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Prefaces

Preface to the First Edition

Linear evolution equations in Banach spaces have seen important developments
in the last two decades. This is due to the many different applications in the
theory of partial differential equations, probability theory, mathematical physics,
and other areas, and also to the development of new techniques. One important
technique is given by the Laplace transform. It played an important role in the
early development of semigroup theory, as can be seen in the pioneering monograph
by Hille and Phillips [HP57]. But many new results and concepts have come from
Laplace transform techniques in the last 15 years. In contrast to the classical
theory, one particular feature of this method is that functions with values in a
Banach space have to be considered.

The aim of this book is to present the theory of linear evolution equations in
a systematic way by using the methods of vector-valued Laplace transforms.

It is simple to describe the basic idea relating these two subjects. Let A be a
closed linear operator on a Banach space X. The Cauchy problem defined by A is
the initial value problem

(CP )

{
u′(t) = Au(t) (t ≥ 0),

u(0) = x,

where x ∈ X is a given initial value. If u is an exponentially bounded, continuous
function, then we may consider the Laplace transform

û(λ) =

∫ ∞

0

e−λtu(t) dt

of u for large real λ. It turns out that u is a (mild) solution of (CP ) if and only if

(λ−A)û(λ) = x (λ large). (1)

Thus, if λ is in the resolvent set of A, then

û(λ) = (λ−A)−1x. (2)
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Now it is a typical feature of concrete evolution equations that no explicit infor-
mation on the solution is known and only in exceptional cases can the solution be
given by a formula. On the other hand, in many cases much can be said about
the resolvent of the given operator. The fact that the Laplace transform allows
us to reduce the Cauchy problem (CP ) to the characteristic equation (1) explains
its usefulness. The Laplace transform is the link between solutions and resolvents,
between Cauchy problems and spectral properties of operators.

There are two important themes in the theory of Laplace transforms. The
first concerns representation theorems; i.e., results which give criteria to decide
whether a given function is a Laplace transform. Clearly, in view of (2), such
results, applied to the resolvent of an operator, give information on the solvability
of the Cauchy problem.

The other important subject is asymptotic behaviour, where the most chal-
lenging and delicate results are Tauberian theorems which allow one to deduce
asymptotic properties of a function from properties of its transform. Since in the
case of solutions of (CP ) the transform is given by the resolvent, such results may
allow one to deduce results of asymptotic behaviour from spectral properties of A.

These two themes describe the essence of this book, which is divided into
three parts. In the first, representation theorems for Laplace transforms are given,
and corresponding to this, well-posedness of the Cauchy problem is studied. The
second is a systematic study of asymptotic behaviour of Laplace transforms first
of arbitrary functions, and then of solutions of (CP ). The last part contains appli-
cations and illustrative examples. Each part is preceded by a detailed introduction
where we describe the interplay between the diverse subjects and explain how the
sections are related.

We have assumed that the reader is already familiar with the basic topics
of functional analysis and the theory of bounded linear operators, Lebesgue inte-
gration and functions of a complex variable. We require some standard facts from
Fourier analysis and slightly more advanced areas of functional analysis for which
we give references in the text. There are also four appendices (A, B, C and E)
which collect together background material on other standard topics for use in
various places in the book, while Appendix D gives a proof of a technical result in
the geometry of Banach spaces which is needed in Section 4.6.

Finally, a few words should be said about the realization of the book. The
collaboration of the authors is based on two research activities: the common work
of W. Arendt, M. Hieber and F. Neubrander on integrated semigroups and the
work of W. Arendt and C. Batty on asymptotic behaviour of semigroups over
many years. Laplace transform methods are common to both.

The actual contributions are as follows.
Part I: All four authors wrote this part.
Part II was written by W. Arendt and C. Batty.
Part III was written by W. Arendt (Chapters 6 and 7) and M. Hieber (Chap-

ter 8).
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Preface to the Second Edition

Ten years after the publication of the first edition of this monograph, it is clear
that vector-valued Laplace transform methods continue to play an important role
in the analysis of partial differential equations and other disciplines of analysis.
Among the most notable new achievements of this period are the characterization
of generators of cosine functions on Hilbert space due to Crouzeix, and quantitative
Tauberian theorems for Laplace transforms with applications to energy estimates
for wave equations.

In this second edition, the new developments have been taken into account
by updating the Notes on each Chapter and the Bibliography. For example, the
characterization of generators of cosine functions on Hilbert space by a purely
geometric condition on the numerical range is precisely stated in Theorem 3.17.5.
The main text has not been substantially changed, except in Section 4.4 where
some results are now presented in quantitative forms. Their applications in the
study of damped wave equations are explained in detail in the Notes of the section.

A few minor mathematical gaps and typographical errors have been corrected,
and we are grateful to M. Haase, J. van Neerven, R. Schumann and D. Seifert for
alerting us to some of them.

September 2010 The Authors



Part I

Laplace Transforms and
Well-Posedness of Cauchy

Problems



As a guide-line for Part I, as well as for the entire book, we have in mind the
formula

û(λ) = R(λ,A)x (3)

saying that a mild solution of the Cauchy problem, u′(t) = Au(t) with initial value
x, is given by the resolvent of the underlying operator A evaluated at x. Thus,
if we want to find solutions, we first have to characterize those functions which
are Laplace transforms; i.e., we study representation theorems. Correspondingly,
on the side of evolution equations, we investigate existence and uniqueness of
solutions of the Cauchy problem. Other subjects treated here include regularity
and positivity.

