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Preface

Traditionally, computer vision has focused on the visible band for a variety of
reasons. The visible band sensors are cheap and easily available. They are also
sensitive in the same electromagnetic band as the human eye, which makes
the produced data more interesting from the psychophysiology point of view.
In fact, computer vision was pre-occupied for a long time with the problem of
understanding and imitating the human visual system. Recently, this obses-
sion subsided and computer vision research focused more on solving particular
application problems with or without the help of the human visual paradigm.
A case in point is the significant progress achieved in object tracking.

It so happens that many imaging applications cannot be addressed in the
visible band. For example, visible sensors cannot see in the dark; thus, they
are not very useful in military applications. Visible radiation cannot penetrate
the human body and, therefore, cannot be a viable medical imaging modality.
Other electromagnetic bands and sensor modalities have been identified and
developed over the years that can solve all these problems, which are beyond
the reach of the visible spectrum. Initially, it was primarily phenomenological
and sensory work that was taking place. Later came algorithmic work, and
with that computer vision beyond the visible spectrum was born.

In this book, we explore the state-of-the-art in Computer Vision Beyond
the Visible Spectrum (CVBVS) research. The book is composed of nine chap-
ters which are organized around three application axes:

1. Military applications with an emphasis on object detection, tracking, and
recognition.

2. Biometric applications with an emphasis on face recognition.
3. Medical applications with an emphasis on image analysis and visualiza-

tion.

Although the chapters describe research, they are not written as typical re-
search papers. They have a tutorial flavor appropriate for a book.

The book opens with the military applications since they represent the
birthplace of CVBVS. All the major modalities used in military applications
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are represented in the first five chapters. These include SAR (Synthetic Aper-
ture Radar), laser radar, hyperspectral, and infrared. The first five chapters
also address fundamental issues with regard to object detection, tracking, and
recognition, sometimes in more than one modality. This allows comparative
evaluation of these important computational imaging questions across the
electromagnetic spectrum.

In Chapter 1, Boshra and Bhanu et al. describe a theoretical framework for
predicting the performance of object (target) recognition methods. The issue
of identifying military targets in imagery is of great importance in military
affairs. For years, target recognition was based purely on heuristics, and as a
result performance was brittle. Boshra and Bhanu’s work is representative of
a more rigorous methodological approach, which promises to transform target
recognition from art to science.

In Chapter 2, Bhanu and Jones unveil specific methods for improving
the performance of an SAR target recognition system. SAR is probably the
most successful imaging modality for military applications, because of its all-
weather capability. Bhanu and Jones’ methods conform to the model-based
framework and involve incorporation of additional features, exploitation of a
priori knowledge, and integration of multiple recognizers.

In Chapter 3, Arnold et al. present target recognition methods in a differ-
ent modality, namely, three-dimensional laser radar. Three-dimensional laser
radars measure the geometric shape of targets. The main approach described
in this chapter is quite appealing because it bypasses detection and segmen-
tation processes.

In Chapter 4, Kwon et al. deal with target recognition in the context of
hyperspectral imagery. The basic premise of hyperspectral target recognition
is that the spectral signatures of target materials are measurably different
than background materials. Therefore, it is assumed that each relevant mate-
rial, characterized by its own distinctive spectral reflectance or emission, can
be identified among a group of materials based on spectral analysis of the
hyperspectral data. Kwon et al. use independent component analysis (ICA)
to generate a target spectral template. ICA is a method well-suited to the
modular character of hyperspectral imagery.

In Chapter 5, Vaswani et al. close the sequence of military application pa-
pers by presenting a method for object detection and compression in infrared
imagery. The proposed solution is guided by the limitations of the target plat-
form, which is an infrared camera with on-board chip. The object detection
method is computationally efficient, to deal with the limited processing power
of the on-board chip. It is also paired with a compression scheme to facilitate
data transmission.

Chapter 6 deals with biometrics and signals a transition from the military
to civilian security applications. Wolff et al. present a face recognition ap-
proach based on infrared imaging. Infrared has advantages over visible imaging
for face recognition, especially in the presence of variable lighting conditions.
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Wolff et al. provide quantitative support for this argument by unveiling a
system that performs comparative evaluation.

Chapter 7 opens the medical applications part of the book. It refers to car-
diovascular image analysis of magnetic resonance imagery (MRI). While SAR
is probably the most successful modality for military applications, one could
make the case that MRI is the most successful modality for medical applica-
tions. Initially, MRI was treated much like x-rays. A radiologist, without any
machine assistance, was interpreting the raw imagery. Increasingly, however,
computer vision methods aid in this interpretation. In this chapter, Sonka et
al. present techniques for 3D segmentation and quantitative assessment of left
and right cardiac ventricles, arterial and venous trees, and arterial plaques.

In Chapter 8, Fenster et al. present segmentation and visualization tech-
niques in another very important medical imaging modality, that is, ultra-
sound. Specifically, the authors describe methods to reconstruct ultrasound
information into 3D images to facilitate interactive viewing. They also describe
automated and semi-automated segmentation methods to quantify organ and
pathology volume for monitoring disease.

In Chapter 9, Berry et al. introduce some very interesting image analysis
work on a novel medical imaging modality, namely, terahertz pulsed imag-
ing. Vis-a-vis the more established MRI and ultrasound modalities, terahertz
pulsed imaging is the “new kid on the block”. Berry et al. propose Fourier
transforms and wavelets to analyze spectroscopic information of materials.
They actually demonstrate that these methods perform as well as traditional
analysis methods for material properties and predict a number of biomedical
applications that stand to benefit form this technology.

