increases training times 
and may cause the model to learn an incorrect representation of the DFA. 

The instability of DRNs when generalizing to long sequences that are beyond their 
training sets is a limitation that is probably endemic to most continuous state-space 
connectionist models. However, when finite-state extraction techniques [9] are 
applied to the weight space of a trained DRN, it has been shown that once extracted 
into symbolic form, the representations learnt by the DRN can perfectly emulate the 
original DFA, even beyond the training set. Thus, while discrete symbolic models 
may be unable to adequately model the learning process itself, they are better suited 
to representing the learnt DFA than the original continuous state-space 
connectionist model. 

While supervised DRNs such as the SRN dominate the literature on connectionist 
temporal sequence processing, they are not the only class of recurrent network. 
Unsupervised models, typically based on the self-organizing map (SOM) [11], have 
also been used in certain areas of temporal sequence processing [12]. Due to then* 
localist nature, many unsupervised models operate using a discrete state-space and 
are therefore not subject to the same kind of instabilities characteristic of supervised 
continuous state-space DRNs. The aim of this research is therefore to develop an 
unsupervised discrete state-space recurrent connectionist model that can induce the 
finite-state properties of language from a set of positive examples. 

3. A Memory-Rule Based Theory of Linguistics 
Many leading linguists, such as Pinker [13] and Marcus [14], have theorized that 
language acquisition, as well as other aspects of cognition, can be explamed using a 
memory-rule based model. This theory proposes that cognition uses two separate 
mechanisms that work together to form memory. Such a dual-mechanism approach 
is supported by neuro-biological research, which suggests that human memory 



operates using a declarative fact-based system and a procedural skill-based system 
[15]. In this theory, rote memorization is used to learn individual exemplars, while a 
rule-based mechanism operates to override the original memorizations in order to 
produce behaviour specific to a category. This memory-rule theory of cognition is 
commonly explained in the context of the acquisition of the English past tense [13]. 
Accounting for children's over-regularizations during the process of learning 
regular and irregular verbs constitutes a well-known battlefield for competing 
linguistic theories. Both Pinker [13] and Marcus [14] propose that irregular verbs 
are learnt via rote-memorization, while regular verbs are produced by a rule. The 
evidence for this rule-based behaviour is cited as the over-regularization errors 
produced when children incorrectly apply the past tense rule to irregular verbs (e.g. 
ni/wierf instead of ran). 

The model presented in this paper is a connectionist implementation of a memory-
rule based system that extracts the finite-state properties of an input language fi-om 
a set of positive example sequences. The model's bottom-up learning algorithm uses 
fimctional-equivalence theory [2] to construct discrete-symbolic representations of 
grammatical states (Figure 1). 

4. STORM (Spatio Temporal Self-Organizing 
Recurrent Map) 
STORM is a recurrent SOM [1] that acts as a temporal associative memory, initially 
producing a localist-based memorization of input sequences. The model's rule-
based mechanism then exploits similarities between the fiiture context of memorized 
sequences and the fiiture context of input sequences. These similarities are used to 
construct fimctional-relationships, which are equivalent to states in the grammar. 
The next two sections will detail the model's memorization and rule-based 
mechanisms separately. 

4.1 STORM'S Memorization Mechanism 
STORM maintains much of the functionality of the original SOM [11], including the 
winning-neuron selection algorithm (Equation 1), weight-update algorithm 
(Equation 2) and neighbourhood function (Equation 3). The model's localist 
architecture is used to represent each element of the input sequence using a separate 
neuron. In this respect, STORM exploits the SOM's abilities as a vector 
quantization system rather than as a topological map. Equation 1 shows that for 
every input to the model (X), the neuron whose weight vector has the lowest 
distance measure from the input vector is selected as the winning neuron (Y). The 
symbol d denotes the distance between the winning neuron and the neuron in 



question. As shown in fig 1, each input vector consists of the current input symbol 
and a context vector, representing the location of the previous winning neuron. 

yj =argminy(rf(x,W;)) (1) 

The weight update algorithm (equation 2) is then applied to bring the wimung 
neuron's weight vector (W), along with the weight vectors of neighbouring 
neurons, closer to the input vector (X) (equation 2). The rate of weight change is 
controlled by the learning rate a, which is linearly decreased through training. 

