
.

Lecture Notes in Electrical Engineering

For further volumes:
http://www.springer.com/series/7818

Massimo Conti • Simone Orcioni •

Natividad Martínez Madrid •

Ralf E. D. Seepold
Editors

Solutions on Embedded
Systems

123

Editors
Prof. Dr. Massimo Conti
Dip. di Ingegneria Biomedica

Elettronica e Telecomunicazioni
DIBET

Università Politecnica delle Marche
Via brecce bianche 12
Ancona 60131
Italy
e-mail: m.conti@univpm.it

Prof. Dr. Simone Orcioni
Dip. di Ingegneria Biomedica

Elettronica e Telecomunicazioni
DIBET

Università Politecnica delle Marche
Via brecce bianche 12
Ancona 60131
Italy
e-mail: s.orcioni@univpm.it

Prof. Dr. Natividad Martínez Madrid
Computer Science
Reutlingen University
Alteburgstr. 150
Reutlingen 72762
Germany
e-mail: Natividad.martinez@

reutlingen-university.de

Prof. Dr. Ralf E. D. Seepold
Hochschule für Technik,
Wirtschaft und Gestaltung (HTWG)
Hochschule Konstanz
Brauneggerstrasse 55
Konstanz 78462
Germany
e-mail: ralf.seepold@htwg-konstanz.de

ISSN 1876-1100 e-ISSN 1876-1119

ISBN 978-94-007-0637-8 e-ISBN 978-94-007-0638-5

DOI 10.1007/978-94-007-0638-5

Springer Dordrecht Heidelberg London New York

� Springer Science+Business Media B.V. 2011

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: eStudio Calamar, Berlin/Figueres

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Today electronic computation is performed mainly not in personal computers, but
in electronic systems integrated in devices that we use every day, like cars, mobile
phones, household appliances and credit cards. Embedded computing gives a
substantial added value to products. Innovation in many fields such as automotive,
industrial automation, telecommunications, consumer electronics, entertainment
and health equipment is mainly due to embedded computing.

Electronic systems give new features to the device, such as: energy manage-
ment and power reduction, safety and security, comfort and ease to use.

The use of embedded systems in many different fields may help us to find a
solution to problems that are strategic for the future of the world, such as:

• Energy production, management and delivery;
• Control and monitoring of the environment;
• Food production;
• Efficient and sustainable manufacturing;
• Traffic and mobility control and monitoring;
• Security and critical infrastructure protection;
• Home and building automation;
• Healthcare systems;
• Systems for integration of ageing and disabled people.

The book ‘‘Solutions on Embedded Systems’’ presents an overview on several
fields of applied research, like sensor networks, network on chip and multicore
systems, automotive applications, software design, system architectures, design of
low power embedded systems. Each area is covered by a separate part of the book.

v

Contents

Part I Sensor Networks

1 Performance of Gossip Algorithms in Wireless
Sensor Networks. 3
Marco Baldi, Franco Chiaraluce and Elma Zanaj

2 Using a Prioritized Medium Access Control Protocol for
Incrementally Obtaining an Interpolation of Sensor Readings . . . 17
Björn Andersson, Nuno Pereira, Eduardo Tovar
and Ricardo Gomes

3 Embedded Systems in the Poseidon MK6 Rebreather
Microcontroller Network in a Life Supporting System 33
Arne Sieber, Nigel A. Jones, Bill Stone, Richard Pyle, Bernhard Koss
and Kurt Sjöblom

4 Embedded Data Logging Platform for Research in Diving
Physiology Monitoring ECG and Blood Oxygenation
of Apnea Divers . 45
Benjamin Kuch, Remo Bedini, Antonio L’Abbate, Matthias Wagner,
Giorgio Buttazzo and Arne Sieber

5 IEEE 1451 Sensor Interfacing and Data Fusion in Embedded
Systems Gas Leak Detection Case Study in H2 Vehicles 59
Sergio Saponara, Luca Fanucci and Bruno Neri

Part II Network on Chip and Multicore Systems

6 Cost-Based Deflection Routing for Intelligent NoC Switches 77
Martin Radetzki and Adán Kohler

vii

http://dx.doi.org/10.1007/978-94-007-0638-5_1
http://dx.doi.org/10.1007/978-94-007-0638-5_1
http://dx.doi.org/10.1007/978-94-007-0638-5_2
http://dx.doi.org/10.1007/978-94-007-0638-5_2
http://dx.doi.org/10.1007/978-94-007-0638-5_3
http://dx.doi.org/10.1007/978-94-007-0638-5_3
http://dx.doi.org/10.1007/978-94-007-0638-5_4
http://dx.doi.org/10.1007/978-94-007-0638-5_4
http://dx.doi.org/10.1007/978-94-007-0638-5_4
http://dx.doi.org/10.1007/978-94-007-0638-5_5
http://dx.doi.org/10.1007/978-94-007-0638-5_5
http://dx.doi.org/10.1007/978-94-007-0638-5_5
http://dx.doi.org/10.1007/978-94-007-0638-5_6

7 NOCEXplore A SystemC Platform for NoC Analysis 91
Stefano Gigli and Massimo Conti

8 Coverage-Driven Verification of HDL IP Cores Case Study
of a Router for Network-on-Chip Communication
in Embedded Systems . 105
Sergio Saponara, Francesco Vitullo, Esa Petri, Luca Fanucci,
Marcello Coppola and Riccardo Locatelli

9 A Multiprocessor Platform for Efficient Data Processing
in Electronic Musical Instruments A Case Study 121
Marco Caldari, Franco Ripa and Massimo Conti

10 A Distributed Hardware Algorithm for Scheduling Dependent
Tasks on Multicore Architectures . 135
Lorenzo Di Gregorio

Part III Automotive

11 Automotive Embedded Systems The Migration Challenges
to a Time Triggered Paradigm . 155
Eric Armengaud, Allan Tengg, Mario Driussi, Michael Karner,
Christian Steger and Reinhold Weiß

12 An Embedded Datalogger with a Fast Acquisition Rate
for In-vehicle Testing and Monitoring Automotive Testing 173
Gioacchino Fertitta, Antonio Di Stefano, Giuseppe Fiscelli
and Costantino G. Giaconia

13 Secure Gateway Interoperability . 185
Álvaro Reina, Jesús Sáez, Natividad Martínez Madrid
and Ralf Seepold

Part IV Software and System Architecture

14 Applying Bayesian Networks for Intelligent Adaptable
Printing Systems . 201
Arjen Hommersom, Peter J.F. Lucas, René Waarsing
and Pieter Koopman

viii Contents

http://dx.doi.org/10.1007/978-94-007-0638-5_7
http://dx.doi.org/10.1007/978-94-007-0638-5_8
http://dx.doi.org/10.1007/978-94-007-0638-5_8
http://dx.doi.org/10.1007/978-94-007-0638-5_8
http://dx.doi.org/10.1007/978-94-007-0638-5_9
http://dx.doi.org/10.1007/978-94-007-0638-5_9
http://dx.doi.org/10.1007/978-94-007-0638-5_10
http://dx.doi.org/10.1007/978-94-007-0638-5_10
http://dx.doi.org/10.1007/978-94-007-0638-5_11
http://dx.doi.org/10.1007/978-94-007-0638-5_11
http://dx.doi.org/10.1007/978-94-007-0638-5_12
http://dx.doi.org/10.1007/978-94-007-0638-5_12
http://dx.doi.org/10.1007/978-94-007-0638-5_13
http://dx.doi.org/10.1007/978-94-007-0638-5_14
http://dx.doi.org/10.1007/978-94-007-0638-5_14