The book can be used for instruction in graduate seminars or as a reference
for the independent researcher. Although CVBVS is a broad and fast moving
field, the balanced selection of key theoretical and practical issues represented
in the chapters of the book will maintain their relevance for some time. It is
our sincere hope that the book will serve as a springboard for the individual
researcher who is interested in CVBVS research.

A number of people have contributed in our effort and we are deeply
grateful to all of them. These certainly include the authors of the individual
chapters and the reviewers who patiently went through three review cycles.
We are especially grateful to Pradeep Buddharaju who handled most of the
last minute editing and thanks to whom the book assumed its finished form.

Houston, Texas Ioannis Pavlidis
Riverside, California Bir Bhanu
USA
January 2004
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Chapter 1

A Theoretical Framework for Predicting
Performance of Object Recognition

Michael Boshra1 and Bir Bhanu2

1 Center for Research in Intelligent Systems, University of California, Riverside,
California 92521, michael@cris.ucr.edu

2 Center for Research in Intelligent Systems, University of California, Riverside,
California 92521, bhanu@cris.ucr.edu

Summary. The ability to predict the fundamental performance of model-based ob-
ject recognition is essential for transforming the object recognition field from an art
to a science, and to speed up the design process for recognition systems. In this
chapter, we address the performance–prediction problem in the context of a com-
mon recognition task, where both model objects and scene data are represented by
locations of 2D point features. The criterion used for estimating matching quality
is based on the number of consistent data/model feature pairs, which we refer to
as “votes.” We present a theoretical framework for prediction of lower and upper
bounds on the probability of correctly recognizing model objects from scene data.
The proposed framework considers data distortion factors such as uncertainty (noise
in feature locations), occlusion (missing features), and clutter (spurious features). In
addition, it considers structural similarity between model objects. The framework
consists of two stages. In the first stage, we calculate a measure of the structural
similarity between every pair of objects in the model set. This measure is a func-
tion of the relative transformation between the model objects. In the second stage,
the model similarity information is used along with statistical models of the data
distortion factors to determine bounds on the probability of correct recognition.
The proposed framework is compared with relevant research efforts. Its validity is
demonstrated using real synthetic aperture radar (SAR) data from the MSTAR
public domain, which are obtained under a variety of depression angles and object
configurations.

1.1 Introduction

Model-based object recognition has been an active area of research for over
two decades (e.g., see surveys [1, 2, 3, 4]). It is concerned with finding in-
stances of known model objects in scene data. This process involves extracting
features from the scene data, and comparing them with those of the model
objects using some matching criterion. Performance of the recognition pro-
cess depends on the amount of distortion in the data features. Data distortion
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2 Michael Boshra and Bir Bhanu

can be classified into three types: (1) uncertainty: noise in feature locations
and other feature attributes; (2) occlusion: missing features of data object
of interest; and (3) clutter: spurious data features which do not belong to
the data object of interest. In addition to data distortion, recognition perfor-
mance depends on the degree of structural similarity between model objects.
The often-overlooked similarity factor can have a profound impact on perfor-
mance. Intuitively, the difficulty of recognizing a specific object is proportional
to the degree of its similarity with the rest of the objects in the model set.

model objects

performance results

real test images

Object Recognition System

performance results

data-distortion models

synthetic test images

model objects

Image Synthesis

Module

Object Recognition System

(a) (b)

Figure 1.1. Empirical approaches for estimation of object recognition performance:
(a) using real data, (b) using synthetic data.

Performance of object recognition is typically estimated empirically. This
is done by passing a set of scene images containing known model objects to a
recognition system, and then analyzing the output of the system. The set of
scene images can be either real [5, 6, 7], or synthetic with artificial distortion
introduced to them [8, 9, 10]. Both scenarios are illustrated in Figures 1.1(a)
and 1.1(b), respectively. Empirical performance evaluation has a number of
limitations:

1. It does not provide an understanding of the relationship between object
recognition performance and the various data and model factors that af-
fect it. In other words, the empirical approach can provide an answer
to the question of what performance to expect, for a given set of model
objects and specific data distortion rates. However, it does not explain
why this is the expected performance. Such an understanding is critical
for designing better object recognition systems, as it can provide funda-
mental answers to questions such as: (a) When does performance break
down as a function of the amount of data distortion? (b) What are the
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performance limits when using a specific sensor? (c) Is a given feature-
selection scheme sufficient for achieving desired levels of performance? (d)
What is the largest size of a model set that can be accommodated without
significantly degrading performance? Fundamental understanding of the
relationship between performance and the factors affecting it is essential
for the advancement of the field of object recognition from an art to a
science.

2. The performance estimated empirically is dependent upon the actual im-
plementation of the object recognition system. This implementation can
be based on recognition approaches such as alignment [11, 12], hypothesis
accumulation [13, 14], or tree search [15, 16]. Note that the performance
obtained using these approaches can be different, even if they use simi-
lar matching criteria. For example, systems that use a vote accumulator
(Hough space) will generate different performance estimates depending
on the resolution of the accumulator. Another example, alignment-based
systems, achieve polynomial-time complexity by using a “looser” notion
of data/model feature consistency.

3. Empirical evaluation requires the presence of an actual object recognition
system. Obviously, this can considerably slow down the design process.

In this chapter, we address the performance–prediction problem in the
context of a typical object recognition task. It can be described as follows.
(1) Both model objects and scene data are represented by discretized loca-
tions of 2D point features. (2) A data object is assumed to be obtained by
applying a 2D transformation to the corresponding model object. Notice that
the space of possible 2D transformations is naturally discretized, since we are
dealing with discrete 2D point features. (3) The data/model matching qual-
ity is estimated using a vote-based criterion. In particular, the quality of a
given match hypothesis is estimated by counting the number of consistent
data/model feature pairs, which we refer to as “votes.”

