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Preface

Elucidation of protein function has been a central question in molecular biology,
genetics, and biochemistry. The importance of computational function prediction
is increasing because more and more genome sequences are being determined by
genome sequencing projects. Recent advancement of sequencing technologies fur-
ther achieves surprisingly fast speed for sequencing complete genomes. It is clear
that genome sequencing will become a routine in biological and medical studies
in very near future. In addition, it is noteworthy that structural genomics projects
have been launched for over few years, which are producing an increasing number
of protein structures of unknown function. Besides the flood of protein sequences
and structures, other types of large scale biological data, including protein–protein
interaction data, gene expression data, are awaiting biological interpretation. Thus,
the post-genomics era has entered to the second phase, the omics era, when various
types of large-scale biological data are generated and referred to each other toward
systems level understanding of organisms and life. Obviously function prediction is
indispensable for capitalizing the rich sources of the omics data.
It has been 20 years since FASTA and BLAST, the most commonly used homol-
ogy search tools, were developed. As exemplified by the fact that the first complete
genome was finished 6 years after the two homology search tools were developed,
the circumstance of biological research has dramatically changed since then. The
appearance of omics data has brought different needs and sources for function pre-
dictions. Conventional use of homology search methods is not necessarily most
suitable for analyzing large scale data. For analyzing data which have many genes
included, large coverage in function annotation is essential. For biological inter-
pretation of large-scale data, detailed biochemical function assignment to genes is
not always necessary. A broad class of function, or low-resolution function, is still
helpful to understand functional unit of genes and speculate biological background
of coordinated behaviour of genes. Omics data is not only the targets for analyses,
but also provide additional sources for elucidating functional relationships between
genes. Thus, in recent years we observe emerging development of computational
function prediction methods, which use various sources and techniques to address
the needs of biology of this century.

In this book, we provide a snapshot of this emerging field by providing reviews
of notable computational methods and resources. In Chapter 1, we state the current

v



vi Preface

situations of protein function prediction and overview computational frameworks.
Chapters 2, 3, 4, and 5 address sequence-based function prediction methods. In
Chapter 2, Chitale and myself review two methods we have developed, which
exploit function information from PSI-BLAST searches more thoroughly than con-
ventional usage. In Chapter 3, Kim and his colleagues discuss the use of conserved
gene clusters for genome annotation. Chapter 4 by Uchiyama discusses issues in
the ortholog classification and introduces an algorithm for ortholog group construc-
tion and a database for comparative genomics for microbial genomes. In Chapter 5
Livesay et al. present a sequence-based functional site prediction method, which
identifies a local region as functional site whose mutation pattern is restricted by
phylogenetic constraints.

The next five chapters, Chapters 6, 7, 8, 9, and 10, address structure-based
function prediction. In Chapter 6 Orengo and her colleagues analyze structural con-
servation in protein superfamilies and describe an approach for assigning functional
subfamilies based on global structure comparisons between inter and intra super-
families. In the subsequent chapter, the Liang group describes global and local
structure alignment methods which align structures in sequence-independent man-
ner. The local alignment method is applied to identify conserved atoms in functional
pockets of a family of protein structures (Chapter 7). Chapter 8 by Chikhi, Sael,
and myself describes pocket shape representation and comparison methods which
use two dimensional and three dimensional moments. The methods are applied for
predicting binding ligand molecules for a pocket. Chapter 9 by Ahmad overviews
computational methods for DNA binding sites prediction ranging from available
datasets, computational techniques, to properties of proteins that can be used for
input for prediction. In the subsequent chapter, Ondrechen and her colleagues
describe a method for predicting functionally important residues in proteins by
computing theoretical titration curves for ionisable residues (Chapter 10).

Finally, we move on to omics data driven approaches and omcis data resources
in Chapters 11, 12, 13, 14, and 15. In the first chapter in this section, Chapter 11,
Kinoshita and Obayashi discuss the use of protein tertiary structure, particularly
protein surface shape, to predict molecular function and to use protein–protein inter-
action and expression data for predicting cellular function of proteins. Chapter 12
by Tian et al. overview types of omics data as well as computational approaches for
integrating various omics data for function prediction. In Chapter 13, Wong and his
colleagues discuss the use of indirect interactions in addition to direct interactions
in protein–protein interaction networks for function prediction. The idea was also
appplied for protein complex prediction and cleansing interaction data. Chapter 14
by the Kanehisa group overviews KEGG and GenomeNet resources, which contain
genomic, chemical, and systems (e.g. pathways) information of organisms. In partic-
ular they discuss their recent developments including databases of plant secondary
metabolites, crude drug molecules, and prediction tools for metabolic pathways
and enzymatic reactions. In the last chapter, Chapter 15, Mori, Wanner and their
colleagues describe GenoBase, which contains high-throughput experimental data
for E. coli, including the single-gene deletion library, phenotype screening, genetic
interactions, and protein–protein interactions.