Wyit + 1) = Wy(t) + ahijix(t) - Wyit)) (2) 

The symbol h in equation 2 denotes the neighbourhood function (equation 3). This 
standard Gaussian function is used to update the weights of neighbouring neurons in 
proportion to their distance fi-om the winning neuron. This weight update function, 
in conjunction with the neighbourhood function, has the effect of mapping similar 
inputs to similar locations on the map and also minimizing weight sharing between 
similar inputs. The width of the kernel a is linearly decreased through training. 

^y=exd z3 
2o' 

(3) 

The model uses an orthogonal input vector to rqpres^it the ^ammar's toimnal 
symbols. Each of the seven terminal symbols are represented by setting the 
respective binary value to 1 and setting all the other values to 0 (table 1). 

Grammatical symbol 

B 

T 

P 

S 

X 

V 

E 

Orthogonal vector 1 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 1 0 0 

OOOOOIO 

0 0 0 0 0 0 1 

Table 1 - Ortbogonal vector representations for input symbols 
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Fig. 1 - Diagram showing conceptual overview of model. The left 
side shows STORM's representation of a FSM, while the right 
side of the diagram shows the FSM for the Reber grammar. 

As shown in Figures 1 and 2, STORM extends Kohonen's SOM [11] into the 
temporal domain by using recurrent connections. The recurrency mechanism feeds 
back a representation of the previous winning neuron's location on the map using a 
10-bit Gray-code vector. By separately representing the column and row of the 
previous winning neuron in the context vector, the recurrency mechanism creates a 
2D representation of the neuron's location. Further details of the recurrency 
mechanism, along with its advantages, are provided in [1]. This method of explicitly 
representing the previous winner's location as part of the input vector has the effect 
of selecting the winning neuron based not just on the current input, but also 
indirectly on all previous inputs in the sequence. The advantage of this method of 
recurrency is that it is more eflScient than alternative methods (e.g. [16]), because 
only information pertaining to the previous winning neuron's location is fed back. 
Secondly, the amount of information fed back isn't directly related to the size of the 
map (i.e. recursive SOM [16] feeds back a representation of each neuron's 
activation). This allows the model to scale up to larger problems without 
exponentially increasing computational complexity. 
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Fig. 2 - Diagram showing STORM'S input representation. The model's 
weight vector consists of a 7-bit orthogonal symbol vector representing 
the terminal symbol in the grammar, along with a 10-bit Gray code 
context vector, representing the column and row of the previous winning 
neuron. 

4.2 STORM'S Rule-Based Construction Mechanism 
The model's location-based recurrency representation and localist architecture 
provide it with a very important ability. Unlike using conventional artificial neural 
networks, the sequences learnt by STORM can be extracted in reverse order. This 
makes it possible to start with the last element in an input sequence and work 
backwards to find the winning neurons corresponding to the previous inputs in the 
sequence. STORM uses this ability, while processmg input sequences, to find any 
existing pre-leamt sequences that end with the same elements as the current input 
sequence. For example, Figure 3 shows that the winning neuron for the symbol'T' 
in sequence 1 has the same fixture context ('XSE') as the winnmg neuron fi^r the 
first symbol *S' in sequence 2. 