We present a statistical method for formally predicting lower and upper
bounds on the probability of correct recognition (PCR) for the task outlined
above. The proposed method considers data distortion factors such as uncer-
tainty, occlusion, and clutter, in addition to model similarity. Integrating these
data and model factors in a single approach has been a challenging problem.
The performance predicted is fundamental in the sense that it is obtained
by analyzing the information provided by both the data and model features,
independent of the particular vote-based matching algorithm. A schematic di-
agram of the prediction method is shown in Figure 1.2. It can be contrasted
with the diagrams of the empirical approaches shown in Figure 1.1. The va-
lidity of the proposed method is demonstrated using real synthetic aperture
radar (SAR) data from the MSTAR public domain. This data set is obtained
under a variety of depression angles and object configurations.

The remainder of this chapter is organized as follows. The next section
reviews related research efforts, and highlights our contributions. Section 1.3



4 Michael Boshra and Bir Bhanu

performance results

Performance Prediction Method

data-distortion models model objects

Figure 1.2. Formal estimation of object recognition performance.

presents an overview of the proposed method. Sections 1.4 and 1.5 describe the
statistical modeling of the data distortion factors, and the object similarity,
respectively. Derivation of lower and upper bounds on PCR is presented in
Section 1.6. The validity of those bounds is demonstrated in Section 1.7, by
comparing actual PCR plots, as a function of data distortion, with predicted
lower and upper bounds. Finally, conclusions and directions for future research
are presented in Section 1.8.

1.2 Relevant Research

Several research efforts have addressed the problem of analyzing performance
of feature-based object recognition. Most of these efforts focus on the prob-
lem of discriminating objects from clutter. We present here a representative
sample of these efforts. Grimson and Huttenlocher [17] presented a statistical
method for estimating the probability distribution of the fraction of consis-
tent data/model feature pairs for an erroneous hypothesis. They derived such
a distribution using a statistical occupancy model (Bose–Einstein model),
assuming bounded feature uncertainty and uniform clutter models. This dis-
tribution was used to determine the minimum fraction of consistent feature
pairs required to achieve a desired probability of false alarm. Sarachik [18]
studied the problem of predicting the receiver operating characteristic (ROC)
curve for a specific recognition algorithm. The ROC curve described the re-
lationship between the probability of correct recognition and that of a false
alarm. The chosen algorithm used a weighted voting criterion based on Gaus-
sian feature uncertainty. A statistical analysis was presented to determine the
probability distributions of the weighted votes for both valid and invalid hy-
potheses, assuming uniform occlusion and clutter models. These distributions
were used along with the likelihood-ratio test to predict the ROC curve. Alter
and Grimson [8] used statistical knowledge about sources of data distortion
to design a recognition criterion, based on the likelihood-ratio test. The like-
lihoods of observed data-feature set, conditioned on hypothesis validity and
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invalidity, were calculated by assuming both bounded and Gaussian feature
uncertainty models, in addition to uniform occlusion and clutter models. Lin-
denbaum [19] extended the modeling of clutter to include background objects
of known shape, in addition to uniformly distributed random features. This
hybrid model was incorporated into a statistical analysis to predict the num-
ber of features needed to guarantee recognition of a data object at a given
confidence level. The analysis considered bounded feature uncertainty, as well
as structural similarity between a given data object and background ones.
Irving et al. [20] derived a theoretical bound on the ROC curve of an object
detection task. The generalized likelihood-ratio test was used to discriminate
between model objects at various poses and random clutter. The likelihoods
of both clutter and model objects were modeled using 2D Poisson processes.
Modeling object likelihood as a Poisson process was based on the assumption
of independence of object views at discretized poses. This work considered
bounded feature uncertainty, and uniform occlusion and clutter models.

The problem of discriminating objects from other model objects has re-
ceived considerably less attention than object/clutter discrimination. This
problem is obviously central to integrated performance prediction of object
recognition. It requires consideration of not only data distortion but also ob-
ject similarity. In addition, it requires consideration of the interaction between
object similarity and data distortion. Lindenbaum [21] presented a probabilis-
tic analysis for predicting lower and upper bounds on the number of data
features required to achieve a certain confidence level in object localization or
recognition. It explicitly considered the similarity between different model ob-
jects, as well as the self-similarity between a model object and an instance of
itself at a different relative pose. The data distortion factors considered were
bounded uncertainty and occlusion. The analysis considered extreme cases
in modeling the interaction between occlusion and similarity, thus resulting
in the generation of relatively loose bounds. We note that the analysis pre-
sented in [19], outlined above, can be used in the context of object/object
discrimination considering uncertainty and clutter, as well as object similar-
ity. Grenander et al. [22] addressed the problem of predicting fundamental
error in object pose estimation. In their work, objects were represented by
templates at the pixel level. A minimum mean-square-error estimator, the
Hilbert–Schmidt estimator, was used to estimate object pose in the presence
of pixel uncertainty. Performance of object/object discrimination was deter-
mined partially empirically through the synthesis of distorted templates of one
object, and then using the likelihood-ratio test, based on the Hilbert–Schmidt
estimator, as a recognition criterion (refer to Figure 1.1(b)).