Preface vii

There are many other existing methods and databases and new approaches are
being published month by month in this active research field. Nevertheless, chapters
in this book cover almost all the types of function prediction approaches. Thus,
I believe this book successfully provides comprehensive overview of this exciting
and important field. I believe this book is informative for those who are interested
in developing new approaches and also for biologists who are looking for tools and
resources for elucidating protein function. In closing, I would like to thank all the
authors of chapters in this book. It is very fortunate to have leading experts of the
field as the authors. I am also thankful to the editors in Springer, Dr. Meran Owen
and Ms. Tanja van Gaans, for their patience and professional work. At last, I would
like to share with the readers the happiness and the excitement to observe dramatic
changes of biology in the omics era, which are made possible by brilliant ideas and
dedicated efforts by researchers across the world.

West Lafayette, Indiana Daisuke Kihara
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Computational Protein Function Prediction:
Framework and Challenges

Meghana Chitale and Daisuke Kihara

Abstract Large scale genome sequencing technologies are increasing the abun-
dance of experimental data which requires functional characterization. There is a
continually widening gap between the mounting numbers of available genomes
and completeness of their annotations, which makes it impractical to manually
curate the genomes for function information. To handle this growing challenge
we need computational techniques that can accurately predict functions for these
newly sequenced genomes. In this chapter we focus on the framework required for
computational function annotation and the challenges involved. Controlled vocabu-
laries of functional terms, e.g. Gene Ontology, MIPS functional catalogues, Enzyme
commission numbers, form the basis of prediction methods by capturing the avail-
able biological knowledge in the form, suitable for computational processing. We
review functional vocabularies in detail along with the methods developed for quan-
titatively gauging the functional similarity between the vocabulary terms. We also
discuss challenges in this area, first pertaining to the erroneous annotations floating
in the sequence database and second regarding the limitations of the functional term
vocabulary used for protein annotations. Lastly, we introduce community efforts to
objectively assess the accuracy of function prediction.

Introduction

With the advances in technology, whole genome sequencing for new organisms is no
longer an enormous project. Numbers of genomes are being sequenced every year
adding the tremendous amount of data available for computational investigators.
As shown in Fig. 1, the number of entries of genomes in KEGG database [1] have
almost doubled form year 2007 (~ 600 genomes) to year 2010 (~1,200 genomes).

D. Kihara (B)
Department of Biological Sciences; Department of Computer Science; Markey Center for
Structural Biology, College of Science, Purdue University, West Lafayette, IN 47907, USA
e-mail: dkihara@purdue.edu

1D. Kihara (ed.), Protein Function Prediction for Omics Era,
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2 M. Chitale and D. Kihara

Fig. 1 Growth of genomes in KEGG database from year 1995 till 2010. Yearly release information
of KEGG data was obtained from GenomeNet (http://www.genome.jp/en/db_growth.html)

The pace of accumulating sequence data will only increase, in fact, the new gener-
ation technology can sequence microbial genome within a couple of days [2, 3].

However, it is still a daunting task to correctly assign functional annotations
to these newly sequenced genomes based on their sequence information. It is not
feasible to conduct conventional experimental procedures on this entire stockpile
of sequences for recovering the functional information, and this has triggered the
need for methods that can consistently assign functions to unknown proteins [4–8].
Conventionally in this scenario researchers have focused on using homology or
sequence similarity to transfer annotations to newly sequenced proteins using popu-
lar homology search algorithms such as BLAST [9] and FASTA [10, 11]. Although
considering homology is a genuine way of inferring function in the light of evolu-
tion, practically, it is not always trivial to extract correct function information from
a sequence database search result. Another weakness of the conventional homology
searches is that a considerable portion of genes in a genome are left as unanno-
tated. In Fig. 2, we have analyzed the number of annotated genes in the genome
sequences taken from the KEGG database [1] (version March 2010). We have exam-
ined the genomes to separate the number of genes that have unknown annotations
characterized by keywords mentioned in the caption for the figure. This gives us
a crude idea about the percentage of unknown genes in each genome. It can be
seen from Fig. 2 that for around 50% of genomes in the database we know func-
tional characteristics of less than 60% of genes in there. Even for well studied
model organisms such as Saccharomyces cerevisiae (82.4% annotated), Escherichia
coli K-12 MG1655 (64.9% annotated), Arabidopsis thaliana (66.3% annotated), a
significant number of genes have no annotation. Therefore, new methods in this
area are required to improve the function prediction accuracy as well as the genome
annotation coverage.
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Fig. 2 Annotation levels of genomes in KEGG database. 1,172 genomes in KEGG database
were analyzed to separate the number of annotated genes from unknown genes (entries in the
database annotated with terms “hypothetical”, “putative”, “unknown”, “uncharacterized”, “pre-
dicted”, “no hits”, “codon recognized”, “expressed protein”, and “conserved protein”). The figure
shows cumulative percentage of genomes having specified percentage of annotated genes