15 Applicability of Virtualization to Embedded Systems
Tackling Complexity by ‘‘Divide and Conquer’’ 215
Robert Kaiser

16 Distributed Trading Architecture with Sensors Support
for a Secure Decision Making . 227
Javier Martínez Fernández, Ralf Seepold
and Natividad Martínez Madrid

17 Migrating from a Proprietary RTOS to the OSEK Standard
Using a Wrapper A Feasibility Study . 241
Joachim Denil, Serge Demeyer, Paul De Meulenaere, Kurt Maudens
and Kris Van Stechelman

Part V Power Aware Design

18 A Sigma–Delta Controlled Power Converter for Energy
Harvesting Applications . 257
Rocco d’Aparo, Simone Orcioni and Massimo Conti

19 Energy Efficient Data Transmission of On-Chip Serial Links
A Case Study . 271
George Kornaros

20 Powersim: Power Estimation with SystemC Computational
Complexity Estimate of a DSR Front-End Compliant to ETSI
Standard ES 202 212 . 285
Marco Giammarini, Simone Orcioni and Massimo Conti

21 Power Analysis of Embedded Systems The PKtool
Simulation Environment . 301
Giovanni B. Vece and Massimo Conti

Contents ix

http://dx.doi.org/10.1007/978-94-007-0638-5_15
http://dx.doi.org/10.1007/978-94-007-0638-5_15
http://dx.doi.org/10.1007/978-94-007-0638-5_15
http://dx.doi.org/10.1007/978-94-007-0638-5_15
http://dx.doi.org/10.1007/978-94-007-0638-5_16
http://dx.doi.org/10.1007/978-94-007-0638-5_16
http://dx.doi.org/10.1007/978-94-007-0638-5_17
http://dx.doi.org/10.1007/978-94-007-0638-5_17
http://dx.doi.org/10.1007/978-94-007-0638-5_18
http://dx.doi.org/10.1007/978-94-007-0638-5_18
http://dx.doi.org/10.1007/978-94-007-0638-5_19
http://dx.doi.org/10.1007/978-94-007-0638-5_19
http://dx.doi.org/10.1007/978-94-007-0638-5_20
http://dx.doi.org/10.1007/978-94-007-0638-5_20
http://dx.doi.org/10.1007/978-94-007-0638-5_20
http://dx.doi.org/10.1007/978-94-007-0638-5_21
http://dx.doi.org/10.1007/978-94-007-0638-5_21

Chapter 1
Performance of Gossip Algorithms
in Wireless Sensor Networks

Marco Baldi, Franco Chiaraluce and Elma Zanaj

1.1 Introduction

Ad-hoc wireless sensor networks are peer-to-peer systems formed by many small
and simple devices, able to measure some quantities and to transmit their measured
values to neighboring nodes. In such networks, nodes communicate in order to
merge their single contributions into a common result. This also occurs in aver-
aging problems, whose target is to calculate, in a distributed manner, the average
value of a quantity of interest (e.g., temperature). Because of their features, these
networks are suitable for many purposes, as environmental monitoring applica-
tions, allowing accurate control over large areas with favorable cost-to-benefit
ratio [1]. Among these applications, however, hostile environments and scenarios
of natural and man-made disasters represent great challenges, in which the net-
work availability must be ensured, in spite of a number of possible impairments.

Among the several protocols that are available nowadays for sensors commu-
nication, an increasing attention has been devoted to simple decentralized proce-
dures based on the gossip principle, through which the computational burden is
distributed among all nodes.

M. Baldi and F. Chiaraluce (&)
Dipartimento di Ingegneria Biomedica, Elettronica e Telecomunicazioni, Facoltà di
Ingegneria, Università Politecnica delle Marche, Ancona, Italy
e-mail: f.chiaraluce@univpm.it

M. Baldi
e-mail: m.baldi@univpm.it

E. Zanaj
Departamenti i Elektronikes dhe Telekomunikacionit, Fakulteti i Teknologjise se
Informacionit, Universiteti Politeknik i Tiranes, Tirana, Albania
e-mail: ezanaj@gmail.com

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_1,
� Springer Science+Business Media B.V. 2011

3

The gossip algorithm was originally conceived for telephone networks [2, 3].
When gossip is applied in sensor networks, noting by xi and xj the local measures of
the i-th and j-th nodes, an interaction among them updates one or both their values,
that are then used for a subsequent interaction. The communication protocols can be
managed either in a synchronous or in an asynchronous way, but the latter is more
practical, because of its inherent simplicity. So, in this chapter, we will limit to
consider an asynchronous time model, in which any node has a clock which ticks
independently at the times of a rate 1 Poisson process. Therefore, the inter-tick
times at any node are rate 1 exponentials, independent across nodes and over time.

Various implementations of gossip for averaging problems are possible; they all
aim at estimating the mean value of the sensed quantity. More precisely, let us denote
by N the number of nodes and by x(k) = [x1(k), x2(k), …, xN(k)]T the vector of the
estimates of all nodes after k clock ticks (superscript T denotes the transpose operation).

The target of the algorithm is to find a reliable measure of the average value xave ¼
PN

i¼1 xið0Þ
�

N in the shortest possible time, that is, maximizing the convergence speed.
In a first implementation, called ‘‘basic gossip’’ in the following, an interaction

among the i-th and j-th nodes produces as output xi(k ? 1) = xj(k ? 1) = xi(k)/
2 ? xj(k)/2, that is used by both nodes for the subsequent interaction [4]. A variant
of this proposal consists in the so-called ‘‘push-sum’’ algorithm [5]. According
with such protocol, a node forwards a share of its values, properly defined, to one
of its neighbors, randomly selected, while keeping the remaining part. The per-
formance of the push-sum algorithm depends on the choice of the share, which
therefore represents a degree of freedom to optimize.

Both the basic gossip and the push-sum algorithm are point-to-point protocols.
However, in a wireless network, when a node transmits, all nodes in its coverage
area can receive the transmitted data. This suggests implementing a ‘‘broadcast’’
algorithm to reduce the averaging time.

Although the fundamentals of the considered protocols are well known and a
number of papers on these topics already appeared in previous literature, several issues
are still open. Among them, we have mentioned above the problem of optimizing the
share values in the push-sum algorithm. In [5], the authors limited to say that the choice
of the shares may be deterministic or random, and may or may not depend on the time,
without providing, however, a numerical evidence of the impact resulting from the
different choices. The same was, at our best knowledge, in the subsequent literature.
Only very recently, in [6], we presented a first set of numerical and theoretical results
on this issue, focusing on ring and random geometric graph topologies.

Another relevant topic, rarely explored in the past, concerns the evaluation of
the performance of gossip algorithms in the presence of link failures. Actually,
when averaging algorithms are adopted in wireless sensor networks, the shadow
fading or other kinds of radio impairments could prevent some links from being
used, due to their poor quality in terms of signal-to-noise ratio.

The study of networks with link failures could seem not different from that of
non-fully-meshed networks, where, because of a limited coverage radius, each node
can reach directly only a limited set of neighbors, being linked to the others only

4 M. Baldi et al.

through multiple hops (which means to pass through intermediate nodes). Really,
the two situations are rather different; failures can be modeled as a stochastic
phenomenon, and when a percentage x of links fail, malfunctions are generally
distributed at random, without any specific correlation between distinct failures.
Obviously, in some cases, failures may be due to mechanisms involving simulta-
neously a number of nodes that are close one each other; but this appears as a
particular case, while the uncorrelation assumption seems more suitable to model
practical situations. In this chapter, the convergence speed of the selected gossip
algorithms, in presence of random link failures throughout the network, is inves-
tigated. Our analysis is mainly based on numerical simulations, but some theoret-
ical issues are also discussed, particularly in regard to the share optimization when
the push-sum approach is applied. We develop a number of comparisons, with the
aim to show the limits and potentialities of the considered techniques.