Part I contains three chapters as follows:

1. The Laplace Integral

2. The Laplace Transform

3. Cauchy Problems

We start with an introduction to the vector-valued Lebesgue integral; i.e., the
Bochner integral. For our purposes it suffices to consider functions defined on the
real line. Then we introduce the Laplace integral and investigate its analytic prop-
erties, giving special attention to its diverse abscissas. This will play an important
role when solutions of the Cauchy problem are considered, as the abscissas give
information about the asymptotic behaviour for large time. Operational proper-
ties of the Laplace integral are also discussed. Finally, we introduce functions of
(semi) bounded variation defined on the half-line and the Laplace-Stieltjes trans-
form. They will be needed when we study resolvent positive operators (Section
3.11) and Hille-Yosida operators (Section 3.5).

The vector-valued Fourier transform on the line is introduced in Section 1.6
and we prove the Paley-Wiener theorem for functions with values in a Hilbert
space. This is the first of several representation theorems for Laplace transforms
which we present in this book.

In Chapter 2, real representation theorems are the central subject. We prove a
vector-valued version of Widder’s classical theorem which describes those functions
which are Laplace transforms of bounded measurable functions. The vector-valued
version (Section 2.2) will lead directly to generation theorems in Chapter 3 for
semigroups and integrated semigroups (Section 3.3) and for cosine functions (Sec-
tion 3.15). A particularly simple representation theorem is valid for holomorphic
functions (Section 2.6). The Laplace transform is an isomorphism between certain
classes of holomorphic functions defined on sectors in the complex plane. This will
lead directly to the generation theorem for holomorphic semigroups in Section 3.7.
The third representation theorem is a vector-valued version of Bernstein’s theo-
rem describing Laplace-Stieljes transforms of monotonic functions (Section 2.7). It

3Part I
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has its counterpart for Cauchy problems in Section 3.11 where resolvent positive
operators are considered.

The uniqueness theorem for Laplace transforms is easy to prove (Section
1.7), but it has striking consequences. It gives directly an approximation result for
sequences of Laplace transforms. In Chapter 3 we find its counterpart for Cauchy
problems in the form of the Trotter-Kato theorem (Section 3.6).

For Cauchy problems, the most satisfying situation is when there corresponds
exactly one (mild) solution to each initial value. This notion of well-posedness is
equivalent to existence of a C0-semigroup (Section 3.1). We also consider weaker
forms of well-posedness which are characterized by the existence of integrated
semigroups. In applications, they allow one to describe precise regularity for cer-
tain partial differential equations in Lp(Rn), and Chapter 8 is devoted to this.
Here in Part I, there are three situations where integrated semigroups occur in a
natural way. Operators satisfying the Hille-Yosida condition generate locally Lip-
schitz continuous integrated semigroups. Using convolution properties established
in Section 1.3, we prove a beautiful existence and uniqueness theorem due to Da
Prato and Sinestrari for the inhomogeneous Cauchy problem defined by such op-
erators. The second interesting class of examples are resolvent positive operators
which always generate twice integrated semigroups. This will be proved in Section
3.11. In Chapter 6 a resolvent positive operator will provide an elegant transition
from elliptic to parabolic problems. Finally, in Section 3.14 we show that the sec-
ond order Cauchy problem is well-posed on a space X if and only if the associated
canonical system generates an integrated semigroup on the product space X ×X.

In Section 3.10 we show that integrated semigroups and semigroups are equiv-
alent, up to the choice of the underlying Banach space. This choice is particularly
interesting in the context of the second order Cauchy problem. In Section 3.14 we
will show the remarkable result that the space of well-posedness is unique, and we
find the phase space associated to the second order problem. In the applications
to the wave equation given in Chapter 7 we will see how this space is well adapted
to perturbation theory, allowing us to prove well-posedness of the wave equation
defined by very general second order elliptic operators.

Special attention is given to C0-groups; i.e., to Cauchy problems allowing
unique mild solutions on the line. In Section 3.9 we study when a holomorphic
semigroup of angle π/2 has a boundary group. This problem will occur again
in Section 3.16 where we investigate which cosine functions allow a square root
reduction. A striking theorem due to Fattorini shows that on UMD-spaces a square
root reduction is always possible; i.e., each generator A of a cosine function is of the
form A = B2 − ω where B generates a C0-group and ω ≥ 0. This beautiful result
concludes the three sections on the second order Cauchy problem, applications of
which will be given in Chapters 7 and 8.