As the first chapter in this book, we explain the fundamental information, which
lays the framework of computational protein function prediction. We first sum-
marize controlled functional vocabularies and evaluation measures for accuracy of
protein function prediction. Along with this, we would like to draw readers’ atten-
tion to challenges in this area, first pertaining to the erroneous annotations floating
in the sequence database and second regarding the limitations of the functional term
vocabulary used for protein annotations. Lastly, we introduce community efforts to
objectively assess the accuracy of function prediction.

Controlled Functional Vocabularies

For managing computational function prediction we need to transform the descrip-
tive biological knowledge into qualitative and quantitative models, which requires
robust and accessible biological information system. Protein functions or annota-
tions have long been described with vocabularies that are conventionally used within
each research community or research group. Thus, there have been cases that essen-
tially same annotations are described with different terms across different species
and research communities. However, such situations hinder computational handling
of functional information, including extraction of function information of genes
from databases and summarizing such information to predict function. A practi-
cal solution for this is to unify the functional terms used for functional annotation
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of genes. In recent years controlled sets of functional vocabularies have been devel-
oped along this direction. Below we describe several ontologies, including Gene
Ontology (GO) [12], Enzyme Commission (EC) number, [13], MIPS functional
catalogue [14] (FunCat), Transporter Classification System [15], KEGG orthology
[16], and the other efforts of constructing ontologies.

Gene Ontology

The Gene Ontology (GO) Consortium [17] of collaborating databases has developed
a structured controlled vocabulary to describe gene function. GO vocabulary terms
are arranged in a hierarchical fashion using a Directed Acyclic Graph (DAG) and
are separated into three categories: Biological Process (BP), Molecular Function
(MF), and Cellular Component (CC). One or more terms from each category can
be used to describe a protein. Cellular component indicates to which anatomical
part of the cell the protein belongs to, for example, ribosome (GO:0005840) or
nucleus (GO:0005634). Biological process terms indicate assemblies of molecu-
lar functions which achieve a well defined task through a series of cellular events.
Examples of biological processes are carbohydrate metabolism (GO:0003677), reg-
ulation of transcription (GO:0045449) etc. Molecular functions represent activities
carried out at molecular level by proteins or complexes, for example, catalytic activ-
ity (GO:0003824) or DNA binding (GO:0003677) etc. Thus each GO term will have
a category and an identifier in the format GO:xxxxxxx associated with it, along
with a term definition to explain the meaning of the term. For example, term protein
binding is referred using identifier GO:0005515 and its definition says following
Interacting selectively and non-covalently with any protein or protein complex. The
vocabulary is arranged as a DAG where each term can have one or more parents.
Figure 3 represents the tree structure obtained for the term hemoglobin binding
showing all its parents till the root term all. As you go deeper in the hierarchy the
terms become more specific.

All terms in GO other than the root term have either is-a, is_part_of, positively
regulates, or negatively regulates relationship with some other more general term.
For example as shown in Fig. 4 the term glucose transport (GO:0015758) is_a

Fig. 3 Structure of Gene Ontology for term hemoglobin binding displayed using AmiGO browser
(http://amigo.geneontology.org/cgi-bin/amigo/go.cgi) for GO terms. Against each term the number
of gene products that are annotated with the given term in the GO database, is displayed

http://amigo.geneontology.org/cgi-bin/amigo/go.cgi
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Cellular component