In Sect. 1.2 we define the considered gossip versions. In Sect. 1.3 we introduce
the simulation parameters and describe the graph whose performance in the
presence of link failures will be investigated afterwards. In Sect. 1.4 we face, from
a theoretical viewpoint, the problem of the share factor optimization in the push-
sum algorithm; an analytical approach is developed, based on the computation of
the potential function. In Sect. 1.5 we present a number of simulation results, first
considering the various algorithms separately, and then in comparative terms.
Most of the chapter contents were originally presented in [7].

1.2 The Considered Gossip Algorithms

1.2.1 Basic Gossip

The basic gossip algorithm is very simple, and has been briefly described in
Sect. 1.1. Its main steps are as follows:

1. Node i chooses (at random) another node, j, inside its coverage area.
2. Nodes i and j split their information into two equal parts, xi(k)/2 and xj(k)/2,

keeping one part and sending the other.
3. Nodes i and j calculate their new estimates by adding the received value to that

already stored: xi(k ? 1) = xj(k ? 1) = [xi(k) ? xj(k)]/2.

The choice of j is done according with a uniform distribution, conditioned on
the value of the Euclidean distance Dij between nodes i and j. In other words, the
probability that node i contacts node j (= i) when it is selected for transmission is
given by:

pij ¼
1
di
; Dij� r;

0; Dij [r;

�

ð1:1Þ

where di is the number of nodes within its coverage area, that is delimited by a
coverage radius r, assumed to be equal for all nodes. So, the coverage radius

1 Performance of Gossip Algorithms in Wireless Sensor Networks 5

represents the maximum distance at which a node can transmit reliably. Clearly, in
order to recognize the nodes inside the coverage area, a query session is required,
before interaction starts. We suppose that each node performs a very simple query
aimed at knowing the number of reachable neighbors, di, in its coverage area.
More sophisticated localization strategies [8] can be adopted, that permit to
implement more efficient versions of averaging algorithms. In [9], for example, a
geographic gossip has been proposed, based on greedy routing, that is potentially
able to provide remarkable gains. But applicability of this kind of protocols, where
each node must compute and compare a large number of distances from a prefixed
target, seems difficult. For this reason, we have not included these gossip versions
in our study. Alternatively, the selection probabilities could be optimized with the
final goal to maximize the convergence speed [4] but, once again, this would make
more involved the interaction while not providing, in many cases, substantial
improvements [10].

The probabilities pij can be collected in a matrix P, with N 9 N entries. This
matrix is stochastic, i.e., each of its rows sums to 1. On the other hand, if the link
between i and j fails, the corresponding pij is set equal to zero. In this case, matrix
P is no longer stochastic, and the i-th node has a probability to communicateP

j pij\1. In other words, if the link between i and j fails, at some clock tick the i-th
node tries transmitting to the j-th node without success, thus wasting the commu-
nication attempt. Obviously, this reflects on the averaging time, which increases in
a manner dependent on the number of faulty links and their distribution.

1.2.2 Push-Sum Algorithm

The push-sum protocol proceeds as follows. At the i-th node, with i = 1, 2, …, N,
two quantities are stored and updated through the interaction with the other nodes:
they are named si(k) and wi(k), respectively. These quantities satisfy the following
mass conservation properties, for any k:

XN

i¼1

siðkÞ ¼
XN

i¼1

xið0Þ ¼ Nxave;
XN

i¼1

wiðkÞ ¼ N: ð1:2Þ

When the protocol starts, that is, once having acquired the sensed values, we
have si(0) = xi(0) and wi(0) = 1, Vi. Later, if the clock of the i-th node ticks at the
k-th time instant (let us remind that transmission is asynchronous in the considered
system), it selects randomly one of its neighbors, say j, and sends to it a fraction
(1 – a) of its parameters, while it retains the remaining fraction a. So, the
parameters at nodes i and j are modified as follows:

siðk þ 1Þ ¼ asiðkÞ; wiðk þ 1Þ ¼ awiðkÞ;
sjðk þ 1Þ ¼ sjðkÞ þ ð1� aÞsiðkÞ;

wjðk þ 1Þ ¼ wjðkÞ þ ð1� aÞwiðkÞ;
ð1:3Þ

6 M. Baldi et al.

while the parameters at all the other nodes remain unchanged. This way, condi-
tions (1.2) are certainly satisfied. A new estimate at the interacted nodes is then
derived as xm(k ? 1) = sm(k ? 1)/wm(k ? 1), with m = i, j.

In [5], where, besides point-to-point communications, also broadcast trans-
missions were considered, a more general mechanism was applied, where the share
factor can be different for any node and even variable in time. This model,
however, seems too involved for practical applications; so, we prefer to consider a
single and constant a, whose value should be optimized in order to achieve the
fastest convergence speed.

On the other hand, a bidirectional version of the push-sum algorithm could also
be adopted where, every time node i contacts node j, sending to it a fraction of its
message, node j does the same, sending to node i a share of its own message. It is
possible to demonstrate (details are omitted for saving space) that, at least for a
fully-meshed network, the optimum share for this case is 1/2. So, under this
choice, such modified version of the push-sum algorithm practically becomes
identical to the basic gossip.

1.2.3 Broadcast Algorithm

The idea to implement a broadcast algorithm originates from the observation that,
when a node transmits some information, all the other nodes in its coverage area are
able to receive the transmitted data. This suggests implementing a broadcast
averaging algorithm that, at the expense of a slight increase in complexity, allows
reducing significantly the averaging time. This broadcast algorithm is unidirec-
tional, as the information flows from a transmitting node to a number of receiving
nodes (depending on the coverage radius and the random nodes distribution) but not
in the opposite sense. Similarly to the push-sum algorithm, the i-th node maintains a
sum, si(k), and a weight, wi(k). When the algorithm starts, that is for k = 0, we have
wi(0) = 1 and si(0) = xi(0), that coincides with the initial sensed value at node
i. When the i-th node’s clock ticks, say at step k, the node splits its information into
a number of parts; it may keep the first, so that [wi(k ? 1), si(k ? 1)] = ai[wi(k),
si(k)], while it sends to each neighbor j one of the remaining parts: aij[wi(k), si(k)].
Node j receives the transmission and updates its values by adding the received ones,
so that [wj(k ? 1), sj(k ? 1)] = [wj(k), sj(k)] ? aij[wi(k), si(k)]. As stated in the
expressions, this mechanism is ruled by the share parameters, ai and aij, that can be
collected in a matrix A, having aii = ai along the main diagonal. The elements of A,
that satisfy the condition Rjaij = 1, can be chosen at random or following some
suitable deterministic rule. Although different laws [11] can be adopted, in [12] we
showed that good results are obtained assuming ai = 0 and:

aij ¼
1
di

Dij� r; j 6¼ i;
0 Dij [r:

�

ð1:4Þ

1 Performance of Gossip Algorithms in Wireless Sensor Networks 7

1.3 Simulation Parameters

The convergence speed of the considered protocols is evaluated through the
computation of the normalized difference between the estimated average and the
true average. More precisely, we determine in R simulations (with R sufficiently
large) the random variable e(k) = ||x(k) – xave1||/||x(0)||, where ||x|| denotes the l2
norm of vector x and 1 is the vector of all ones. A set of R curves em(k) is obtained,
m = 1 … R, that are averaged in order to compute:

eðkÞh i ¼ 1
R

XR

m¼1

emðkÞ ð1:5Þ

which has the meaning of estimated mean curve. In order to average over possible
different initial conditions, x(0) is randomly changed at the beginning of
each simulation. According to the probability theory, it is known that

limR!1 eðkÞh i ¼ deðkÞ, where deðkÞ represents the true average of e(k). Once having
determined (1.5), the averaging time is defined as the number of clock ticks, say
k*, that permits to have a normalized difference smaller than, or equal to, a
prefixed value, for example e(k*) B 10-10.