The methods outlined above are summarized and compared with our
method in Table 1.1. This table highlights the main contribution of our work,
namely the integration of uncertainty, occlusion, clutter, and similarity fac-
tors in a single approach for performance prediction. As shown in the table,
previous methods considered only a subset of these factors. It can also be seen
that our method is unique among other object/object discrimination methods
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Table 1.1. Comparison between performance-analysis methods (U , O, C, and S
denote uncertainty, occlusion, clutter, and similarity, respectively).

Work Discrimination Data/Model Features Transform. Factors
U O C S

Grimson et al. [17] object/clutter 2D/2D lines rigid X X
Sarachik [18] object/clutter 2D/2D points affine X X X
Alter and Grimson [8] object/clutter 2D/3D points & lines weak persp. X X X
Lindenbaum [19] object/clutter 2D/2D boundary pts. affine X X X
Irving et al. [20] object/clutter 2D/2D points 2D transl. X X X
Lindenbaum [21] object/object 2D/2D boundary pts. rigid X X X
Grenander et al. [22] object/object pixel-level templates rotation X
This work object/object 2D/2D discretized pts. 2D transl. X X X X

in that it considers point features. Another unique aspect of this work is not
just the new theory but also the validation using real data. We note that parts
of this work have appeared in [23, 24, 25].

1.3 Overview

In this section, we present an overview of the proposed performance–prediction
method. Our problem can be formally defined as follows. We are given the
following:

1. A set of model objects, MD = {Mi}, where each object Mi is represented
by discretized locations of 2D point features, Mi = {Fik}.

2. Statistical data distortion models.
3. A class of data/model transformations, T .

Our objective is to predict lower and upper bounds on PCR as a function of
data distortion. We consider recognition to be successful only if the selected
hypothesized object is the actual one, and the difference between the hypoth-
esized pose and the actual one is small. The pose error can be represented by
the relative pose of the hypothesized object with respect to the actual one. It
is considered acceptable if it lies within a subspace, Tacc ⊂ T . We assume in
this work that Tacc = {0}, i.e., only exact object location is acceptable.

A block diagram of the proposed method is shown in Figure 1.3. The main
elements in this diagram can be described as follows:

• Data-Distortion Models: The data distortion factors are statistically
modeled using uniform probability distribution functions (PDFs).

1. Uncertainty: The location of the data feature corresponding to a model
feature is described by a uniform distribution. Notice that the uncertainty
PDFs are discrete, since the feature locations considered in this work are
discretized. We further assume that the PDFs associated with different



Chapter 1 Predicting Performance of Object Recognition 7

Object Similarity
            of

   Computation

occlusion uncertaintyclutter
Data-Distortion Models

Computation of Performance Bounds

similarity histograms

Lower and Upper PCR Bounds

Model
Objects

Class
Transformation

Figure 1.3. Block diagram of performance–prediction method.

model features are independent. We argue that such independence as-
sumption is reasonable in most practical applications.

2. Occlusion: We assume that every subset of model features is equally likely
to be occluded as any other subset of the same size. This assumption is
more appropriate for modeling features that are missing due to inherent
instability or imperfections of feature extraction. It is less suitable for
modeling features that are missing due to being occluded by other ob-
jects, since it does not consider the spatial-correlation aspect among oc-
cluded/unoccluded features. Spatial correlation can be captured by using
Markov random fields [9, 26, 27], at the expense of significantly increasing
the complexity of the analysis. In Section 1.7, we outline a simpler ap-
proach that can implicitly consider the spatial-correlation factor, without
increasing the analysis complexity.

3. Clutter: We assume that clutter features are uniformly distributed within
a region surrounding the object. This distribution is useful for modeling
random clutter, which does not have specific spatial structure. Modeling
“structural” clutter requires analyzing its similarity with model objects.
We note that the similarity-modeling concepts presented in this work can
be used in modeling of structural clutter. This topic is a subject for future
research.

• Computation of Object Similarity: The purpose of this stage is to com-
pute the structural similarity information among all pairs of model objects.
Our definition of object similarity depends on the amount of feature uncer-
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tainty. In particular, the similarity between two model objects is directly pro-
portional to feature uncertainty. This agrees with the intuitive observation
that as different objects become more “blurred,” it becomes more difficult
to differentiate between them, which is, in a sense, equivalent to saying that
they become more “similar.” The similarity between a model object, Mi, and
another one, Mj , is defined as the number of votes for Mj given an uncer-
tain instance of Mi, i.e., an instance of Mi that is obtained by randomly
perturbing its features. Accordingly, the number of votes for Mj is a random
variable. The chosen definition of similarity depends on the relative transfor-
mation between Mi and Mj , defined by transformation class T . Accordingly,
the similarity between Mi and Mj can be viewed as a probabilistic function,
which we call the similarity function. The similarity information is encoded in
two histograms, which we call all-similarity and peak-similarity histograms, to
be described in Section 1.5.2. These histograms are used for predicting lower
and upper PCR bounds, respectively.
• Computation of Performance Bounds: The objective of this stage is
to compute PCR bounds. The computation is based on estimating the PDF
of the votes for a specific erroneous object/pose hypothesis, given a “dis-
torted” instance of a given model object. The estimation process takes into
account the structural similarity between the model object and the erroneous
hypothesis. The vote PDF is used to determine the probability of a recognition
failure, which occurs if the erroneous hypothesis gets same or more votes than
the distorted object. This information is integrated for potential erroneous
hypotheses to determine the PCR bounds.