Gene Ontology

Biological Process

Carbohydrate
Transport

Monosaccharide
transport

Glucoside
transport

Molecular function

Glucose transport

Hexose transport

Pentose transport

Transport

Fig. 4 Partial Gene Ontology hierarchy describing the ancestors of terms Glucoside transport and
Glucose transport. Double lined arrows show the path to the Lowest Common Ancestor (LCA) of
the two terms

Hexose transport (GO:0008645), which ultimately is_a transport (GO:0006810).
Due to this relationship when a protein is annotated by term X then it is auto-
matically annotated by all ancestor terms of X which are basically less specific
descriptions of X. Similarly, some more relationships have been defined in GO,
e.g. B is part_of A, which implies that when B exists it is part of A. For exam-
ple, mitochondrial membrane (GO:0031966) is part of mitochondrial envelope
(GO:0005740). Regulates relationship is used in GO to capture the fact that one
process can directly affect the manifestation of another process; this relationship
has two sub-relations positively regulates and negatively regulates to capture the
specific forms of regulation.

Association between a gene product and its GO annotation is generally based
on one or more supporting evidences. GO has defined the evidence codes that help
capture information about the source from which this association is obtained (http://
www.geneontology.org/GO.evidence.shtml). Inferred from Electronic Annotation
(IEA) is the only evidence code that is not reviewed by a curator indicating that
assignment of annotation to the gene product is automatic. All curator-assigned evi-
dence codes fall into one of the four categories; (1) experimental (e.g. Inferred from
Direct Assay (IDA), Inferred from Genetic Interaction (IGI) etc), (2) computational
analysis (e.g. Inferred from Sequence or structural Similarity (ISS), Inferred from
Genomic Context (IGC)), (3) author statement (Traceable Author Statement (TAS),
Non-traceable Author Statement (NAS)), and (4) curatorial statement (Inferred by
Curator (IC) and No biological Data available (ND)). It should be noted that evi-
dence codes do not indicate quality of annotation but only provide information about
the source of annotation.

http://www.geneontology.org/GO.evidence.shtml
http://www.geneontology.org/GO.evidence.shtml
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Fig. 5 Hierarchical structure of MIPS functional catalogue displayed partially using FunCat
Database tool (http://mips.helmholtz-muenchen.de/proj/funcatDB/search_main_frame.html)

MIPS Functional Catalogue

Similar to Gene Ontology, MIPS Functional Catalogue (FunCat) [14] is a hierar-
chically organized species independent vocabulary (Fig. 5). FunCat is organized
as a tree rather than a DAG. In FunCat there are 28 main catalogues, each of
which is organized in a hierarchical tree structure. These main branches or cata-
logues cover features like localization, transport, metabolism, etc. FunCat currently
contains 1,307 categories each of which is assigned a two digit number. FunCat
identifier is represented as a series of category numbers separated by a dot based
on the level in the hierarchy, for example metabolism is 01 and locates at first level,
while 01.01.03.02.01 is biosynthesis of glutamate which belongs to most specific
level.

Enzyme Commission Numbers

The Enzyme Commission (EC) numbers [13] are another functional classifiers that
are used to classify enzymes based on reactions they catalyze. Thus as compared to
the GO vocabulary, the EC numbers are reaction oriented and describe only the
biochemical activity of proteins. In the enzyme nomenclature, each EC number
consists of four numbers, i.e. EC x.x.x.x, each describing the enzyme at different
levels of detail. There are six top levels of EC numbers from 1 to 6 which represent
oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases, respec-
tively. The next level of depth contains more details about the reaction, for example,
EC number 2.1 indicates transferase (2 at the top level) involved in transferring
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Fig. 6 EC number hierarchy displayed partially as shown by ExPASy Proteomics Server (http://
ca.expasy.org/enzyme/enzyme-byclass.html)

one carbon groups (1 at the second level) as shown in Fig. 6. The KEGG pathway
database [1, 18] uses the EC numbers to indicate enzymes involved in metabolic
pathways.

Transport Classification (TC) System

Almost all transmembrane transport processes are mediated by integral membrane
proteins which are classified using Transporter Classification System [15] (http://
tcdb.ucsd.edu/tcdb/). As compared to EC numbers which are focused only on func-
tion, TC classification is based on both function and phylogeny. According to this
system, the transporters are classified based on five criteria and each of these pro-
vides one component of TC number for a protein. A TC number has usually five
components, A, B, C, D, and E, where A corresponds to the transporter class, B
corresponds to the transporter subclass, C corresponds to the family (or superfam-
ily), D corresponds to subfamily, and E specifies the substrate transported as well as
polarity of transport (in or out).