Functional-equivalent theory [2] asserts that two states are said to be equivalent if, 
for all fiiture inputs, their outputs are identical. STORM uses the inverse of this 
theory to construct states in a bottom-up approach to granunar acquisition. By 
identifying neurons with consistently identical fiiture inputs, the model's temporal 
Hebbian learning mechanism (THL) mechanism binds together potential states via 
lateral connections. By strengthening the lateral connections between neurons that 
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have the same future context, this THL mechanism constructs functional-
relationships between the winning neuron for the current input and the winning 
neuron for a memorized input (referred to as the alternative winner) whose future-
context matches that of the current input sequence (Figure 4). In order to prevent 
lateral weight values from becoming too high, a negative THL value is applied every 
time a winning neuron is selected. This has the effect of controlling lateral weight 
growth and also breaking down old functional relationships that are no longer used. 

l . B T X S E 

2 . B T S X S E 

Fig. 3 - Diagram showing the memorized winning neurons for two 
sequences that end with the same sub-sequence ^XS£' 

Once states have formed, they override the recurrency mechanism, forcing the 
model to use a smgle representation for the fiiture inputs in the sequence rather than 
the original two representations (Figure 4). The advantage of forming states in this 
manner is that it provides the model with a powerful ability to generalize beyond its 
original memorizations. The model's THL mechanism conforms to the SOM's 
winner-take-all philosophy by selecting the alternative winner as the neuron whose 
future-context is the best match to that of the current input sequence. Given that 
tracing back through the future-context may identify multiple alternative winners, 
the criteria of best matching winner classifies the strongest sequence stored in the 
model as the winner. Furthermore, THL is only used to enhance the functional 
relationship between the winner and the alternative winner, if the future-context for 
the alternative winner is stronger than that of the winner itself Thus, the model has 
a preference for always using the dominant sequence and it will use the THL 
mechanism to re-wire its internal pathways m order to use any dominant sequence. 
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Constmcting the lateral connections between fiinctionally-related neurons is 
equivalent to identifying states in a grammar. Once the strength of these lateral 
connections exceeds a certain threshold they override the standard recurrency 
mechanism, affecting the representation of the previous winning neuron that is fed 
back (Figure 4). Instead of feedmg back a representation of the previous winning 
neuron, the lateral connections may force the model to feed back a representation of 
the functionally-related neuron. The consequence of this is that the rest of the 
sequence is processed as if the fiinctionally-related neuron had been selected rather 
than the actual winner. For example, Figure 4 shows that when the first *S' symbol 
in sequence 2 is presented to STORM, its winning neuron is functionally linked to 
the winner for the 'T' symbol from sequence 1. As the latter winning neuron is the 
dominant winner for this state, its location is fed back as context for the next 
symbol in sequence 2. 

l . B T X S E 

2. B T S X S E 

0 Qi^P 
(^•"0 O v!) 

Fig. 4 ~ Functional override in winning-neuron selection algorithm. The 
functional relationship (shown in grey) between the third symbol ^S' in the 
second sequence and the second symbol ^T' in the first sequence, forces the 
model to process the remaining elements in the second sequence (namely 
^XS£̂ ) using the same winning neurons as for the first sequence. 

While a state is formed based on similarities in future context, there may be cases 
where the future context, for the respective mput symbols that make up the state, is 
dissimilar (Table 2), However, once a state been constructed, the future context in 
subsequent sequences containing that state will be processed in an identical manner, 
regardless of the future context itself For example, when trained on the sequences 
in Table 2, the *T' symbol fi-om sequence 1 will form a state with the first 'S' 
symbol fi-om sequence 2. This will result in both sequences 1 and 2 sharing the same 
winning neurons for their final three inputs (X S E). STORM will then be able to 
generalize this learnt state to its memorization of sequence 3, resulting in the same 
winning neurons being activated for the 'X X V V E' in test sequence 4 as in 
training sequence 3. 
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# 

1 

2 

3 

Training sequence 

B T X S E 

B T S X S E 

B T X X V V E 

Test sequence 

B T S X X V V E 

Table 2 - Geaeralizjitioii example. When trained on the first three 
sequences, STORM is able to construct a state between the ^T' in 
sequence 1 and the fint ^S' in sequence 2. B]r generalizing this learnt 
state to its memorization of sequence 3, STORM is able to correctly 
process sequence 4 by activating the same winning neurons for the 
subsequence X̂ X V V E' as would be activated in sequence 3. 