Part I



Chapter 1

The Laplace Integral

The first three sections of this chapter are of a preliminary nature. There, we
collect properties of the Bochner integral of functions of a real variable with values
in a Banach space X. We then concentrate on the basic properties of the Laplace
integral

f̂(λ) :=

∫ ∞

0

e−λtf(t) dt := lim
τ→∞

∫ τ

0

e−λtf(t) dt

for locally Bochner integrable functions f : R+ → X. In Section 1.4 we describe the
set of complex numbers λ for which the Laplace integral converges. It will be shown
that the domain of convergence is non-empty if and only if the antiderivative of f is
of exponential growth. In Section 1.5 we discuss the holomorphy of λ �→ f̂(λ) and

in Section 1.7 we show that f is uniquely determined by the Laplace integrals f̂(λ)
(uniqueness and inversion). In Section 1.6 we prove the operational properties of
the Laplace integral which are essential in applications to differential and integral
equations. In particular, we show that the Laplace integral of the convolution
k ∗ f : t �→ ∫ t

0
k(t − s)f(s) ds of a scalar-valued function k with a vector-valued

function f is given by

(̂k ∗ f)(λ) = k̂(λ)f̂(λ)

if f̂(λ) exists and k̂(λ) exists as an absolutely convergent integral. In Section 1.8 we
consider vector-valued Fourier transforms and we show that Plancherel’s theorem
and the Paley-Wiener theorem extend to functions with values in a Hilbert space.
Finally, after introducing the basic properties of the Riemann-Stieltjes integral in
Section 1.9, we extend in Section 1.10 the basic properties of Laplace integrals to
Laplace-Stieltjes integrals

d̂F (λ) :=

∫ ∞

0

e−λt dF (t) := lim
τ→∞

∫ τ

0

e−λt dF (t)

of functions F of bounded semivariation.

W. Arendt et al., Vector-valued Laplace Transforms and Cauchy Problems: Second Edition,
Monographs in Mathematics 96, DOI 10.1007/978-3-0348-0087-7_1, © Springer Basel AG 2011  
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6 1. THE LAPLACE INTEGRAL

If f is Bochner integrable, then the normalized antiderivative t �→ F (t) :=∫ t

0
f(s) ds is of bounded variation. We will see that f̂(λ) exists if and only if d̂F (λ)

exists, and in this case f̂(λ) = d̂F (λ). Thus, the Laplace-Stieltjes integral is a nat-
ural extension of the Laplace integral. This extension is crucial for our discussion of
the Laplace transform in Chapter 2 since there are many functions r : (ω,∞)→ X
which can be represented as a Laplace-Stieltjes integral, but not as a Laplace inte-
gral of a Bochner integrable function. Examples are, among others, Dirichlet series

r(λ) =
∑∞

n=1 ane
−λn = d̂F (λ), where F is the step function

∑∞
n=1 anχ(n,∞), or

any function r(λ) = d̂F (λ), where F is of bounded semivariation, but not the
antiderivative of a Bochner integrable function.

1.1 The Bochner Integral

This section contains some properties of the Bochner integral of vector-valued
functions. We shall consider only those properties which are used in later sections,
and we shall assume that the reader is familiar with the basic facts about measure
and integration of scalar-valued functions.

Let X be a complex Banach space, and let I be an interval (bounded or
unbounded) in R, or a rectangle in R2. A function f : I → X is simple if it is
of the form f(t) =

∑n
r=1 xrχΩr

(t) for some n ∈ N := {1, 2, . . .}, xr ∈ X and
Lebesgue measurable sets Ωr ⊂ I with finite Lebesgue measure m(Ωr); f is a step
function when each Ωr can be chosen to be an interval, or a rectangle in R2. Here
χΩ denotes the characteristic (indicator) function of Ω. In the representation of a
simple function, the sets Ωr may always be arranged to be disjoint, and then

f(t) =

{
xr (t ∈ Ωr; r = 1, 2, . . . , n)

0 otherwise.

A function f : I → X is measurable if there is a sequence of simple functions
gn such that f(t) = limn→∞ gn(t) for almost all t ∈ I. Since any χΩ for Ω measur-
able is a pointwise almost everywhere (a.e.) limit of a sequence of step functions,
it is not difficult to see that the functions gn can be chosen to be step functions.
When X = C, this definition agrees with the usual definition of (Lebesgue) mea-
surable functions. It is easy to see that if f : I → X, g : I → X and h : I → C
are measurable, then f + g and h · f are measurable. Moreover, if k : X → Y is
continuous (where Y is any Banach space), then k ◦ f is measurable whenever f is
measurable. In particular, ‖f‖ is measurable. If X is a closed subspace of Y , and
f is measurable as a Y -valued function, then f is also measurable as an X-valued
function.

To verify measurability of a function we often use the characterization given
by Pettis’s theorem below. We say that f : I → X is countably valued if there is
a countable partition {Ωn : n ∈ N} of I into subsets Ωn such that f is constant
on each Ωn; it is easy to see that f is measurable if each Ωn is measurable (and
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conversely, {t ∈ I : f(t) = x} is measurable whenever f is measurable and
x ∈ X). Also, f : I → X is called almost separably valued if there is a null set
Ω0 in I such that f(I \ Ω0) := {f(t) : t ∈ I \ Ω0} is separable (equivalently,
f(I \Ω0) is contained in a separable closed subspace of X); f is weakly measurable
if x∗ ◦ f : t �→ 〈f(t), x∗〉 is Lebesgue measurable for each x∗ in the dual space X∗

of X.
Here and subsequently, 〈·, ·〉 denotes the duality between X and X∗. For a

subset D of X, we shall denote the closure of D in X by D. For x ∈ X and ε > 0,
we shall let BX(x, ε) := B(x, ε) := {y ∈ X : ‖y − x‖ < ε} and B(x, ε) := {y ∈ X :
‖y − x‖ ≤ ε}. We shall also use this notation when X = Rn or X = C, when it
will be implicit that the norm is the Euclidean norm.