KEGG Orthology (KO)

The KEGG database includes the KEGG Orthology (KO) [16] database as one of its
components [1, 18]. The primary purpose of KO is to provide the list of orthologous
genes in genomes. KO is structured as a DAG hierarchy that can be effectively
used for the definition of the function of ortholog groups. It has four levels with
the first one consisting of five classes; metabolism, genetic information processing,
environmental information processing, cellular processes, and human diseases, as
shown in Fig. 7. The second level consists of finer functional sub-categories, third

http://ca.expasy.org/enzyme/enzyme-byclass.html
http://ca.expasy.org/enzyme/enzyme-byclass.html
http://tcdb.ucsd.edu/tcdb/
http://tcdb.ucsd.edu/tcdb/
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Fig. 7 KEGG orthology
displayed partially (http://
www.genome.jp/kegg/ko.
html)

level consists of KEGG pathways and fourth one corresponds to functional terms.
The unique feature of the KO is that each entry has links to pathways and reactions
as well as orthologous genes and hence it is convenient to annotate a set of genes
with KO function terms and identify pathways where the genes belong to [16].

Other Biological Ontologies

Along with the aforementioned vocabularies for protein function, there are some
other interesting ontologies that provide annotations to proteins in different domains
specifically for particular species or research communities. Smith et al. [19] have
developed Open Biological and Biomedical Ontologies (OBO) Foundry which
consists of a collaborative effort to merge ontologies, where we can find a wide
variety of open biological ontologies listed on their project website (http://www.
obofoundry.org/). The ontologies include Protein Ontology developed by Protein
Information Resources (PIR, http://pir.georgetown.edu/pro/), which encompasses
evolution and multiple protein forms of a gene, Chemical Entities of Biological
Interest (CHEBI) developed by the European Bioinformatics Institute, which clas-
sifies structures of biologically relevant chemical compounds, and ontologies for
phenotype and anatomy of individual organisms. Such efforts are helping stan-
dardize the representation of domain knowledge across research communities and

http://www.genome.jp/kegg/ko.html
http://www.genome.jp/kegg/ko.html
http://www.genome.jp/kegg/ko.html
http://www.obofoundry.org/
http://www.obofoundry.org/
http://pir.georgetown.edu/pro/
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increase its application. By combining different ontologies, function prediction
methods which output GO terms could be expanded to predict other types of
ontology terms, such as phenotype.

Definition of Functional Similarity

Definition of functional similarity for protein pairs is important when comparing
predictions with actual annotations of proteins to compute the prediction accuracy.
A quantitative functional similarity score is also used as the target function to be
optimized in the course of developing a function prediction method. In this section
we overview several metrics proposed for quantifying functional similarity using
the function ontology. We use the GO here since the proposed metrics are developed
for the GO. However, application of the metrics to the other ontologies should be
straightforward. For a review on this topic, refer to Sheehan et al. [20].

The simplest technique that can be used to compare annotations is head to head
comparisons [21, 22] where we check for exact matches. Its key disadvantage is
that the information embedded in the vocabulary structure is not used. Vocabulary
structure relates terms to each other and with head to head comparisons we will be
penalizing inexact predictions that are close to the actual ones on the GO DAG. Set
based similarity measures have been developed based on head to head comparisons
to match the two objects described using a set of features. Tversky et al. [23] use Eq.
(1) to describe similarity between two objects a and b which have feature sets A and
B respectively, as some function F of features that are common, that only belong to
A and that only belong to B.

sim(a, b) = F(A ∩ B, A − B, B − A) (1)

Another technique [21, 24, 25] that is commonly used for GO annotations is to
base the similarity on the minimum path length between a pair of terms on DAG
or on the fact that ancestors are less specific representation of the same term in
DAG hierarchy. This technique can suffer from drawback that not all parts of GO
are developed equally and not all terms at the same depth in the structure represent
same biological details.

Some techniques describe a protein as a binary vector with 1’s and 0’s specifying
presence and absence of terms in the annotation set of a protein. The similarity
between two such vectors can be defined as a cosine distance (Eq. (2)), where pi

and pj are vectors describing annotations of two proteins. Instead of binary values,
the terms can also be represented as weights based on their frequency of occurrence
in the database reflecting how specific they are [26, 27].

sim(pi, pj) = pi · pj

|pi|
∣
∣pj
∣
∣

= pi · pj√
pi · pi · √

pj · pj
(2)
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In the function prediction category in CASP7 [21], the assessors designed a score
based on the depth of common ancestor between predicted and actual GO terms as
shown in Eq. (3). Each annotation is compared to its closest target prediction which
forms a “computable pair”, and the total score is given by the sum of depths of
common ancestor of all computable pairs normalized by the maximum possible
value of score. Along with this they have also used the head to head comparison of
GO term predictions for comparing different methods.