In this chapter, simulations are done over a random geometric graph (RGG),
where nodes are randomly distributed in a unit square, according with a 2D
homogeneous Poisson point process. The number of neighbors, di, the i-th node is
linked to, gives its nodal degree. In the case of regular graphs (like the ring, for
example) di is equal for all nodes, and it is a direct measure of the connectivity
level of the network. On the other hand, in general, each node is characterized by
the coverage radius r; for the RGG, even assuming that all nodes have the same r,
the nodal degree is generally not unique. Moreover, for each value of r, the
connectivity level can vary from graph to graph. So, an average nodal degree, dh i,
must be computed for the analysis purposes. The behavior of dh i, as a function of
r, is shown in Fig. 1.1; for each value of the coverage radius, 100 RGGs have been
randomly generated, and their nodal degrees have been averaged.

As one of the objects of our study is to compare the impact of failures against
that of a limited r, we suppose to start with a fully-meshed network (that implies to

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

10

20

30

40

50

<
d>

r

Fig. 1.1 Average value of d,
computed over 100 random
geometric graphs

8 M. Baldi et al.

have r�
ffiffiffi
2
p

on the unit square) and to eliminate, at random, a fraction x of its
links. So, while in absence of failures the network connectivity is N - 1 (see
Fig. 1.1), in the new scenarios the average value of d becomes approximately:

dh i ¼ N � 1ð Þ 1� xð Þ: ð1:6Þ

The validity of (1.6) has been confirmed through simulation.

1.4 Share Factor Optimization

As mentioned in Sect. 1.2.2, for the push-sum algorithm an important issue con-
cerns optimization of the share factor a that appears in (1.3). A useful analytical
tool, in this sense, is provided by the potential function method.

Let us consider a vector vi(k) whose components, vij(k), are such that:

siðkÞ ¼
XN

j¼1

vijðkÞxjð0Þ: ð1:7Þ

The following condition holds: wiðkÞ ¼
P

j vijðkÞ. So, if vi(k) is nearly pro-
portional to the all-one vector, then xi(k) = si(k)/wi(k) is close to the true average.
The potential function at time k is defined as follows [5]:

UðkÞ ¼
XN

i¼1

XN

j¼1

vijðkÞ �
wiðkÞ

N

� �2

: ð1:8Þ

In the limit case of all nodes perfectly aware of the true average, the potential
function is null. Therefore, evaluating the mean potential function, for any k,
permits us to estimate the convergence speed of the algorithm.

More precisely, assuming that, at instant k, node l is selected as the transmitter
and node m as the receiver, the following difference between the potential func-
tions at time instants k and k ? 1 can be easily derived:

dU ¼ UðkÞ � Uðk þ 1Þ ¼ 2að1� aÞ
XN

j¼1

vljðkÞ �
wlðkÞ

N

� �2

� 2ð1� aÞ
XN

j¼1

vljðkÞ �
wlðkÞ

N

� �

� vmjðkÞ �
wmðkÞ

N

� �

: ð1:9Þ

In the following of this section we will omit, for the sake of simplicity, the
argument k. We wish to compute the average of (1.9) over all possible choices,
uniformly distributed, of the transmitting and receiving nodes. For a fully-meshed
network, through simple algebra, it is possible to find:

1 Performance of Gossip Algorithms in Wireless Sensor Networks 9

dUh i ¼ 2
N

að1� aÞ þ 1� a
N � 1

� �

U; ð1:10Þ

where U = U(k). A criterion for optimizing the value of a can consist in maxi-
mizing dUh i=U. According with its own meaning, in fact, to have a large dUh i, for
a given U, should reflect in a high convergence speed. Now, from (1.10), dUh i=U
is maximum for:

aopt ¼
N � 2

2ðN � 1Þ; ð1:11Þ

and, for N sufficiently large, such value can be approximated by 0.5.
In the case of non-fully-meshed network, instead, that can occur because of a

limited value of r and/or the appearance of link failures, Eq. 1.10 is no longer
valid, and must be replaced as follows:

dUh i ¼ 2að1� aÞ
N

Uþ 2ð1� aÞ
N

XN

j¼1

XN

l¼1

1
dl

vlj �
wl

N

� �2

� 2ð1� aÞ
N

XN

j¼1

XN

l¼1

1
dl

X

m2Cl

vlj �
wl

N

� �
vmj �

wm

N

� �
; ð1:12Þ

where Cl is the subset of nodes that includes node l and the nodes it is linked to.
The higher complexity of (1.12), with respect to (1.10), is evident. First of all, a
new contribution has been added, that is null in the case of a fully-meshed net-
work, because of the mass conservation property (1.2). Secondly, it seems not
possible to evidence, at the right side, the potential function U, that is a necessary
step toward maximization of hdUi/U.

To circumvent the problem, we introduce the position 1=dl � 1=dh i, Vl = 1…
N. Based on this approximation, Eq. 1.12 can be rewritten as:

dUh i � 2
N

að1� aÞ þ 1
d

	

1� að Þ
� �

U

� 2ð1� aÞ
N

1
d

	
XN

j¼1

XN

l¼1

X

m2Cl

vlj �
wl

N

� �
vmj �

wm

N

� �
: ð1:13Þ

However, the problem of evaluating the last term remains. An estimation of
such term can be obtained, based on the definition of Laplacian matrix [13], as
reported next. The Laplacian matrix Q(G) of a graph G(V, E), where V is the
vertex set containing the N nodes and E is the edge set, is an N 9 N matrix whose
elements are defined as follows:

Qij ¼
di if i ¼ j;
�1 if i 6¼ j and ði; jÞ 2 E;
0 otherwise:

8
<

:
ð1:14Þ

10 M. Baldi et al.

The eigenvalues of Q are called the Laplacian eigenvalues. They are all real and
non-negative, and satisfy the condition: 0 = k1 B k2 B … B kN. k2 is also known
as the algebraic connectivity, and is particularly important; it is equal to zero only
if G is disconnected. Other properties of matrix Q and its eigenvalues can be found
in the literature (see [14], for example).