5. Experiments 
In ord&t: to quantify STC^M's grammar inductioa abilities, die model was applied 
to the task of predicting the neTct symbols in a sequence from the Reber grammar 
(Figure 1). Siniilar prediction tasks have been used in [8] and [3] to test the SRN's 
grammar-induction abilities. The task involved presetting the model with symbols 
from a randomly generated sequence that was not encountered during training. The 
model then had to predict the n̂ >ct possible ^nnbols in the sequence ^ t could 
follow each symbol according to the rules of the grammar. STORM's predictions 
are made by utilizing the locational representational values used in its context 
vector. As fiirther explained in [1], the winning neuron for an input is the neuron 
whose weight vector best matches both the input symbol and the context 
representation of the last winning neuron's location. STORM predicts the next 
symbol by finding the neuron whose context representation best matches that of the 
current winning neuron (i.e. the symbol part of the weight vector is ignored m the 
Euclidean distance calculation). This forces the model to find the natron that is 
most likely to be the next winner. The symbol part of this neuron's weight vector 
provides the next predicted symbol itself This process is then repeated to find the 
second-best matching winner and the corresponding second predicted next symbol. 

In accordance with established training criteria for artificial neural network models 
[17], the experiments were conducted on randomly generated separate training and 
test sets (i.e. sequences were unique with respect to all other sequences in both 
sets). Such an approach ensures that the nKKtel's performance, assessed from the 
test set, is a true measure of its generalization abilities because the test sequences 
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were not aticount^ed during traimng. The exp^imait was run tati times using 
models with randomly generated initial weights, in order to ensure that the starting 
state did not adversely influence the resuhs. 

The recursive dq)th parameter, as listed in Table 3, d^iotes the maxinrnm numb^ 
of sequential recursive transversals a sentence may contain (i.e. how many tunes it 
can go around the same loop). In order to ensure that the training and test 
sequences are representative of the specified recursive depth, the sets are divided 
equally between sequences of each recursive depth (i.e. a set of six sequences with a 
recursive dq>th (RD) of 2 will contain two sequ^ices with an RD of 0, two 
sequences with an RD of 1 and two sequences with an RD of 2). 

Parameter 

Number of epochs 

Learning rate a (linearly decreasing) 

Initial neighbourhood o (linearly decreasing) 

Positive / n^ative t^nporal Hebbian learning rate 

Number of training sequences 

Number of test sequences 

Maximum recursive depth (RD) of sequences 

Model size 

Value 

1000 

0.1 

5 

0.5/0.005 

21 

7 

6 

10 X 10 

Table 3 - Experimental parameters for the first experiment 

As shown in figure 5, six models learnt the grammar with over 89% accuracy during 
training and three of them became perfect grammar recognizers. However, this 
mim^^ fdl by the end of trmning, with only two p^ect models and an additional 
two models with over 90% performance accuracy. This equates to an average post-
training performance of 71%. While less than half the models successfully learnt the 
grammar, it is worth noting that tlus is ^gnificantly better than for SRNs where 
Sharkey [18] showed that only two out of 90 SRNs became finite-state grammar 
recognisers ma »milar experiment using the Reber^ammar. 

(hie of the proposed advantages of a discrete state-space model (png^ 3), is its 
ability to generalize to sequences longer than those encoimtered during training 
without the instabilities characteristic of standard DRN modeb. In order to test this 
proposition, a perfect finite-state recognizer (i.e. a model that scored 100% 
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pFedicti(»i accuntcy) from the first experun^it (figure S) was tested on a fiuther 
three test sets. These sets contained sequences with recursive depths of 8,10 and 12 
and should constitute a mudi harder problem for any modd trained only on 
sequences with a recurave depth of 6. These models that achieved 100% 
performance accuracy in the ori^nal expoiments also achieved 100% accuracy on 
tnuning sets with hi^ier recumve dep^. TUs proves that these models act as 
perfect grammar recognizers that are capable of generalizing to sequences of 
potentially any length. 