GOscore = sum of common ancestor depths of computable pairs

sum of annotated terms depth
(3)

Resnik [28] has defined the Information Content (IC) of a term c based on the
frequency of the occurrence of that term in the database as explained in the Eqs.
(4), (5), and (6), where each term’s frequency depends on its children node in the
vocabulary structure because of the is_a relationships in the GO.

freq(c) = annot(c) +
∑

h∈children(c)

freq(h) (4)

p(c) = freq(c)/freq(root) (5)

IC(c) = –log(p(c)) (6)

He has developed a graphical method to compute similarity between two terms
(say c1 and c2) in the taxonomy, by using the IC of their Lowest Common Ancestor
(LCA) term (Eq. (7)). Figure 4 illustrates the concept of LCA by showing that the
LCA of terms Glucoside transport and Glucose transport in the GO hierarchy is the
term transport which is common ancestor for both terms and is located at the maxi-
mum depth in the DAG. Lin [29] further extended this semantic similarity measure
to include information content of both terms being compared along with the infor-
mation content of the ancestor term (Eq. (8)). Lord et al. [30] have first applied this
IC based semantic similarity technique from Eq. (7) to Gene Ontology vocabulary
to compute functional similarity based on protein annotations.

SimLin(c1, c2) = max
c ∈ {common ancestors of c1 and c2} (− log(p(c))) (7)

SimLin(c1, c2) = max
c ∈ {common ancestors of c1 and c2}

(
2 log p(c)

log p(c1) + log p(c2)

)

(8)

These term based similarity scores were extended to develop a pair-wise protein
similarity score by Schlicker et al. [31]. They combined Resnik’s and Lin’s scores
to compute a semantic similarity score for a pair of GO terms as shown in Eq. (9).
To compute the semantic similarity between pair of proteins A and B they used the
pair wise similarity values between the GO annotations GOA and GOB of both pro-
teins respectively. Then scores from two different GO categories were combined to
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finally compute the overall similarity between the given two proteins (Eq. (12)). As
shown in Eq. (10), semantic similarity matrix Sij holds the pair wise similarity scores
for all pairs of annotations from GOA and GOB where set GOA has N annotations
and GOB has M annotations. For these two sets the overall similarity score referred
as GOscore is computed by finding best matched hits for annotations in one of the
directions using either row wise or column wise average of maximums (Eq. (11)).
Further as shown in Eq. (12) BPscore and MFscore values computed using annota-
tion sets from each of these categories are combined to yield the final funsim score
that represents semantic similarity between pair of proteins under consideration.

SimRel(c1, c2) = max
c ∈ {common ancestors of c1 and c2}

(
2 log p(c) · (1 − p(c))

log p(c1) + log p(c2)

)

(9)

Sij = sim(GOi
A, GOj

B), ∀i ∈ {1...N} and ∀j ∈ {1...M} (10)

GOscore = max

⎧

⎨

⎩

(

1

N

N
∑

i=1

max
1 ≤ j ≤ M

Sij

)

,

⎛

⎝
1

M

M
∑

j=1

max
1 ≤ i ≤ N

Sij

⎞

⎠

⎫

⎬

⎭
(11)

funsim = 1

2
·
[(

BPscore

max(BPscore)

)2

+
(

MFscore

max(MFscore)

)2
]

(12)

Methods developed in the last few years have mainly focused on pair-wise pro-
tein similarity, but with the development of high throughput techniques we are
frequently required to functionally interpret a computationally or experimentally
determined set of proteins and check if they are functionally homogeneous [27,
32–37]. Earlier coherence of set of proteins was based mostly on the enrichment
of annotations in the set [38, 39], but it has been shown that average number of
enriched GO annotations in random groups is more than the number in coherent
groups of proteins [37]. This has put forth the need to further develop better pro-
tein group coherence detection methods that can segregate groups of biologically
relevant proteins from random ones.