1.4 Data-Distortion Models

We formally model the effects of the three distortion factors considered in
this work on a “perfect” model object. This modeling is used to determine
the vote PDF in Sect. 1.6.2.
• Uncertainty: The effect of the uncertainty factor is to perturb locations
of model features according to some PDF. Since this PDF is assumed to be
uniform, it can be represented by a region. Let Fik ∈ Mi be a model feature,
and F̂ik be a distorted instance of it. Define Ru(Fik) to be the consistency
region associated with Fik. Such region bounds the possible locations of F̂ik

given Fik, i.e., F̂ik ∈ Ru(Fik). Likewise, we can say that Fik ∈ R̄u(F̂ik), where
R̄u(·) is the reflection of Ru(·) about the origin. Practically, Ru(·) is the same
as R̄u(·), because Ru(·) is symmetric about the origin (e.g., circle, square).
Accordingly, we assume in this work for simplicity that R̄u(·) = Ru(·). An
uncertain instance of Mi can be obtained by uniformly perturbing each of
its features within corresponding consistency region. This can be formally
represented as:

Du(Mi, Ru(·)) = {Pu(Ru(Fik)) : Fik ∈ Mi},
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where Pu(R) is a function that returns a feature selected randomly within
region R.
• Occlusion: The effect of occlusion is the elimination of some model features.
An occluded instance of Mi can be formally defined as

Do(Mi, O) = Mi − Po(Mi, O),

where Po(Mi, O) is a function that returns a subset of O features selected
randomly from Mi. For a fixed O, all subsets generated by Do(Mi, O) are
equally likely to occur, since we are assuming uniform occlusion.
• Clutter: The effect of clutter on a model object is the addition of spurious
features to it. They are assumed to be uniformly distributed within a clutter
region, Rc, surrounding the model object. This region can have an arbitrary
shape (e.g., bounding box of model features, convex hull, etc). A cluttered
instance of Mi can be defined as

Dc(Mi, C, Rc, Rx) = Mi ∪ Pc(C, Rc − Rx),

where Pc(C, R) is a function that returns C features selected randomly within
region R, and Rx is a region that clutter features are excluded from falling
into. The reason for including Rx is explained below.
• Combined Distortion: Consideration of the combined effects of uncer-
tainty, occlusion, and clutter on a model object raises an ambiguous situa-
tion. It takes place when a model feature gets occluded and then a spurious
feature falls within its consistency region. The ambiguity arises from the fact
that this situation can not be distinguished from the no-occlusion/no-clutter
case. In order to simplify the analysis, we assume the latter case. This can
be modeled by restricting the clutter features to lie outside region Rx, de-
fined as the union of the consistency regions of occluded features. We refer
to Rc − Rx, or simply R′

c, as the effective clutter region. A distorted instance
of Mi, M̂i(Ru(·), O, C, Rc), can be obtained by first occluding O features of
Mi, perturbing unoccluded ones within their consistency regions Ru(·), and
then randomly adding C clutter features within the effective clutter region
R′

c. This can be represented formally as:

M̂i(Ru(·), O, C, Rc) = Dc(Du(Do(Mi, O), Ru(·)), C, Rc, Rx),

where Rx = ∪kRu(Fik), ∀Fik ∈ (Mi − Do(Mi, O)). Figure 1.4 shows an
example of the distortion process.

1.5 Computation of Object Similarity

In this section, we formally define a measure of the structural similarity be-
tween model objects, and outline the method used to construct the similarity
histograms.
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Figure 1.4. An illustration of the different stages of the distortion process: (a)
original object consisting of six features (dark circles), (b) after occlusion (O = 2;
small circles represent occluded features), (c) after perturbation (Ru(·) = a circle;
small double circles represent locations of features before perturbation), (d) after
clutter (C = 3; small crosses represent clutter features; notice absence of clutter
features inside consistency regions of the two occluded features), (e) distorted object.

1.5.1 Definition of Object Similarity

We introduce a number of definitions that lead to a definition of the similarity
between a pair of model objects.
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• Vote-Based Criterion: Let Mτ̂
i = {F τ̂

ik} be object Mi at pose τ̂ ∈ T
with respect to a data object, M̂. We refer to Mτ̂

i as a hypothesis of object
Mi at location τ̂ . The votes for Mτ̂

i , given M̂, is the number of features in
Mτ̂

i that are “consistent” with at least a data feature in M̂. A model feature,
F τ̂

ik ∈ Mτ̂
i , is said to be consistent with a data feature, F̂l ∈ M̂, if F̂l falls

within the consistency region of F τ̂
ik, i.e., F̂l ∈ Ru(F τ̂

ik). Accordingly, we can
formally define the votes for Mτ̂

i given M̂ as follows:

VOTES(Mτ̂
i ; M̂) =|{F τ̂

ik : F τ̂
ik ∈ Mτ̂

i and ∃F̂l ∈ M̂ s.t. F̂l ∈ Ru(F τ̂
ik)}| .(1.1)

• Feature/Feature Similarity: Let us assume that we are given a pair
of model features, Fik ∈ Mi and F τi

jl ∈ Mτi
j , where Mτi

j is a hypothesis
of object Mj at location τi ∈ T with respect to object Mi. The similarity
between Fik and F τi

jl , denoted by Sff (Fik, F τi

jl ), is defined as the probability
that an uncertain measurement of Fik is consistent with F τi

jl . Formally, we
have

Sff (Fik, F τi

jl ) =
AREA(R(Fik) ∩ R(F τi

jl ))
AREA(R(Fik))

,

where AREA(R) is area of region R. Obviously, Sff (Fik, F τi

jl ) lies in the range
[0, 1]. It is proportional to the extent of overlap between the consistency re-
gions of Fik and F τi

jl (R(Fik) and R(F τi

jl )). Figure 1.5 illustrates Sff (Fik, F τi

jl )
as a function of τi, for a sample of three consistency regions. In some cases,
we refer to feature pairs with overlapping/nonoverlapping consistency regions
as similar/dissimilar feature pairs, respectively.
• Object/Feature Similarity: We define the similarity between an object,
Mi, and a feature, F τi

jl ∈ Mτi
j , as the probability that F τi

jl is consistent
with an uncertain measurement of any feature in Mi. We can formally define
object/feature similarity, denoted by Sof (Mi, F

τi

jl ), as

Sof (Mi, F
τi

jl ) = 1 −
∏
k

(1 − Sff (Fik, F τi

jl )).