Let yij = vij - wi/N, i = 1… N, be the components of a vector yj. Through
simple algebra, Eq. 1.13 can be rewritten as follows:

dUh i ¼ �2ð1� aÞ2

N
Uþ 1

d

	

2ð1� aÞ

N

XN

j¼1

yT
j Qyj: ð1:15Þ

Let us define z = (y1
T, y2

T,…, yN
T)T; it is evident that zTz = U. Moreover, let us

consider a block matrix L, with size N2 9 N2, having N repetitions of Q along the
main diagonal and all the other blocks equal to the null matrix. Also L can be
interpreted as a Laplacian matrix, whose eigenvalues coincide with those of Q, but
each appears with multiplicity N. Using these further definitions, Eq. 1.15 can be
rewritten as:

dUh i ¼ �2ð1� aÞ2

N
þ 1

d

	

2ð1� aÞ

N
RQ

" #

U; ð1:16Þ

having denoted by RQ ¼ zT Lz=zT z the so-called Rayleigh quotient. So, the value
of a that maximizes dUh i=U results in:

aopt ¼ 1� 1
d

	

RQ
2
: ð1:17Þ

Because of the Courant–Fischer minimax theorem [15], we have k2�RQ� kN .
As a confirmation of the correctness of (1.17), we can observe that, in the case of a
fully-meshed network, all the eigenvalues ki, with i C 2, are equal to N and Eq.
1.17 becomes equal to Eq. 1.11. In general, the value of RQ is not easy to
determine. So, we simplify the problem by approximating RQ with the average of
the non-null eigenvalues, i.e.:

RQ �
PN

i¼2 ki

N � 1
: ð1:18Þ

In [6] we verified that the value of aopt obtainable from this assumption, in case
of r \ 0.6, can be rather different from the actual optimum value. On the contrary,
because of the hypothesis of randomly distributed failures, approximation (1.18) is
much more acceptable when the nodal degree reduction is due to faulty links. This
remark will be confirmed in Sect. 1.5.

By employing the analytical approach, for an RGG with N = 50 and
10 \ dh i\ 49, we have found 0.39 \ aopt \ 0.49. As, from (1.6), such range of
values of dh i corresponds to x \ 0.796, we can expect that aopt does not change
significantly, even for very large failure rates. This conclusion will be confirmed,

1 Performance of Gossip Algorithms in Wireless Sensor Networks 11

in the following section, through numerical simulations, and is different from that
occurring in the case of limited coverage radius, where, in the same range of dh i,
aopt can become as low as 0.2.

1.5 Results

In this section we present a number of simulation results for the RGG with
N = 50. Table 1.1 shows the values of dh i, together with the coverage radius r (for
a non-fully-meshed network with no failures) and the link failure rate x (for a
fully-meshed network affected by failures). In the table, each row specifies r and
x that determine (nearly) the same average connectivity level. So, we are able to
compare the impact of the two different mechanisms that may be responsible for
the reduction in the network connectivity. In the following, the pairs determining
the same connectivity level will be denoted by r/x.

1.5.1 Basic Gossip

The simulated curves of mean normalized error are shown in Fig. 1.2. We can fix
the attention on a specific error value and compare the k* needed. A couple of

Table 1.1 Coverage radius
and failure rates producing
nearly identical average
connectivity

Limited r (x = 0) dh i Failure rate x r�
ffiffiffi
2
p� �

0.3 11.8 0.76
0.4 18.6 0.63
0.5 26.2 0.48
0.6 32.7 0.35
0.7 38.4 0.23
0.8 43.1 0.14
0.9 46.4 0.07

0 500 1000 1500 2000 2500 3000
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

<
e(

k)
>

k

(a)

0 500 1000 1500 2000 2500 3000
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

<
e(

k)
>

k

(b)

Full mesh
x = 0.76
x = 0.63
x = 0.48
r = 0.3
r = 0.4
r = 0.5

Full mesh
x = 0.35
x = 0.23
x = 0.14
r = 0.6
r = 0.7
r = 0.8

Fig. 1.2 e kð Þh i for some values of radius and failure rate x (basic gossip algorithm)

12 M. Baldi et al.

numerical examples are shown in Table 1.2; the k* for the starting full-mesh
network with no link failures is also reported as a benchmark. We notice that both
mechanisms increase the convergence time, but the impact of the limited radius is
stronger. In other words, for a given value of dh i, to achieve the target requires a
longer time (higher k*) when the network is non-fully-meshed because of the
limited coverage radius.

1.5.2 Push-Sum Algorithm

One problem for the push-sum algorithm is the optimization of the share factor a.
The theoretical analysis developed in Sect. 1.4 gives a solid reference that,
however, needs to be verified. For this purpose, we have considered 0.1 B x B 0.9
and, for any value of the failure rate x, we have determined aopt as the value of a
minimizing the averaging time over a large number of repetitions of the random
experiment. The result obtained is shown in Fig. 1.3, as a function of the average
nodal degree. The curve is rather irregular but the optimal a is comprised between
0.43 and 0.48, which is in line with the results of the analysis in Sect. 1.4. The
theoretical approach is not able to distinguish between the case of a limited radius
and that of link failures. From the figure, we see that the actual network behavior is
well predicted by the theory when missing links are distributed at random. When
they follow from a limited coverage radius, instead, numerical simulations give
results significantly different from theoretical expectations, particularly for low
connectivity levels (see dashed line in Fig. 1.3).

Based on the simulation results, we can also say that the optimal value of a is
close to 0.5 for the case of random faults, practically for any value of dh i

Table 1.2 Number of clock
ticks required to reach
e k�ð Þh i ¼ 10�10

r/x k* (limited radius) k* (random failures)

C
ffiffiffi
2
p

/0 2,165 2,165

0.6/0.35 2,661 2,210
0.4/0.63 [3,000 2,347

10 15 20 25 30 35 40 45 50
0.20

0.25

0.30

0.35

0.40

0.45

0.50

α op
t

<d>

Theoretical
Simulation (limited radius)
Simulation (random faults)

Fig. 1.3 Simulated aopt for
the push-sum algorithm

1 Performance of Gossip Algorithms in Wireless Sensor Networks 13

(as observed, this is predicted by the theory), while smaller values should be
adopted for a in the case of limited radius, particularly when r \ 0.6. This
statement is confirmed in Fig. 1.4, where a = 0.3 and a = 0.5 have been con-
sidered for both situations.

While in case of link failures the result for a = 0.5 is better than that for
a = 0.3, if we focus on the results obtained with a significantly limited radius
(r \ 0.6), the opposite occurs for the non-fully-meshed network, where the smaller
(although not necessarily optimum) value of a reduces the convergence time. We
see that, for both values of a, the impact of faulty links is stronger than that of a
limited coverage radius. This is an important difference between the behavior of
the bidirectional algorithm (basic gossip) and the unidirectional one (push-sum).
More will be said in Sect. 1.5.4 about the comparison between the two approaches.

1.5.3 Broadcast Algorithm

The analysis developed in the previous sections has been repeated for the
broadcast algorithm. The results are shown in Fig. 1.5, for some values of dh i.
From the figure, we observe that the behavior of the broadcast algorithm is similar

0 500 1000 1500 2000 2500 3000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

10 0
<

e(
k)

>

k
0 500 1000 1500 2000 2500 3000

10-7

10-6

10-5

10-4

10-3

10-2

10-1

10 0

<
e(

k)
>

k

(a) (b)

x = 0.76
x = 0.63
x = 0.07
r = 0.3
r = 0.4
r = 0.9

Full mesh Full mesh
x = 0.76
x = 0.63
x = 0.07
r = 0.3
r = 0.4
r = 0.9

Fig. 1.4 e kð Þh i for some values of coverage radius r and failure rate x by using the push-sum
algorithm with a a = 0.3 and b a = 0.5

0 500 1000 1500 2000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
<

e(
k)

>

k

Full mesh

x = 0.63
x = 0.07
r = 0.3
r = 0.4
r = 0.9

x = 0.76

Fig. 1.5 e kð Þh i for some
values of radius r and failure
rate x (broadcast algorithm)

14 M. Baldi et al.

to that of the basic gossip and, for the same dh i, convergence of the faulty network
is usually faster than that of the non-fully-meshed network.