Theorem 1.1.1 (Pettis). A function f : I → X is measurable if and only if it is
weakly measurable and almost separably valued.

Proof. If f is measurable, then there exist a null set Ω0 and simple functions gn
such that gn → f pointwise on I \ Ω0. The simple functions x∗ ◦ gn converge to
x∗ ◦ f on I \ Ω0 for all x∗ ∈ X∗. Therefore, f is weakly measurable. The values
taken by the functions gn form a countable set D and f(I \ Ω0) ⊂ D. Thus, f is
almost separably valued.

To prove the converse statement one may replace X by the smallest closed
subspace which contains f(I \ Ω0) and then choose a countable dense set {xn :
n ∈ N}. By the Hahn-Banach theorem, there are unit vectors x∗n ∈ X∗ with
|〈xn, x

∗
n〉| = ‖xn‖. For any ε > 0 and x ∈ X there exists xk such that ‖x−xk‖ < ε.

Hence,

sup
n
|〈x, x∗n〉| ≤ ‖x‖ ≤ ‖xk‖+ ε = |〈xk, x

∗
k〉|+ ε

≤ |〈x− xk, x
∗
k〉|+ |〈x, x∗k〉|+ ε

≤ sup
n
|〈x, x∗n〉|+ 2ε.

So
‖x‖ = sup

n
|〈x, x∗n〉| for all x ∈ X. (1.1)

This implies that t �→ ‖f(t)−x‖ = supn |〈f(t)−x, x∗n〉| is measurable for all x ∈ X.
Let

Δ := {t ∈ I \ Ω0 : ‖f(t)‖ > 0} and Δn,ε := {t ∈ Δ : ‖f(t)− xn‖ < ε}
for ε > 0 and n ∈ N. The sets Δn,ε are measurable and

⋃
n Δn,ε = Δ. For

fixed ε > 0, the sets Ω1,ε := Δ1,ε and Ωn,ε := Δn,ε \
⋃

k<n Δk,ε (n ≥ 2) form a
measurable partition of Δ. Define a measurable, countably valued function gε on
I by gε :=

∑∞
i=1 xiχΩi,ε

. Let t ∈ I \ Ω0. If t �∈ Δ, then f(t) = 0 = gε(t). If t ∈ Δ,
then there exists n ∈ N such that t ∈ Ωn,ε. Hence,

‖f(t)− gε(t)‖ < ε for all t ∈ I \ Ω0.
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This shows that f is the uniform limit almost everywhere of a sequence of mea-
surable, countably valued functions.

Let (In) be an increasing sequence of bounded subintervals of I with I =⋃
n In. For each n ∈ N, define a simple function hn := g2−nχHn

, where Hn := In ∩⋃kn

i=1 Ωi,2−n and kn is chosen such that the Lebesgue measure m(In \Hn) < 2−n.
If t ∈ ⋂∞

n=k Hn for some k ≥ 1, then

‖f(t)− hn(t)‖ = ‖f(t)− g2−n(t)‖ < 2−n

for all n ≥ k. Thus, limn→∞ hn(t) = f(t) for all t ∈ ⋃∞
k=1

⋂∞
n=k Hn. For k ≥ j,

m

(
Ij \

∞⋂
n=k

Hn

)
≤

∞∑
n=k

m(In \Hn) < 2−k+1.

Hence, Ij \
⋃∞

k=1

⋂∞
n=k Hn is null, for each j. This shows that limn→∞ hn(t) = f(t)

for almost all t ∈ I.

Corollary 1.1.2. Let f : I → X. Then the following statements hold:

a) The function f is measurable if and only if it is the uniform limit almost
everywhere of a sequence of measurable, countably valued functions.

b) If X is separable, then f is measurable if and only if it is weakly measurable.

c) If f is continuous, then it is measurable.

d) If fn : I → X are measurable functions and fn → f pointwise a.e., then f
is measurable.

Proof. The statement b) is an immediate consequence of Pettis’s Theorem 1.1.1.
For d), observe first that f is weakly measurable. Define Ω0 := ∪nΩn where Ωn is a
null set such that fn(I \Ωn) is separable. Then m(Ω0) = 0 and Δ :=

⋃
n fn(I \Ω0)

is separable. Since the least closed subspace containing Δ is separable and contains
f(I \ Ω0) it follows that f is almost separably valued. Thus, f is measurable. If
f is continuous, then f is weakly measurable and the countable set {f(t) : t ∈
Q} is dense in the range of f . Again by Pettis’s theorem, f is measurable. One
implication of a) was established in the proof of Pettis’s theorem and the converse
follows from d).

Pettis’s theorem can be improved considerably in the following way. A subset
W of X∗ is called separating if for all x ∈ X \ {0} there exists x∗ ∈ W such that
〈x, x∗〉 �= 0.