Chagoyen et al. [27] use Eq. (2) for computing pair wise similarity between
proteins in the set under consideration. Later they aggregate the scores across all
pairs of proteins in the set S to obtain coherence score for the set as shown in
Eq. (13). Statistical significance of this coherence score is computed in the context
of reference set using hypergeometric distribution.

score(S) =

|S|∑
i=1

|S|∑
j=i+1

sim(pi, pj)

|S|(|S| − 1)/2
(13)

Pandey et al. [36] performed similar aggregation basing their pair wise protein
similarity score on the information content of minimum common ancestor set to the
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sets of terms annotating two proteins. For annotations of proteins pi and pj they com-
pute minimum common ancestor term set and find the number of proteins annotated
by all of those terms, which is given by | GΛ(pi, pj) |. Further the pair wise protein
functional similarity score is given by Eq. (14) where Gr is set of all proteins. The
pair wise scores for all pairs of proteins in a set S are averaged in Eq. (15) to obtain
the coherence score for S.

ρI(pi, pj) = −log2

( |G�(pi,pj)|
|Gr|

)

(14)

σA(S) =

|S|∑
i=1

|S|∑
j=i+1

ρI(pi, pj)

|S|(|S| − 1)/2
(15)

Zheng et al. [37] use probabilistic model to extract biologically relevant top-
ics from GO annotation corpus and classify each word from MEDLINE document
abstracts into these topics. A document is semantically represented as count of
the number of words belonging to each of the topics. A bipartite graph called
ProtSemNet is constructed by joining topics obtained from each document with
the proteins associated with that document, where edge weights in the graph are
based on the count of words for the topic. For evaluating functional coherence of
group of proteins, they construct Steiner tree from ProtSemNet for the given group
of proteins where the number of edges and total distance of the tree are used as two
metrics for computing protein group coherence.

Aforementioned techniques offer an interesting new avenue in the domain of
functional similarity by complimenting high throughput techniques which require
formal analysis of groups of proteins.

Limitations of Homology Based Function Transfer
and Erroneous Database Annotations

As an increasing number of genomes are being sequenced, more and more genes
are annotated computationally mainly by using homology search tools, i.e. BLAST
[9] or PSI-BLAST [40], and assigned annotations will be eventually stored in the
public sequence databases [41, 42]. Once these annotations are included in the
databases, they will be used as a source of function information in the annotation
of new genomes. Computational annotations based on homology, however, are
not always trivial [43–45]. There are numerous cases where proteins with high
sequence identity have different functions [46]. Galperin and Koonin discussed
major causes of questionable function assignments. These include taking into
account only the annotation of the best scoring database hit, insufficient masking of
low complexity regions, ignoring multi-domain organization of the query proteins
or the database hits, and non-orthologous gene displacement [47]. It should be also
reminded that proteins which have multiple seemingly unrelated functions in a
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single region (moonlighting proteins) further add complications to description of
protein function [48].

Indeed several studies report potential wrong annotations to genes in genomes.
Brenner compared annotations by three groups to the Mycoplasma genitalium
genome and found that 8% of the genes have serious disagreement [49]. Devos
and Valencia analyzed the different functional descriptions in genes of M. genital-
ium, Haemophilus influenzae, and Methanococcus jannashii relative to the sequence
identity and estimated the error rate of annotations [50]. A recent study by Schnoes
et al. [51] analyzed public databases for misannotations. Their results indicate that
there are significantly less potential misannotations in Swiss-Prot [41], which is
manually curated, as compared with GeneBank [42], TrEMBL [41], and KEGG [1]
for the six superfamilies they studied.

The main problem of erroneous annotations is that they will be reused in anno-
tating newer genes and thus will be propagated in the databases [8]. A model of
error propagation throughout the database shows that it can significantly degrade
overall quality of annotations [52]. Then, how can we avoid the catastrophic deteri-
oration of annotation of databases? First, it is important to examine the validity of
annotations by experts of each protein and organism. Researchers of E. coli K-12
have held a meeting to examine annotations of this important model organism [53].
A recent attempts to use wiki [54] as a tool for community annotation are along
the same direction [55, 56]. Another important direction is to make information and
procedure transparent, which are used to make individual annotation. The afore-
mentioned evidence codes available in the GO database provide such important
information. Also, as a future direction, the architecture of biological database may
need to be improved so that the lineage of annotation, i.e. the software or evi-
dences used to make a particular annotation, homologous sequences from which
the annotation are transferred, etc. can be dynamically tracked [57].