1.5.4 Performance Comparison

For the sake of comparison, some results for the various algorithms and some pairs
r/x are summarized in Fig. 1.6. As expected, the broadcast algorithm exhibits the
fastest convergence to the average value, due to its point-to-multipoint nature.
However, the basic gossip algorithm is also able to achieve good performance,
though being simpler and requiring interaction only between couples of nodes. Its
loss in terms of clock ticks, with respect to the broadcast algorithm, is usually
limited within 30%. Moreover, there are situations, for very small coverage radius,
where the basic gossip outperforms the broadcast algorithm (see the case r = 0.3
in Fig. 1.6b).

Performance of the push-sum algorithm is worse. For a network with good
connectivity (see Fig. 1.6a), the push-sum algorithm requires approximately a
doubled number of clock ticks with respect to the gossip algorithm to reach the
same e kð Þh i. This can be justified by considering that, in push-sum, each inter-
action is unidirectional, while in the basic gossip it is bidirectional. If comparison
is made on the number of transmissions, the efficiencies of basic gossip and push-
sum become similar.

1.6 Conclusion

We have developed a numerical analysis of the averaging time for basic gossip,
push-sum and broadcast algorithms, taking into account the impact of link failures,
randomly distributed in the network. In spite of its practical importance, this topic
has been rarely debated in previous literature.

0 500 1000 1500 2000 2500 3000
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
<

e(
k)

>

k
0 500 1000 1500 2000

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

<
e(

k)
>

k

(a) (b)
Gossip r = 0.9
Gossip x = 0.07
Push-sum r = 0.9
Push-sum x = 0.07
Broadcast r = 0.9
Broadcast x = 0.07

Gossip r = 0.3
Gossip x = 0.76
Push-sum r = 0.3
Push-sum x = 0.76
Broadcast r = 0.3
Broadcast x = 0.76

Fig. 1.6 e kð Þh i for the considered averaging algorithms in the case of ar = 0.9/x = 0.07 and
br = 0.3/x = 0.76; optimum shares have been used for push-sum

1 Performance of Gossip Algorithms in Wireless Sensor Networks 15

Some important conclusions can be drawn from our analysis. First of all, we
have demonstrated that the convergence of the algorithms is preserved, on average,
regardless of the solution adopted, up to acceptably low values of the mean nor-
malized error.

Then, we have verified that the share factor, when applicable, should be opti-
mized for taking into account the network connectivity. However, starting from the
results known for fully-meshed networks, the optimum share factor for the push-
sum algorithm is less sensitive to the failure rate than to the limited coverage
radius, which is another common reason for reduced connectivity. Moreover, the
assumption of a random distribution for the link failures makes applicable an
approximate, and inherently simple, analytical approach, based on the potential
function, that instead does not provide equally accurate solutions for the case of
limited coverage radius.

References

1. Barrenetxea G et al (2007) DemoAbstract: SensorScope, an urban environmental monitoring
network. In: 4th European conference on wireless sensor networks (EWSN 2007), Delft,
Netherlands, Jan 2007

2. Baker B, Shostak R (1972) Gossips and telephones. Discrete Math 2(3):191–193
3. Berman G (1973) The gossip problem. Discrete Math 4(1):91
4. Boyd S, Ghosh A, Prabhakar B, Shah D (2006) Randomized gossip algorithms. IEEE Trans

Inf Theory 52(6):2508–2530
5. Kempe D, Dobra A, Gehrke J (2003) Gossip based computation of aggregate information. In:

IEEE conference on foundation of computer science, Cambridge, MA, Oct 2003, pp 482–491
6. Zanaj E, Baldi M, Chiaraluce F (2009) Optimal share factors in the push-sum algorithm for

ring and random geometric graph sensor networks. J Commun Softw Syst 5(1):9–18
7. Baldi M, Chiaraluce F, Zanaj E (2009) Fault tolerance in sensor networks: performance

comparison of some gossip algorithms. In: 7th international workshop on intelligent solutions
in embedded systems (WISES 2009), Ancona, Italy, June 2009, pp 11–20

8. Patwari N, Ash JN, Kyperountas S, Hero AO III, Moses RL, Correal NS (2005) Locating the
nodes: cooperative localization in wireless sensor networks. IEEE Signal Process Mag
22(4):54–69

9. Dimakis AG, Sarwate AD, Wainwright MJ (2008) Geographic gossip: efficient averaging for
sensor networks. IEEE Trans Signal Process 56(3):1205–1216

10. Zanaj E, Baldi M, Chiaraluce F (2007) Efficiency of the gossip algorithm for wireless sensor
networks. In: 2007 international conference on software, telecommunications and computer
networks (SoftCOM 2007), Split, Dubrovnik, Croatia, Sept 2007, Paper 7072

11. Zanaj E, Baldi M, Chiaraluce F (2008) Efficiency of unicast and broadcast gossip algorithms
for wireless sensor networks. J Commun Softw Syst 4(2):105–112

12. Baldi M, Chiaraluce F, Zanaj E (2008) Comparison of averaging algorithms for wireless
sensor networks. In: International conference on information and communication
technologies (ICTTA’08), Damascus, Syria, Apr 2008, Paper TEL05_7

13. Merris R (1995) A survey of graph Laplacians. Linear Multilinear Algebra 39(1 and 2):19–31
14. Mohar B (1991) The Laplacian spectrum of graphs. In: Alavi Y, Chartrand G, Oellermann

OR, Schwenk AJ (eds) Graph theory, combinatorics, and applications, vol 2. Wiley, New
York, pp 871–898

15. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge
University Press, London

16 M. Baldi et al.

Chapter 2
Using a Prioritized Medium Access
Control Protocol for Incrementally
Obtaining an Interpolation of Sensor
Readings

Björn Andersson, Nuno Pereira, Eduardo Tovar and Ricardo Gomes

2.1 Introduction

A sensor network comprises a set of computer nodes each one equipped with a
processor, memory, sensors and a transceiver for communications over a (wired or
wireless) channel. The sensor network must obtain an accurate image of physical
phenomena and do so with a high sampling rate in both time and space. A large
number of computer nodes are needed in order to obtain a high sampling rate in
space. But this generates a large number of sensor readings and since these sensor
readings are located on different computer nodes, a significant amount of com-
munication may be necessary forcing a reduction in the sampling rate in time. For
systems with a very large number of computer nodes, it is therefore crucial to
develop techniques that make it possible to obtain a snapshot, an approximate
representation of all sensor readings, and achieve this with a time-complexity (as a
function of the number of nodes) that is small.

A simple approach for obtaining an approximate representation of sensor
readings would be to select a subset of the computer nodes at random and let the
sensor readings at those computer nodes be used for obtaining an interpolation.
Although this is fast, it has the drawback that some computer nodes with extreme
sensor readings may have a significant impact on the interpolation if they would be
selected but they may not be selected and this causes (as illustrated in [1]) the
interpolation to be a poor representation of the physical phenomenon. And this can
cause a sensor network to misperceive its physical environment.

A better approach for obtaining an approximate representation of sensor
readings would be to select a subset of the computer nodes, carefully selected to be
the ones that represent local extreme points and let the sensor readings at those

B. Andersson (&) � N. Pereira � E. Tovar � R. Gomes
CISTER/IPP-Hurray Research Unit, Polytechnic Institute of Porto, Porto, Portugal
e-mail: bandersson@dei.isep.ipp.pt

M. Conti et al. (eds.), Solutions on Embedded Systems,
Lecture Notes in Electrical Engineering, 81, DOI: 10.1007/978-94-007-0638-5_2,
� Springer Science+Business Media B.V. 2011

17

computer nodes be used for obtaining an interpolation. If one computer node had
knowledge of all sensor readings then such a selection would be possible of course
but in practice, a computer node only knows its own sensor reading (unless sensor
readings are communicated) and therefore it has been non-obvious how to
implement such an approach.