• Object/Hypothesis Similarity: Let us denote the similarity between
Mi and Mτi

j as Soh(Mi,Mτi
j ) or simply Sτi

j . We define Sτi
j as the number

of votes for hypothesis Mτi
j , given an uncertain instance of Mi, which is

Du(Mi, Ru(·)) (refer to Section 1.4). Formally,

Sτi
j = VOTES(Mτi

j ; Du(Mi, Ru(·))).

It is obvious that Sτi
j is a random variable. The minimum value of Sτi

j is the
number of coincident feature pairs of Mi and Mτi

j . It can be expressed as

min(Sτi
j ) = | {F τi

jk : Sof (Mi, F
τi

jk) = 1} | .
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Figure 1.5. : An illustration of feature/feature similarity for a variety of consistency
regions assuming T is the space of 2D translations: (a) a circle of unit radius, (b)
a discrete eight-neighbor region, (c) a point region (implies absence of positional
uncertainty). Note that the components of τi along the x- and y-axes are represented
by τix, and τiy, respectively. We assume here for simplicity that Fik = F τi

jl when
τi = 0.
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On the other hand, the maximum value of Sτi
j is the number of features of

Mτi
j that are similar to features in Mi (i.e., whose consistency regions overlap

with consistency regions of features in Mi). Thus,

max(Sτi
j ) = | {F τi

jk : Sof (Mi, F
τi

jk) > 0} | .

The expected value of Sτi
j can be approximated as

E(Sτi
j ) ≈

∑
k

Sof (Mi, F
τi

jk),

where F τi

jk ∈ Mτi
j . Figure 1.6 shows an example of object/hypothesis similar-

ity.

M
j

M
i τi

Figure 1.6. An illustration of object/hypothesis similarity. Notice that there are
three similar feature pairs with feature/feature similarity values of approximately
1
3 , 2

3 and 1. Accordingly, we have Sτi
j ∈ [1, 3], and E(Sτi

j ) ≈ 2.

• Uniform Model of Object/Hypothesis Similarity: In order to make
the prediction of PCR bounds mathematically tractable, we make the follow-
ing reasonable assumptions about Mi, Mτi

j and the structure of their similar
feature pairs:

1. The consistency regions of the features that belong to each of Mi and
Mτi

j are not overlapping.
2. The correspondence between similar features in Mi and Mτi

j is bijective
(one-to-one).

3. The feature/feature similarity between every pair of similar features is
a constant value, P τi

j . It is the average object/feature similarity of the
features in Mτi

j that are similar to features in Mi.

The above assumptions result in a “uniform” view of the structural similarity
between object Mi and hypothesis Mτi

j . As an illustration, Figure 1.7 shows
the uniform model corresponding to the object/hypothesis pair shown in Fig-
ure 1.6. The uniform similarity model leads to the approximation of the PDF
of Sτi

j by the following binomial distribution:
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PS
τi
j

(sτi
j ) = BS

τi
j

(sτi
j ; Nτi

j , P τi
j ),

where PX(x) = Pr[X = x], BX(x; n, p) = K(n, x)px(1 − p)n−x, K(a, b) =
a!

(a−b)! b! ,

Nτi
j = max(Sτi

j ), and

P τi
j =

E(Sτi
j )

Nτi
j

.

M
j

M
i τi

Figure 1.7. Uniform similarity model for object/hypothesis pair shown in Figure
1.6. Notice that similar feature pairs have constant feature/feature similarity, P τi

j ≈
2
3 and Nτi

j = 3.

• Object/Object Similarity: The similarity between a pair of objects, Mi

and Mj , is defined as the object/hypothesis similarity Sτi
j , for all τi ∈ T .

Thus, object/object similarity can be viewed as a probabilistic function. As
an illustration, Figure 1.8(a) shows a pair of simple model objects. The cor-
responding expected-similarity function, E(Sτi

j ), is shown in Figure 1.8(b).
Note that peaks in the expected-similarity function correspond to object hy-
potheses that have a higher degree of similarity with Mi than neighboring
ones. A sample of these hypotheses, referred to as peak hypotheses, is shown
in Figure 1.9. In our work, peak hypotheses are used for predicting an upper
bound on PCR.

1.5.2 Construction of Similarity Histograms

As discussed in the previous section, we describe the object/hypothesis simi-
larity between Mi and Mτi

j by two parameters, (Nτi
j , P τi

j ). For our purpose
of performance prediction, we add two more parameters:

1. The size of Mi, |Mi |.
2. The effective size of Mτi

j , | Mτi
j ∩Rc |, which is the number of features of

Mτi
j that lie inside the clutter region Rc.
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Figure 1.8. An illustration of object/object similarity: (a) model objects Mi and
Mj , (b) corresponding expected-similarity function, E(Sτi

j ), assuming four-neighbor
consistency region, and 2D translation space.