Critical Assessment of Function Prediction Methods

For the last section of this chapter, we would like to introduce community efforts
for objective assessment of protein function prediction methods. As observed in
the structural bioinformatics field, namely, the protein structure prediction and the
protein docking prediction, evaluating methods by a quantitative score using blind
prediction targets can help assessing the status of the field and also stimulates
researchers’ motivation for method development. In the protein structure predic-
tion field, the Critical Assessment of Techniques for Protein Structure Prediction
(CASP, http://predictioncenter.org/) while the Critical Assessment of Predictions
of Interactions (CAPRI, http://www.ebi.ac.uk/msd-srv/capri/capri.html) for the pro-
tein docking prediction have served well for these purposes.

For the protein function prediction, there are two such critical assessments.
The first one is as a Special Interest Group (SIG) held alongside the Intelligent
Systems in Molecular Biology (ISMB) meetings. In 2005, the first meet-
ing for the Automatic Function Prediction Special Interest Group (AFP-SIG)

http://predictioncenter.org/
http://www.ebi.ac.uk/msd-srv/capri/capri.html
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(http://biofunctionprediction.org/) was held at the ISMB conference at Detroit,
Michigan; later meetings were followed in 2006, 2007 and 2008. The meetings
are focused on exchanging ideas for automatic function predictions, which use
protein sequence similarity, motifs, structures, protein-protein interactions, phy-
logeny, and combined data sources [58]. In 2005, they had set up a blind prediction
contest where each participating research group had to provide a web interface
where query sequences can be submitted and prediction results were evaluated
by the organizers (thus fully automatic function prediction). The predictions were
made in terms of GO terms, which were evaluated by using Eq. (7). The subse-
quent past AFP-SIG meetings consisted of only presentations but it was recently
announced that the critical assessment of the methods will be held in the meeting
of 2011.

The CASP has also started the function prediction category from CASP6 in 2004
[59]. In CASP6, predictors were allowed to provide GO terms from all three cat-
egories, binding site, binding, residue role and posttranslational modifications for
each of the targets. As an exploratory category, the prediction groups were not
scored and ranked at that time. In the subsequent CASP7 (2006), predictions were
accepted for GO molecular function terms, EC numbers, and binding sites [21]. The
aforementioned Eq. (3) in the previous section was used to assess the GO term pre-
dictions. In the CASP8 (2008) and CASP9 (2010), the function prediction is only
restricted to ligand binding residue prediction, mainly because binding residues can
be obtained from protein structures solved by experiments and thus can be eas-
ily assessed. In future there are many challenges in front of such blind prediction
competitions: First of all, there should be availability of new functional knowledge
from experimental data to evaluate the results. Also better automatic evaluation
techniques may need to be developed to compare predictions with actual annota-
tions. Finally, there should be good consensus on what types of functions will be
predicted.

Summary

This chapter started with stating the motivation for development function prediction
methods. Then, we overviewed fundamental technical issues for function prediction
methods, including the functional ontologies and metrics for assessing accuracy for
function prediction. Although steady continuous works are needed, these frame-
works, especially functional ontologies, have made it possible to handle protein
function computationally and also have opened up ways to for bioinformatics
researchers to enter this field.
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Enhanced Sequence-Based Function Prediction
Methods and Application to Functional
Similarity Networks

Meghana Chitale and Daisuke Kihara

Abstract After reviewing the underlying framework required for computational
function prediction in the previous chapter, we discuss two advanced sequence-
based function prediction methods developed in our group, namely the Protein
Function Prediction (PFP) method and the Extended Similarity Group (ESG)
method. PFP extends the traditional homology search by incorporating functional
associations between pairs of Gene Ontology terms based on the frequencies of
co-occurrences in annotation of the same proteins in the database. PFP also consid-
ers very weakly similar sequences to the query, thereby increases its sensitivity and
ability to predict low resolution functional terms. On the other hand, ESG recur-
sively searches the sequence similarity space around the query to find consensus
annotations in the neighborhood. The last part of the chapter discusses the net-
work structure of gene functional space built by connecting proteins with functional
similarity. Function annotation was enriched by predictions by PFP. Similarity to
structures of protein-protein interaction networks and metabolic pathway networks
is discussed.

Introduction

In the previous chapter we have seen that there is a strong need to develop accurate
function prediction techniques to deal with the explosive growth of newly sequenced
genomes. The basic approach used for more than a decade is based on homology
based annotation transfer. The assumption underneath this approach is that proteins
that are evolutionarily related are also functionally related [1]. In this chapter we
describe two advanced function prediction techniques, PFP [2, 3] and ESG [4],
developed by our group, which extend the conventional homology search methods.
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