100 

I 80 
3 70 
i 60 
c 50 
I 40 
^ 30 

20 
10 
0 

I r 
2 3 4 5 6 7 8 9 10 

Test number 

• Highest prediciton accuracy during training 
B Prediction accuracy after training 

Fig 5 - Results from ten modeb trained on randomly generated separate 
trainine and test sets. 

6. Conclusions and Future Work 
We have preseitfed a novel cotmectiomst memory-rule based model Gî )at4e of 
inducing the finite-state properties of an input language fi-om a set of positive 
example sequences. In contrast with the majority of supervised connectionist 
models in the literature, STORM is based on an unsupervised recurrent SOM [1] 
and operates using a discrete state-space. 

The model has been successfiilly applied to the tBsk of learning the Rd)^ grammar 
by predicting the next symbols in a set of randomly generated sequences. The 
experiments have shown that over half the modds trained are capable of learning a 
good approxunation of the grammar (over 89%) during the training process. 
However, by the end of trainings only a fifth of the models were capable of 
operating as perfect grammar recognizers. This suggests that the model is unstable 
and that partial or optimal solutions reached during traming may be lost by the end 
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of the training process. Despite this instability, a comparison between STORM and 
the SRN, when applied to a similar problem [3], shows that STORM is capable of 
learning the grammar perfectly much more often than its counterpart. Furthermore, 
experiments show that STORM's discrete state-space allow it to generalize its 
grammar recognition abilities to sequences far beyond the length of those 
encountered in the training set, without the instabilities experienced in continuous 
state-space DRNs. 

Future work will initially involve analyzing the model to find where it fails. Once the 
model's abilities have been fully explored, its stability will be improved to increase 
the number of models that successfully become perfect grammar recognizers. 
STORM will then be enhanced to allow it to process more advanced grammars. 
Given that regular grammars are insufficient for rq)resenting natural language [19], 
the model must be extended to learn at least context-free languages if it is to be 
applied to real-world problems. However, despite such future requirements 
STORM'S current ability to explicitly learn the rules of a regular grammar 
distinguish its potential as a language acquisition model. 
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Abstract 

Some types of animals exploit the external environment to support 
their cognitive processes, in the sense of patterns created in the 
environment that function as external mental states and serve as an 
extension to their mind. In the case of social animals the creation and 
exploitation of such patterns can be shared, thus obtaining a form of 
shared mind or collective intelligence. This paper explores this 
shared extended mind principle for social animals in more detail. The 
focus is on the notion of representational content in such cases. 
Proposals are put forward and formalised to define collective 
representational content for such shared external mental states. A 
case study in social ant behaviour in which shared extended mind 
plays an important role is used as illustration. For this case 
simulations are described, representation relations are specified and 
are verified against the simulated traces. 

1. Introduction 
Behaviour is often not only supported by internal mental structures and cognitive 
processes, but also by processes based on patterns created in the external 
environment that serve as external mental structures; cf [5, 6, 7 & 8]. Examples of 
this pattern of behaviour are the use of 'to do lists' and *lists of desiderata'. Having 
written these down externally (e.g., on paper, in your diary, in your organizer or 
computer) makes it unnecessary to have an internal memory about all the items. 
Thus internal mental processing can be kept less complex. Other examples of the 
use of extended mind are doing mathematics or arithmetic, where external 
(symbolic, graphical, material) representations are used; e.g., [4 & 12]. In [16] a 
collection of papers can be found based on presentations at the conference The 
Extended Mind: The Very Idea' that took place in 2001. Clark [6] points at the 
roles played by both internal and external representations in describing cognitive 
processes: 'Internal representations will, almost certainly, feature in this story. But so will external 

representations, ...'[6, p. 134]. From another, developmental angle, also Griffiths and 
Stotz [9] endorse the importance of using both internal and external 
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representations; they speak of *a larger representational environment which extends beyond the 

skin', and claim that 'culture makes humans as much as the reverse' [9, p. 45]. 