Thus, we encode the information of object/hypothesis similarity using tuple
(| Mi |, | Mτi

j ∩ Rc |, Nτi
j , Nτi

j P τi
j ). Accordingly, the similarity information is

accumulated in 4D histograms 3.
Two similarity histograms are needed in our work, one for storing simi-

larity information corresponding to all erroneous hypotheses, and the other
3 When calculating the effective size of Mτi

j , we have also included features of Mτi
j

that lie outside Rc but are similar to features in Mi.
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Figure 1.9. Three hypotheses corresponding to peaks A, B and C shown in Fig.
1.8(b), assuming four-neighbor consistency region.

for storing information corresponding to peak hypotheses only. They are re-
ferred to as all- and peak-similarity histograms, respectively. The algorithm
used to construct these histograms is outlined in Figure 1.10. It calculates the
similarity between every model object Mi, and all the erroneous hypothe-
ses competing with it. The erroneous hypotheses are selected to satisfy the
following two criteria:

1. Each has at least one feature inside clutter region Rc.
2. For hypotheses that belong to Mi, the relative pose, τi, lies outside Tacc,

defined in Section 1.3.

The similarity information associated with Mi is accumulated in local all- and
peak-similarity histograms, ASHi and PSHi, respectively. These histograms,
for all Mi ∈ MD, are then added to form global similarity histograms, ASH
and PSH, respectively.
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Initialize global similarity histograms ASH and PSH
for each model object Mi ∈ MD do

Initialize local similarity histograms for Mi, ASHi and PSHi

for each model object Mj ∈ MD do
for each τi ∈ T such that | Mτi

j ∩ Rc |> 0 do
if (i �= j) ∨ ¬(τi ∈ Tacc) then

Compute similarity parameters (Nτi
j , P τi

j )
Increment ASHi(|Mi|, |Mτi

j ∩ Rc|, Nτi
j , �Nτi

j P τi
j +1

2�) by 1
if Mτi

j is a peak hypothesis then
Increment PSHi(|Mi|, |Mτi

j ∩ Rc|, Nτi
j , �Nτi

j P τi
j +1

2�) by 1
end if

end if
end for

end for
Add ASHi to ASH
Add PSHi to PSH

end for

Figure 1.10. Similarity-computation algorithm.

1.6 Computation of Performance Bounds

In this section, we derive the PDF of votes for an erroneous hypothesis, and
use this PDF for predicting lower and upper bounds on PCR.

1.6.1 Motivating Example

We start by presenting an example to illustrate the combined effects of data
distortion and object similarity on the vote process. This example, illustrated
in Figure 1.11, assumes the uniform model of similarity between Mi and Mτi

j ,
which is defined in Section 1.5.1. It can be described as follows:

• Prior to being distorted, Mi has five votes, since it consists of five features.
On the other hand, Mτi

j does not have any features of Mi within the
consistency regions of its features. Accordingly, it gets no votes.

• The first distortion step involves occlusion of two features in Mi. Obvi-
ously, this reduces the number of votes for Mi from five to three. At this
point, Mτi

j still does not get any votes. Notice that the number of similar
feature pairs between Mi and Mτi

j decreases from three (which is Nτi
j ;

refer to Section 1.5.1) to two.
• The second step involves randomly perturbing the three unoccluded fea-

tures in Mi within their consistency regions. This keeps the number of
votes for Mi at three. On the other hand, observe that both of the two
unoccluded similar features of Mi move to the regions that overlap with
the consistency regions of their corresponding similar features in Mτi

j . This
contributes two votes to Mτi

j .
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Figure 1.11. An example showing the vote process for object Mi and erroneous
hypothesis Mτi

j , as Mi gets distorted.

• In the final distortion step, four clutter features are randomly added within
clutter region Rc. Two of these features happen to fall within the consis-
tency regions of two new features of Mτi

j . This contributes two extra votes
for Mτi

j , thus bringing its total number of votes to four. The number of
votes for Mi stays the same (recall from Section 1.4 that clutter features
are excluded from falling into consistency regions of occluded ones).

The above example shows how data distortion and model similarity can re-
sult in a recognition failure by reducing the number of votes for the correct
hypothesis, and increasing them for an erroneous one. It also provides us with
the following valuable insight into the distribution of votes for both correct
and incorrect hypotheses, as a function of data distortion:

• The number of votes for Mi, denoted by Vi, is simply the number of
unoccluded features of Mi. That is, for a distorted instance of Mi,
M̂i(Ru(·), O, C, Rc) or simply M̂i, we have

Vi = | Mi | −O. (1.2)
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• The number of votes for Mτi
j , denoted by V τi

j , comes from two different
sources: (1) object Mi, due to structural similarity (second distortion step
in Figure 1.11), and (2) clutter features, due to random coincidence (third
distortion step in Figure 1.11). Thus, V τi

j is a random variable that can
be expressed as follows:

V τi
j = Vs + Vc, (1.3)

where Vs and Vc are random variables that represent similarity and clutter
votes for Mτi

j , respectively.
• The number of similarity votes, Vs, is bounded by the number of similar

feature pairs that remain unoccluded, which we denote by No (obviously,
No ≤ Nτi

j ).

In the above example, it can be seen that Vs = 2, Vc = 2, and No = 2. In the
next section, we use these three random variables to determine the PDF of
V τi

j .