Corollary 1.1.3. Let f : I → X be an almost separably valued function. Assume
that x∗ ◦ f is measurable for all x∗ in a separating subset W of X∗. Then f is
measurable.
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Proof. Changing f on a set of measure 0 and replacing X by a subspace, we can
assume that X is separable. Let

Y := {x∗ ∈ X∗ : x∗ ◦ f is measurable}.
Then Y is a subspace of X∗ which contains W . By the Hahn-Banach theorem, Y
is weak* dense in X∗. Let Y1 = Y ∩ BX∗(0, 1). We show that Y1 is weak* closed.
Let x∗ be in the weak* closure of Y1. Since X is separable, the weak* topology on
BX∗(0, 1) is metrizable (see [Meg98, Theorem 2.6.23], for example). Thus, there
exists a sequence (x∗n)n∈N in Y1 converging to x∗. Hence, x∗n ◦f → x∗ ◦f as n→∞
pointwise on I. Thus, x∗ ◦ f is measurable; i.e., x∗ ∈ Y1. This proves the claim. It
follows from the Krein-Smulyan theorem (Theorem A.6) that Y is weak* closed.
Since Y is weak* dense, we have Y = X∗; i.e., f is weakly measurable. Now the
result follows from Theorem 1.1.1.

For a simple function g : I → X, g =
∑n

i=1 xiχΩi
, we define∫

I

g(t) dt :=

n∑
i=1

xim(Ωi)

where m(Ω) is the Lebesgue measure of Ω. It is routine to verify that the definition
is independent of the representation g =

∑n
i=1 xiχΩi

, and the integral so defined
is linear.

A function f : I → X is called Bochner integrable if there exist simple
functions gn such that gn → f pointwise a.e., and limn→∞

∫
I
‖f(t)−gn(t)‖ dt = 0.

If f : I → X is Bochner integrable, then the Bochner integral of f on I is∫
I

f(t) dt := lim
n→∞

∫
I

gn(t) dt.

It is easy to see that this limit exists and is independent of the choice of the
sequence (gn). If Ω is measurable with finite measure, then χΩ can be approximated
in L1-norm by step functions, and it follows that the functions gn can always be
chosen to be step functions. The integral

∫
I
f(t) dt lies in the closed linear span of

{f(t) : t ∈ I}. The set of all Bochner integrable functions from I to X is a linear
space and the Bochner integral is a linear mapping. When X = C, the definitions
of Bochner integrability and integrals agree with those of Lebesgue integration
theory.

When I is a rectangle, we may denote a Bochner integral by
∫
I
f(s, t) d(s, t).

It is one of the great virtues of the Bochner integral that the class of Bochner
integrable functions is easily characterized.

Theorem 1.1.4 (Bochner). A function f : I → X is Bochner integrable if and only
if f is measurable and ‖f‖ is integrable. If f is Bochner integrable, then∥∥∥∥∫

I

f(t) dt

∥∥∥∥ ≤ ∫
I

‖f(t)‖ dt. (1.2)
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Proof. If f is Bochner integrable, then there exists an approximating sequence
of simple functions gn. Thus f and ‖f‖ are measurable. The integrability of ‖f‖
follows from ∫

I

‖f(t)‖ dt ≤
∫
I

‖gn(t)‖ dt+
∫
I

‖f(t)− gn(t)‖ dt.

Moreover, ∥∥∥∥∫
I

f(t) dt

∥∥∥∥ = lim
n→∞

∥∥∥∥∫
I

gn(t) dt

∥∥∥∥ ≤ lim
n→∞

∫
I

‖gn(t)‖ dt

=

∫
I

‖f(t)‖ dt.

To prove the converse statement, let (hn) be a sequence of simple functions
approximating f pointwise on I \ Ω0, where m(Ω0) = 0. Define simple functions
by

gn(t) :=

{
hn(t) if ‖hn(t)‖ ≤ ‖f(t)‖(1 + n−1),

0 otherwise.

Then ‖gn(t)‖ ≤ ‖f(t)‖(1 + n−1) and limn→∞ ‖gn(t)− f(t)‖ = 0 for all t ∈ I \Ω0.
Because the functions ‖f‖ and ‖gn − f‖ are integrable and ‖gn(t) − f(t)‖ ≤
3‖f(t)‖, we can apply the scalar dominated convergence theorem and obtain that
limn→∞

∫
I
‖gn(t)− f(t)‖ dt = 0.

Example 1.1.5. a) Let X be the Lebesgue space L∞(0, 1) of all (equivalence classes
of) bounded measurable functions from (0, 1) to C. Let f : (0, 1) → L∞(0, 1) be
given by f(t) := χ(0,t). Then f is not almost separably valued since ‖f(t)−f(s)‖ =
1 for t �= s. Thus, f is not measurable and therefore not Bochner integrable.

b) Let X be the Banach space c0 of all complex sequences x = (xn)n∈N such that
limn→∞ xn = 0, with ‖x‖ = supn |xn|. Identify X∗ with the space �1 of all complex
sequences a = (an)n∈N such that ‖a‖ :=

∑∞
n=1 |an| < ∞. Let f : [0, 1] → c0 be

given by f(t) := (fn(t))n∈N where fn(t) := nχ[0, 1
n ](t). Let x

∗ = (an)n∈N ∈ �1. Then

t �→ 〈f(t), x∗〉 = ∑∞
n=1 nanχ[0, 1

n ](t) is measurable on [0, 1]. Since c0 is separable,
it follows from Pettis’s theorem that f is measurable. Moreover,∫ 1

0

|〈f(t), x∗〉| dt ≤
∞∑

n=1

|an| = ‖x∗‖ <∞.

However, ‖f(t)‖ = n for t ∈ ( 1
n+1 ,

1
n ], so t �→ ‖f(t)‖ is not integrable on [0, 1].

Thus, f is not Bochner integrable on [0, 1].