Allowing mental states, which are in the external world and thus accessible for any 
agent around, opens the possibility that other agents also start to use them. Indeed, 
not only in the individual, single agent case, but also in the social, multi-agent case 
the extended mind principle can be observed, e.g., one individual creating a pattern 
in the environment, and one or more other individuals taking this pattern into 
account in their behaviour. For the human case, examples can be found everywhere, 
varying from roads, and traffic signs to books or other media, and to many other 
kinds of cultural achievements. Also in [17] it is claimed that part of the total team 
knowledge in distributed tasks (such as air traffic control) comprises external 
memory in the form of artefacts. In this multi-agent case the extended mind 
principle serves as a way to build a form of social or collective intelligence, that 
goes beyond (and may even not require) social intelligence based on dkect one-to-
one communication. 

Especially in the case of social animals external mental states created by one 
individual can be exploited by another individual, or, more general, the creation 
and maintenance, as well as the exploitation of external mental states can be 
activities in which a number of individuals participate. For example, presenting 
slides on a paper with multiple authors to an audience. In such cases the external 
mental states cross, and in a sense break up, the borders between the individuals 
and become shared extended mental states. An interesting and currently often 
studied example of collective intelligence is the intelligence shown by an ant 
colony [2]. Indeed, in this case the external world is exploited as an extended mind 
by using pheromones. While they walk, ants drop pheromones on the ground. The 
same or other ants sense these pheromones and follow the route in the direction of 
the strongest sensing. Pheromones are not persistent for long times; therefore such 
routes can vary over time. 

In [3] the shared extended mind principle is worked out in more detail. The paper 
focusses on formal analysis and formalisation of the dynamic properties of the 
processes involved, both at the local level (the basic mechanisms) and the global 
level (the emerging properties of the whole), and their relationships. A case study 
in social ant behaviour in which shared extended mind plays an important role is 
used as illustration. 

In the current paper, as an extension to [3], the notion of representational content is 
analysed for mental processes based on the shared extended mind principle. The 
analysis of notions of representational content of internal mental state properties is 
well-known in the literature on Cognitive Science and Philosophy of Mind. In this 
literature a relevant internal mental state property m is taken and a representation 
relation is identified that indicates in which way m relates to properties in the 
external world or the agent's interaction with the external world; cf. [1, 10 & 15, 
pp. 184-210]. For the case of extended mind an extension of the analysis of notions 
of representational content to external state properties is needed. Moreover, for the 
case of external mental state properties that are shared, a notion of collective 
representational content is needed (in contrast to a notion of representational 
content for a single agent). 
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Thus, by addressing the ants example and its modelling from an extended mind 
perspective, a number of challenging new issues on cognitive modelling and 
representational content are encountered: 

• How to define representational content for an external mental state property 

• How to handle decay of a mental state property 

• How can joint creation of a shared mental state property be modelled 

• What is an appropriate notion of collective representational content of a 
shared external mental state property 

• How can representational content be defined in a case where a behavioural 
choice depends on a number of mental state properties 

In this paper these questions are addressed. To this end the shared extended mind 
principle is analysed in more detail, and a formalisation is provided of its dynamics. 
It is discussed in particular how a notion of collective representational content for a 
shared external mental state property can be formulated. In the literature notions of 
representational content are usually restricted to internal mental states of one 
individual. The notion of collective representational content developed here 
extends this in two manners: (1) for external instead of internal mental states, and 
(2) for groups of individuals instead of single individuals. It is reported how in a 
case study of social behaviour based on shared extended mind (a simple ant colony) 
the proposals put forward have been evaluated. The analysis of this case study 
comprises multi-agent simulation based on identified local dynamic properties, 
identification of dynamic properties that describe collective representational 
content of shared extended mind states, and verification of these dynamic 
properties. 