Recent work [1, 2] however have shown how to exploit a prioritized medium
access control (MAC) protocol for selecting local extreme points and thereby it
was shown how to quickly obtain an interpolation of sensor readings where sensor
readings were taken by different computer nodes. This work assumes that the
MAC protocol has a very large number of priority levels and that all sensor nodes
know the priority of the node that was granted the channel. Such MAC protocols
are common; the Controller Area Network (CAN) [3] bus is one such example for
wired communication (with more than 300 million units sold) and a similar
technology, WiDOM [2, 4] is available for wireless communication.

The algorithm [1, 2] which exploited a prioritized MAC protocol had a user-
selectable parameter, k, which had the role that the k sensor nodes that contribute
the most to the interpolation being a faithful representation of the physical reality
are selected and the interpolation is based on those k sensor nodes. k is selected
based on the number of local extrema of the signal as explained in [1]. With this
approach it was possible to obtain the interpolation with a time-complexity that is
O(k), that is, the time-complexity is independent of the number of sensor nodes;
yet the result of the interpolation was dependent on all sensor readings. The
algorithm was implemented and tested both in wired systems (using CAN [3]) and
in wireless systems (using WiDom [2, 4]).

The algorithm for obtaining an interpolation (i) had to run until completion and
(ii) it was designed to have no prior knowledge of the physical environment.
Unfortunately, these two facts bring two drawbacks:

1. There are situations where the delay from when the physical world changes
until the computer system can react to this change is two times the duration
required for obtaining the interpolation. (This situation occurs when the envi-
ronment changed just after the algorithm for obtaining the interpolation had
started; when this happens, the algorithm for obtaining the interpolation must
finish execution and then take new sensor readings and finally obtain an
interpolation of these new sensor readings.)

2. It is necessary that the sampling period of an application that uses the inter-
polation is O(k) or greater. If the entire physical environment changes every-
where, it may really be necessary to obtain an interpolation from scratch. But
one can expect that a change in the physical environment (such as a rapid fire,
explosion or deformation) has only local effects initially (during the first
milliseconds) and it changes the entire environment later. It would be desirable
to use a sampling rate so high that the sampling period is independent of k and
independent of the number of nodes, yet the system is able to detect extreme
local changes with a duration of two sampling periods and obtain an image of
the entire physical environment within k sampling periods.

18 B. Andersson et al.

Therefore, we presented, in a workshop paper [5], a new algorithm for
obtaining an interpolation of sensor readings which eliminates the two above
mentioned drawbacks. This chapter is an extension of that paper.

The main idea of the algorithm is that when the system starts-up, an interpo-
lation is obtained using the previously known algorithm [1, 2]. This step of the
algorithm has the time-complexity O(k), which is larger than we desire but it is
done only once. Each computer node now has the k sensor readings that can be
used to form an interpolation of all sensor readings. All computer nodes will now
periodically take sensor readings with a small period; this period is independent of
k and it is independent of the number of computer nodes. All computer nodes take
their sensor readings in parallel and then each computer node computes the
interpolated value at itself and compares it to its own sensor reading. The computer
node whose sensor reading contributes the least to the faithfulness of the inter-
polation is attempted to be deselected and the computer node whose sensor reading
contributes the most to the faithfulness of the interpolation is selected.

We believe this algorithm to be useful for detecting deviations from the
expected behavior in the physical world very quickly, for example detecting the
deformation of mechanical elements (for example in a car or aircraft) in order to
enact appropriate safety actions (such as deciding which airbag to inflate or which
fuel pump to be stopped or which valve to be closed).

The remainder of this paper is organized as follows. Section 2.2 gives pre-
liminaries, that is, the main idea of how a prioritized MAC protocol can be used
for computations and also the system model we will use. Section 2.3 discusses
how to obtain an interpolation; this discussion leads to the new interpolation
scheme. Section 2.4 gives conclusions and future work.

2.2 Preliminaries and Motivation

The basic premise for this work is the use of a prioritized MAC protocol. This
implies that the MAC protocol assures that out of all nodes contending for the
medium at a given moment, the one(s) with the highest priority gain access to it.
This is inspired by Dominance/Binary-Countdown protocols [6]. In such protocols,
messages are assigned unique priorities, and before nodes try to transmit they
perform a contention resolution phase named arbitration such that the node
requesting to transmit the highest-priority message succeeds.

During the arbitration (depicted in Fig. 2.1), each node sends the message
priority bit-by-bit, starting with the most significant one, while simultaneously
monitoring the medium. The medium must be devised in such a way that nodes
will only detect a ‘‘1’’ value if no other node is transmitting a ‘‘0’’. Otherwise,
every node detects a ‘‘0’’ value regardless of what the node itself is sending. For
this reason, a ‘‘0’’ is said to be a dominant bit, while a ‘‘1’’ is said to be a recessive
bit. Therefore, low numbers in the priority field of a message represent high
priorities. If a node contends with a recessive bit but hears a dominant bit, then it

2 Using a Prioritized Medium Access Control Protocol 19

will refrain from transmitting any further bits, and will proceed only monitoring
the medium. Finally, exactly one node reaches the end of the arbitration phase, and
this node (the winning node) proceeds with transmitting the data part of the
message. As a result of the contention for the medium, all participating nodes will
have knowledge of the winner’s priority.

The CAN bus [3] is an example of a technology that offers such a MAC
behavior. It is used in a wide range of applications, ranging from vehicles to
factory automation (the reader is referred to [7] for more examples of application
fields and figures about the use of CAN technologies). Its wide application fostered
the development of robust error detection and fault confinement mechanisms,
while at the same time maintaining its cost effectiveness. An interesting feature of
CAN is that the maximum length of a bus can be traded-off for lower data rates.
It is possible to have a CAN bus with a bit rate of 1 Mbit/s for a maximum bus
length of 30 m, or a bus 1,000 m long (with no repeaters) using a bit rate of
50 Kbit/s. While the typical number of nodes in a CAN bus is usually smaller than
100, with careful design (selecting appropriate bus-line cross section, drop line
length and quality of couplers, wires and transceivers) of the network it is possible
to go well above this value. For example, CAN networks with more than a

Fig. 2.1 Dominance/binary-countdown arbitration motivating examples. a Example of bitwise
arbitration; b example application where N1 needs to know the minimum (MIN) temperature
reading among its neighbors (N2–N6); c possible solution for the example application using a
CAN-like MAC, using fixed priorities for the messages; d possible solution for the example
application exploiting the properties of a CAN-like MAC, where priorities are assigned at
runtime according to the sensed values

20 B. Andersson et al.

thousand nodes have been deployed and they operate in a single broadcast domain
(such networks have been built; see for example [8]).

The focus of this paper is on exploiting a prioritized MAC protocol for effi-
ciently obtaining an interpolation function which approximates the sensor readings
in a geographical area. A key idea in the design of such an algorithm is the use of
a prioritized MAC protocol for performing computations—this is explained next.

2.2.1 The Main Idea

The problem of obtaining aggregated quantities in a single broadcast domain can
be solved with a naïve algorithm: every node broadcasts its sensor reading
sequentially. Hence, all nodes know all sensor readings and then they can obtain
the aggregated quantity. This has the drawback that in a broadcast domain with
m nodes, at least m broadcasts are required to be performed. Considering a network
designed for m C 100, the naïve approach can be inefficient; it causes a large
delay.