Now we will consider the behaviour of the Bochner integral under linear
operators. The following result is a straightforward consequence of the definition
of the Bochner integral, and we shall use it frequently without comment, especially
in the case of a linear functional (Y = C).
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Proposition 1.1.6. Let T : X → Y be a bounded linear operator between Banach
spaces X and Y , and let f : I → X be Bochner integrable. Then T ◦f : t �→ T (f(t))
is Bochner integrable and T

∫
I
f(t) dt =

∫
I
T (f(t)) dt.

We shall also need a version of Proposition 1.1.6 for a closed operator A on
X (see Appendix B for notation and terminology).

Proposition 1.1.7. Let A be a closed linear operator on X. Let f : I → X be
Bochner integrable. Suppose that f(t) ∈ D(A) for all t ∈ I and A ◦ f : I → X is
Bochner integrable. Then

∫
I
f(t) dt ∈ D(A) and

A

∫
I

f(t) dt =

∫
I

A(f(t)) dt.

Proof. Consider X ×X as a Banach space in the norm ‖(x, y)‖ = ‖x‖+ ‖y‖. The
graph G(A) of A is a closed subspace of X ×X. Define g : I → G(A) ⊂ X ×X by
g(t) = (f(t), A(f(t))). It is easy to see that g is measurable and∫

I

‖g(t)‖ dt =
∫
I

‖f(t)‖ dt+
∫
I

‖A(f(t))‖ dt <∞.

By Theorem 1.1.4, g is Bochner integrable. Moreover,
∫
I
g(t) dt ∈ G(A). Applying

Proposition 1.1.6 to the two projection maps of X ×X onto X shows that∫
I

g(t) dt =

(∫
I

f(t) dt ,

∫
I

A(f(t)) dt

)
.

This gives the result.

Now we give vector-valued versions of two classical theorems of integration
theory.

Theorem 1.1.8 (Dominated Convergence). Let fn : I → X (n ∈ N) be Bochner
integrable functions. Assume that f(t) := limn→∞ fn(t) exists a.e. and there exists
an integrable function g : I → R such that ‖fn(t)‖ ≤ g(t) a.e. for all n ∈ N.
Then f is Bochner integrable and

∫
I
f(t) dt = limn→∞

∫
I
fn(t) dt. Furthermore,∫

I
‖f(t)− fn(t)‖ dt→ 0 as n→∞.

Proof. The function f is Bochner integrable since it is measurable (by Corollary
1.1.2) and since ‖f‖ is integrable (because ‖f(t)‖ ≤ g(t) a.e.). Define hn(t) :=
‖f(t) − fn(t)‖ for t ∈ I. Since |hn(t)| ≤ 2g(t) and hn(t) → 0 a.e., the scalar
dominated convergence theorem implies that

∫
I
‖f(t) − fn(t)‖ dt → 0 as n → ∞.

By (1.2), ∥∥∥∥∫
I

f(t) dt−
∫
I

fn(t) dt

∥∥∥∥→ 0.
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Theorem 1.1.9 (Fubini’s Theorem). Let I = I1 × I2 be a rectangle in R2, let
f : I → X be measurable, and suppose that∫

I1

∫
I2

‖f(s, t)‖ dt ds <∞.

Then f is Bochner integrable and the repeated integrals∫
I1

∫
I2

f(s, t) dt ds,

∫
I2

∫
I1

f(s, t) ds dt

exist and are equal, and they coincide with the double integral
∫
I
f(s, t) d(s, t).

Proof. Since any measurable function is almost separably valued, we may assume
that X is separable.

The scalar-valued case of Fubini’s theorem implies that ‖f‖ is integrable on
I,

∫
I2
‖f(s, t)‖ dt exists for almost all s ∈ I1, and for each x∗ ∈ X∗ the repeated

integrals ∫
I1

∫
I2

〈f(s, t), x∗〉 dt ds,
∫
I2

∫
I1

〈f(s, t), x∗〉 ds dt

exist and are equal. It follows from Theorem 1.1.4 that f : I → X is Bochner
integrable and

∫
I2
f(s, t) dt exists for almost all s ∈ I1, and from Theorem 1.1.1

that s �→ ∫
I2
f(s, t) dt is measurable. Moreover,∫

I1

∥∥∥∥∫
I2

f(s, t) dt

∥∥∥∥ ds ≤
∫
I1

∫
I2

‖f(s, t)‖ dt ds <∞,

so Theorem 1.1.4 shows that
∫
I1

(∫
I2
f(s, t) dt

)
ds exists. Since∫

I2

∫
I1

‖f(s, t)‖ ds dt =
∫
I1

∫
I2

‖f(s, t)‖ dt ds,

it follows similarly that
∫
I2

(∫
I1
f(s, t) ds

)
dt exists. For any x∗ ∈ X∗,〈∫

I1

(∫
I2

f(s, t) dt

)
ds, x∗

〉
=

∫
I1

∫
I2

〈f(s, t), x∗〉 dt ds

=

∫
I

〈f(s, t), x∗〉 d(s, t)

=

〈∫
I

f(s, t) d(s, t), x∗
〉

=

∫
I2

∫
I1

〈f(s, t), x∗〉 ds dt

=

〈∫
I2

(∫
I1

f(s, t) ds

)
dt, x∗

〉
.
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The Hahn-Banach theorem implies that∫
I1

(∫
I2

f(s, t) dt

)
ds =

∫
I

f(s, t) d(s, t) =

∫
I2

(∫
I1

f(s, t) ds

)
dt.