1.6.2 Probability Distribution of Hypothesis Votes

In order to determine the PDF of V τi
j , we need to determine the PDFs of Vs

(number of similarity votes), Vc (number of clutter votes), and No (number
of unoccluded similar features). In the previous section, we have seen that Vs

depends on No. Accordingly, we can express the PDF of Vs as

PVs(vs) =
∑
no

PVs(vs; no)PNo(no), (1.4)

where PVs
(vs; no) = Pr[Vs = vs; No = no]. From (1.3) and (1.4), we can

represent the PDF of V τi
j as

PV
τi

j
(vτi

j ) =
∑
no

PV
τi

j
(vτi

j ; no)PNo(no), (1.5)

where

PV
τi

j
(vτi

j ; no) =
∑
vs

PVs(vs; no)PVc(v
τi
j − vs; no, vs)

and PVc
(vc; no, vs) = Pr[Vc = vc; No = no, Vs = vs]. We estimate the PDF of

No and the conditional PDFs of Vs and Vc based on the uniform models of
data distortion and structural similarity, presented in Sections 1.4 and 1.5.1,
respectively.
• PDF of No: The process of occluding O features in Mi can be viewed as
picking O balls from an urn, which contains Nτi

j white balls and (| Mi | −Nτi
j )

black balls, with no replacement. In our case, the white (black) balls represent
features in Mi that are similar (dissimilar) to features in Mτi

j . Based on the
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uniform occlusion and similarity models, the PDF of No can be described by
the following hypergeometric distribution,

PNo
(no) = HNo

(Nτi
j − no; O, Nτi

j , | Mi | −Nτi
j ), (1.6)

where HX(x; n, a, b) = K(a,x)K(b,n−x)
K(a+b,n) . Note that

no ∈ [max(0, Nτi
j − O), min(Nτi

j , | Mi | −O)].

• Conditional PDF of Vs: It can be easily shown that the conditional PDF of
Vs is represented by the following distribution!binomial binomial distribution:

PVs(vs; no) = BVs(vs; no, P
τi
j ).

This distribution is obtained based on the assumptions of uniform uncertainty
and similarity models. Notice that P τi

j < 1 implies vs ∈ [0, no], while P τi
j = 1

implies vs = no.
• Conditional PDF of Vc: The estimation of the PDF of Vc is considerably
more involved than those of No and Vs. It can be outlined as follows. Let
R′

Vc
⊂ R′

c be the largest region such that a clutter feature falling within it
will contribute a vote for Mτi

j . Region R′
Vc

is the union of the consistency
regions of features in Mτi

j ∩ Rc that do not have any features of Mi within
their consistency regions. They are basically all the features of Mτi

j ∩ Rc

minus those that have similar features of Mi within their consistency regions.
A slight complexity arises from our clutter modeling explained in Section
1.4: features in Mτi

j ∩ Rc that are similar to occluded features in Mi are
effectively associated with “truncated” consistency regions. Figure 1.12 shows
an example of R′

Vc
. Based on the assumption of uniform similarity, we can

show the following:

1. The area of a truncated consistency region is AREA(Ru(·))(1 − P τi
j ).

2. The numbers of potential vote-contributing features with truncated and
full consistency regions are nt = Nτi

j −no , and nf =| Mτi
j ∩Rc | −vs −nt,

respectively.

Splitting the effective clutter region R′
c into two subregions, R′

Vc
and R′

c−R′
Vc

,
we can approximate the conditional PDF of Vc by the following binomial
distribution,

PVc(vc; no, vs) ≈ BVc

(
vc; C,

AREA(R′
Vc

)
AREA(R′

c)

)
, (1.7)

where

AREA(R′
Vc

) = AREA(Ru(·))(nf + (1 − P τi
j )nt), and

AREA(R′
c) = AREA(Rc) − O × AREA(Ru(·)).

The lower bound of vc is 0, while the upper bound is either min(nf + nt, C)
if P τi

j < 1, or min(nf , C) if P τi
j = 14.

4 The area of R′
c is calculated by assuming, for simplicity, that clutter region Rc

totally covers the consistency regions of the features of Mi.
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Figure 1.12. An illustration of the clutter vote region R′
Vc

, assuming the uniform
model of similarity between Mi and Mτi

j .

1.6.3 Lower Bound on PCR

Let Hi be the set of erroneous object/pose hypotheses corresponding to Mi.
It can be defined as

Hi={Mτi
j : Mj ∈ MD and τi ∈ T s.t. |Mτi

j ∩ Rc|> 0} − {Mτi
i : τi ∈ Tacc}.

We can express the probability of misinterpreting a distorted instance of Mi,
M̂i, as any hypothesis in Hi, as

Pr[Hi; M̂i] = Pr[∃ Mτi
j ∈ Hi s.t. V τi

j ≥ Vi]. (1.8)

The probability that Mτi
j “beats” Mi (i.e., Mτi

j reaches or exceeds votes for
Mi) can be obtained from (1.2) and (1.5):

Pr[Mτi
j ; M̂i] =

∑
v

τi
j ≥|Mi|−O

PV
τi

j
(vτi

j ). (1.9)

From (1.8) and (1.9), we obtain the following upper bound on the probability
of recognition failure:

Pr[Hi; M̂i] <
∑

Mτi
j ∈Hi

Pr[Mτi
j ; M̂i].

The above inequality directly leads to the following lower bound on PCR:

Pr[Mi; M̂i] > 1 −
∑

Mτi
j ∈Hi

Pr[Mτi
j ; M̂i]. (1.10)

From the derivation of the vote PDF discussed in the previous section, we
can observe that V τi

j and, in turn, Pr[Mτi
j ; M̂i] depend on only four object-

dependent parameters: size of Mi, effective size of Mτi
j , and the two similarity

parameters (Nτi
j , P τi

j ). Define