Let us consider the simple application scenario as depicted in Fig. 2.1b, where a
node (node N1) needs to know the minimum (MIN) temperature reading among its
neighbors. Let us assume that no other node attempts to access the medium before
this node. A naïve approach would imply that N1 broadcasts a request to all its
neighbors and then N1 would wait for the corresponding replies from all of them.
As a simplification, assume that nodes orderly access the medium in a time
division multiple access (TDMA) fashion, and that the initiator node knows the
number of neighbor nodes. Then, N1 can derive a waiting timeout for replies based
on this knowledge. Clearly, with this approach, the execution time depends on the
number of neighbor nodes (m). Figure 2.1c depicts another naïve approach, but
using a CAN-like MAC protocol.

Assume in that case that the priorities the nodes use to access the medium are
ordered according to the nodes’ ID, and are statically defined prior to runtime.
Note that in order to send a message, nodes have to perform arbitration before
accessing the medium. When a node wins it sends its response and stops trying to
access the medium. It is clear that using a naïve approach with CAN brings no
timing advantages as compared to the other naïve solution (Fig. 2.1b).

Consider now that instead of using their priorities to access the medium, nodes
use the value of its sensor reading as priority. Assume that the range of the analog
to digital converters (ADC) on the nodes is known, and that the MAC protocol can,
at least, represent as many priority levels. This assumption typically holds since
ADC tend to have a data width of 8, 10, 12 or 16-bit while the CAN bus offers up
to 29 priority bits. This alternative would allow an approach as depicted in
Fig. 2.1d. With such an approach, to obtain the minimum temperature among its
neighbors, node N1 needs to perform a broadcast request that will trigger all its
neighbors to contend for the medium using the prioritized MAC protocol.
If neighbors access the medium using the value of their temperature reading as the

2 Using a Prioritized Medium Access Control Protocol 21

priority, the priority winning the contention for the medium will be the minimum
temperature reading. With this scheme, more than one node can win the contention
for the medium. But, considering that at the end of the arbitration the priority of
the winner is known to all nodes, no more information needs to be transmitted by the
winning node. In this scenario, the time to obtain the minimum temperature reading
only depends on the time to perform the contention for the medium, not on m.
If, for example, one wishes that the winning node transmits information (such as
its location) in the data packet, then one can code the priority of the nodes by
adding a unique number (for example, the node ID) in the least significant bits,
such that priorities will be unique.

A similar approach can be used to obtain the maximum (MAX) temperature
reading. In that case, instead of directly coding the priority with the temperature
reading, nodes will use the bitwise negation of the temperature reading as the
priority. Upon completion of the medium access contention, given the winning
priority, nodes perform bitwise negation again to know the maximum temperature
value.

MIN and MAX are just two simple and pretty much obvious examples of how
aggregate quantities can be obtained with a minimum message complexity (and
therefore time complexity) if message priorities are dynamically assigned at
runtime upon the values of the sensed quantity. In Sect. 2.3 we will show how this
technique of using a prioritized MAC protocol for computations can be used for
obtaining an interpolation of sensor readings.

2.2.2 System Model

The network consists of m nodes that take sensor readings where a node is given a
unique identifier in the range 1… m. MAXNNODES denotes an upper bound on
m and we assume that MAXNNODES is known by the designer of the system
before run-time. Nodes do not have a shared memory and all data variables are
local to each node.

Each node has a transceiver and is able to transmit to or receive from a single
channel. Every node has an implementation of a prioritized MAC protocol with the
characteristics as described earlier. Nodes perform requests to transmit, and each
transmission request has an associated priority. Priorities are integers in the range
[0, MAXP], where lower numbers correspond to higher priorities. Let NPRIOBITS
denote the number of priority bits. This parameter has the same value for all nodes.
Since NPRIOBITS is used to denote the number of bits used to represent the
priority, the priority is a number in the range of 0–2NPRIOBITS - 1. Clearly,
MAXP = 2NPRIOBITS - 1.

A node can request to transmit an empty packet; that is, a node can request to
the MAC protocol to perform the contention for the medium, but not send any
data. This is clarified later in this section. All nodes share a single reliable
broadcast domain.

22 B. Andersson et al.

A program on a node can access the communication system via the following
interface. The send system call takes two parameters, one describing the priority
of the packet and another one describing the data to be transmitted. If a node
calling send wins the contention, then it transmits its packet and the program
making the call unblocks. If a node calling send loses the contention, then it waits
until the contention resolution phase has finished and the winner has transmitted its
packet (assuming that the winner did not send an empty packet). Then, the node
contends for the channel again. The system call send blocks until it has won the
contention and transmitted a packet. The function send_empty takes only one
parameter, which is a priority and causes the node only to perform the contention
but not to send any data after the contention. In addition, when the contention is
over (regardless of whether the node wins or loses), the function send_empty
gives the control back to the application and returns the priority of the winner.

The system call send_and_rcv takes two parameters, priority and data to be
transmitted. The contention is performed with the given priority and then the data
is transmitted if the node wins. Regardless of whether the node wins or loses, the
system call returns the priority and data transmitted by the winner and then un-
blocks the application.

A node Ni takes a sensor reading si. It is an integer in the range [0, MAXS] and
it is assumed that MAXS B MAXP.

2.3 Interpolation of Sensor Data with Location

Having seen the main idea of how to take advantage of a prioritized MAC protocol,
we are now in position to present our approach for obtaining an interpolation of
sensor readings. We will do so formally with pseudo-code; this pseudo-code returns
an upper bound on the error of the interpolation. We will first (in Sect. 2.3.1)
present the main idea of the previously known interpolation scheme.

This will lead us (in Sect. 2.3.2) to the new incremental interpolation scheme.
This new incremental interpolation scheme needs to, as an intermediate result,
evaluate the interpolation at certain geographical points. Therefore, we will (in
Sect. 2.3.3) modify this algorithm to perform calculations at those specific points
with additional speed and this results in an improvement of the new incremental
interpolation scheme.

2.3.1 Previously Known Algorithm

We assume that nodes take sensor readings, but we will also assume that a node Ni

knows its location given by two coordinates (xi, yi). With this knowledge, it is
possible to obtain an interpolation of sensor data over space. This offers a compact
representation of the sensor data and it can be used to compute virtually anything.

We let f(x, y) denote the function that interpolates the sensor data. Also let ej

denote the magnitude of the error at node Nj; that is:

2 Using a Prioritized Medium Access Control Protocol 23

ej ¼ sj � f xj; yj

� ��
�

�
� ð2:1Þ

and let e denote the global error; that is:

e ¼ maxj¼1...mej ð2:2Þ

The goal is to find f(x, y) that minimizes e subject to the following constraints: (i) the
time required for computing f at a specific point should be low; and (ii) the time
required to obtain the function f(x, y) from sensor readings should be low. The latter is
motivated by the fact that it is interesting to track physical quantities that change
quickly; it may be necessary to update the interpolation periodically in order to track,
for example, how the concentration of hazardous gases move. For this reason, we will
use weighted-average interpolation (WAI) [9–11]. WAI is defined as follows:

f x; yð Þ ¼

0 if S ¼ ;
sj if 9Nj 2 S : xj ¼ x ^ yj ¼ yP

j2S
sj�wj x;yð Þ

P
j2S

wj x;yð Þ otherwise

8
>><

>>:
ð2:3Þ

where S is a set of nodes used for interpolation. The weights wj(x, y) are given by:

wjðx; yÞ ¼
1

xj � x
� �2þ yj � y

� �2 ð2:4Þ

Intuitively, Eqs. 2.3 and 2.4 state that the interpolated value is a weighted
average of all data points in S and the weight is the inverse of the square of the
distance. There are many possible choices on how the weight should be computed

24 B. Andersson et al.