Let L1(I,X) denote the space of all Bochner integrable functions f : I → X,
and let

‖f‖1 :=

∫
I

‖f(t)‖ dt.

In the usual way, we shall identify functions which differ only on sets of measure
zero. Then ‖ · ‖1 is a norm on L1(I,X).

Theorem 1.1.10. The space L1(I,X) is a Banach space.

Proof. Let (fn) be a sequence in L1(I,X) with
∑ ‖fn‖1 < ∞. By the monotone

convergence theorem for series of positive scalar-valued functions,
∑ ‖fn(t)‖ <∞

a.e.,
∑∞

n=1 ‖fn(·)‖ is integrable, and∫
I

∞∑
n=1

‖fn(t)‖ dt =
∞∑

n=1

∫
I

‖fn(t)‖ dt.

Hence,
∑∞

n=1 fn(t) converges a.e. to a sum g(t) in the Banach space X. By Corol-
lary 1.1.2, g is measurable. Moreover, ‖g(t)‖ ≤∑∞

n=1 ‖fn(t)‖, so ‖g‖ is integrable.
By Theorem 1.1.4, g is integrable. Finally,∥∥∥∥∥g −

k∑
n=1

fn

∥∥∥∥∥
1

≤
∫
I

‖g(t)−
k∑

n=1

fn(t)‖ dt ≤
∫
I

∞∑
n=k+1

‖fn(t)‖ dt→ 0

as k →∞. Thus, L1(I,X) is a Banach space.

By the definition of Bochner integrability, the simple functions are dense in
L1(I,X) and, by the remarks following the definition, the step functions are dense.
It follows easily that the infinitely differentiable functions of compact support are
also dense in L1(I,X).

We shall be particularly interested in the case when I = R+ := [0,∞). If
f ∈ L1(R+, X), an application of the Dominated Convergence Theorem shows
that ∫ ∞

0

f(t) dt = lim
τ→∞

∫ τ

0

f(t) dt. (1.3)

When f ∈ L1
loc(R+, X) (i.e., f is Bochner integrable on [0, τ ] for every τ ∈ R+),

the limit in (1.3) may exist without f being Bochner integrable on R+. If the
limit exists, we say that

∫∞
0

f(t) dt converges as an improper (or principal value)
integral, and we define ∫ ∞

0

f(t) dt := lim
τ→∞

∫ τ

0

f(t) dt.
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When f ∈ L1(R+, X), i.e.
∫∞
0
‖f(t)‖ dt <∞, we say that the integral is absolutely

convergent .
For 1 < p < ∞, let Lp(I,X) denote the space of all measurable functions

f : I → X such that

‖f‖p :=

(∫
I

‖f(t)‖p dt
)1/p

<∞.

Let L∞(I,X) be the space of all measurable functions f : I → X such that

‖f‖∞ := ess sup
t∈I
‖f(t)‖ <∞.

Note that the spaces Lp(I,C) (1 ≤ p ≤ ∞) are the usual Lebesgue spaces which
we shall denote simply by Lp(I). With the usual identifications, each of the spaces
Lp(I,X) becomes a Banach space. The proofs of completeness are similar to the
scalar-valued cases.

The proof of Theorem 1.1.4 shows that the simple functions are dense in
Lp(I,X) for 1 < p < ∞ (so Lp(I,X) can also be defined in a similar way to the
Bochner integrable functions). It follows that the step functions, and the infinitely
differentiable functions of compact support, are also dense. By considering such
functions first and then approximating, one may show as in the scalar-valued case,
that if f ∈ Lp(I,X) and

ft(s) :=

{
f(s− t) if s− t ∈ I,

0 otherwise,

then t �→ ft is continuous from R into Lp(I,X) for 1 ≤ p <∞.
We have presented the theory above in the case when I is an interval in R

(or, for Fubini’s theorem, I is a rectangle in R2). Almost all the integrals which
appear in this book will indeed be over intervals in R (or repeated integrals in
R2). However, the entire theory works, with no changes in the proofs, when I is a
measurable set in Rn (or in Rm×Rn, in Fubini’s theorem). Since the step functions
are dense in each of the spaces Lp(I × J,X) for 1 ≤ p <∞, it is easy to see from
Fubini’s theorem that there is an isometric isomorphism between Lp(I×J,X) and
Lp(I, Lp(J,X)) given by f �→ g, where

(g(s))(t) := f(s, t).

This enables many properties of the spaces Lp(I,X) when I is a rectangle in Rn

to be deduced from the case n = 1.
Finally in this section, we introduce notation for spaces of continuous and

differentiable functions. Let I be an interval in R. We denote by C(I,X) the vector
space of all continuous functions f : I → X. For k ∈ N, we denote by Ck(I,X) the
space of all k-times differentiable functions with continuous kth derivative, and we
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put C∞(I,X) :=
⋂∞

k=1 C
k(I,X). When I is compact, C(I,K) is a closed subspace

of L∞(I,X) and therefore a Banach space with respect to the supremum norm
‖ · ‖∞.