2. State Properties and Dynamic Properties 
Dynamics will be described in the next section as evolution of states over time. The 
notion of state as used here is characterised on the basis of an ontology defining a 
set of physical and/or mental (state) properties that do or do not hold at a certain 
point in time. For example, the internal state property 'the agent A has pain', or the 
external world state property 'the environmental temperature is 7° C , may be 
expressed in terms of different ontologies. To formalise state property descriptions, 
an ontology is specified as a finite set of sorts, constants within these sorts, and 
relations and functions over these sorts. The example properties mentioned above 
then can be defined by nuUary predicates (or proposition symbols) such as pain, or 
by using n-ary predicates (with n>l) like has_temperature(environment, 7). For a given 
ontology Ont, the propositional language signature consisting of all state ground 
atoms (or atomic state properties) based on Ont is denoted by APROP(Ont). The state 
properties based on a certain ontology Ont are formalised by the propositions that 
can be made (using conjunction, negation, disjunction, implication) from the 
ground atoms. A state s is an indication of which atomic state properties are true 
and which are false, i.e., a mapping S: APROP(Ont) -^ {true, false}. 
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To describe the internal and external dynamics of the agent, explicit reference is 
made to time. Dynamic properties can be formulated that relate a state at one point 
in time to a state at another point in time. A simple example is the following 
dynamic property specification for belief creation based on observation: 

'at any point in time tl if the agent observes at tl that it is raining, then there exists a point in time t2 
after tl such that at t2 the agent believes that it is raining'. 

To express such dynamic properties, and other, more sophisticated ones, the 
temporal trace language TTL is used; cf. [11]. To express dynamic properties in a 
precise manner a language is used in which explicit references can be made to time 
points and traces. Here trace or trajectory over an ontology Ont is a time-indexed 
sequence of states over Ont. The sorted predicate logic temporal trace language TTL 
is built on atoms referring to, e.g., traces, time and state properties. For example, 
'in the output state of A in trace y at time t property p holds' is formalised by state(Y, t. 
output(A)) 1= p. Here |= is a predicate symbol in the language, usually used in infix 
notation, which is comparable to the Holds-predicate in situation calculus. Dynamic 
properties are expressed by temporal statements built using the usual logical 
connectives and quantification (for example, over traces, time and state properties). 
For example the following dynamic property is expressed: 

'in any trace y, if at any point in time tl the agent A observes that it is raining, then there exists a point 
in time t2 after tl such that at t2 in the trace the agent A believes that it is raining'. 

In formalised form: 

Vt1 [ state(Y, t1, Input(A)) |= agent_observes_itsraining => 
3t2 > t1 state(Y, t2, intemal(A)) |= beliefjtsraining ] 

Language abstractions by introducing new (definable) predicates for complex 
expressions are possible and supported. 

A simpler temporal language has been used to specify simulation models. This 
language (the leads to language) offers the possibility to model direct temporal 
dependencies between two state properties in successive states. This executable 
format is defined as follows. Let a and p be state properties of the form 
'conjunction of atom̂ s or negations of atoms', and e, f, g, h non-negative real 
numbers. In the leads to language a -^^ ^ g ^ p, means: 

If state property a holds for a certain time interval with duration g, 
then after some delay (between e andf) state property p will hold 
for a certain time interval of length h. 

For a precise definition of the leads to format in terms of the language TTL, see [14]. 
A specification of dynamic properties in leads to format has as advantages that it is 
executable and that it can often easily be depicted graphically. 

3. Representation for Shared Extended Mind 
Originally, the different types of approaches to representational content that have 
been put forward in the literature on Cognitive Science and Philosophy of Mind, [1, 
13 & 15, pp. 191-193, 200-202] are all applicable to internal (mental) states. They 
have in common that the occurrence of the internal (mental) state property m at a 