When I is not compact, we let Cc(I,X) be the space of all functions in
C(I,X) with compact support, and C∞c (I,X) := Cc(I,X) ∩ C∞(I,X). Thus
C∞c (I,X) is a dense subspace of Lp(I,X) for 1 ≤ p <∞. When I = R+ or I = R,
we shall also consider the space C0(I,X) of all continuous functions f : I → X such
that lim|t|→∞,t∈I ‖f(t)‖ = 0 and the space BUC(I,X) of all bounded, uniformly
continuous functions f : I → X. These are both Banach spaces with respect to
‖ · ‖∞, and C0(I,X) ⊂ BUC(I,X) ⊂ L∞(I,X).

When X = C, we shall write C(I) in place of C(I,C), etc., and we shall
extend this notation to cases when I is replaced by an open subset Ω of Rn. Note
that C∞c (Ω) coincides with the space D(Ω) of test functions on Ω (see Appendix
E), and we shall use both notations according to context. Furthermore, when Ω is
any locally compact space, we shall let C0(Ω) be the Banach space of all continuous
complex-valued functions on Ω which vanish at infinity, with the supremum norm.
When K is any compact space, we shall let C(K) be the Banach space of all
continuous complex-valued functions on K, with the supremum norm.

1.2 The Radon-Nikodym Property

In this section we consider properties of functions F obtained as indefinite inte-
grals. If f : [a, b] → X is Bochner integrable, we say that F : [a, b] → X is an
antiderivative or primitive of f if

F (t) = F (a) +

∫ t

a

f(s) ds (t ∈ [a, b]).

Given a function F : [a, b]→ X and a partition π, a = t0 < t1 < . . . < tn = b,
let

V (π, F ) :=

n∑
i=1

‖F (ti)− F (ti−1)‖.

Then F is said to be of bounded variation if

V (F ) := V[a,b](F ) := sup
π

V (π, F ) <∞,

where the supremum is taken over all partitions π of [a, b].
We say that F is absolutely continuous on [a, b] if for every ε > 0 there

exists δ > 0 such that
∑

i ‖F (bi)− F (ai)‖ < ε for every finite collection {(ai, bi)}
of disjoint intervals in [a, b] with

∑
i(bi − ai) < δ. We say that F is Lipschitz

continuous if there exists M such that ‖F (t)−F (s)‖ ≤M |t− s| for all s, t ∈ [a, b].
Clearly, any Lipschitz continuous function is absolutely continuous.
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Proposition 1.2.1. Let F : [a, b] → X be absolutely continuous. Then F is of
bounded variation. Moreover, if G(t) := V[a,t](F ), then G is absolutely continuous
on [a, b].

Proof. Take ε > 0, and let δ be as in the definition of absolute continuity of F . Then∑
i V[ai,bi](F ) ≤ ε whenever {(ai, bi)} is a finite collection of disjoint subintervals

of [a, b] with
∑

i(bi − ai) < δ. In particular, F is of bounded variation on any
subinterval of length less than δ. Since [a, b] is a finite union of such intervals, F
is of bounded variation on [a, b]. Moreover,∑

i

|G(bi)−G(ai)| =
∑
i

V[ai,bi](F ) < ε.

Thus, G is absolutely continuous.

A point t ∈ [a, b] is said to be a Lebesgue point of f ∈ L1([a, b], X) if

limh→0
1
h

∫ t+h

t
‖f(s) − f(t)‖ ds = 0. It is easy to see that any point of continu-

ity is a Lebesgue point, and the following proposition shows that almost all points
are Lebesgue points.

Proposition 1.2.2. Let f : [a, b]→ X be Bochner integrable and F (t) :=
∫ t

a
f(s) ds

(t ∈ [a, b]). Then

a) F is differentiable a.e. and F ′ = f a.e.

b) limh→0
1
h

∫ t+h

t
‖f(s)− f(t)‖ ds = 0 t-a.e.

c) F is absolutely continuous.

d) V[a,b](F ) =
∫ b

a
‖f(s)‖ ds.

Proof. To show a) and b) let gn be step functions such that

f(t) = lim
n→∞ gn(t) a.e. and lim

n→∞

∫ b

a

‖f(t)− gn(t)‖ dt = 0.

For h > 0,∥∥∥∥∥ 1h
∫ t+h

t

f(s) ds− f(t)

∥∥∥∥∥ ≤ 1

h

∫ t+h

t

‖f(s)− f(t)‖ ds

≤ 1

h

∫ t+h

t

‖f(s)− gn(s)‖ ds

+
1

h

∫ t+h

t

‖gn(s)− gn(t)‖ ds+ ‖gn(t)− f(t)‖.
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Since gn is a step function and s �→ ‖fn(s) − gn(s)‖ is Lebesgue integrable, it
follows from Lebesgue’s theorem [Rud87, Theorem 8.17] that

lim sup
h↓0

∥∥∥∥∥ 1h
∫ t+h

t

f(s) ds− f(t)

∥∥∥∥∥ ≤ lim sup
h↓0

1

h

∫ t+h

t

‖f(s)− f(t)‖ ds

≤ 2‖gn(t)− f(t)‖

for all t ∈ [a, b] \ Ωn and some null set Ωn. Taking the limit as n → ∞ yields the
right-differentiability of F and

lim
h↓0

1

h

∫ t+h

t

‖f(s)− f(t)‖ ds = 0

for all t ∈ [a, b] \⋃n∈N Ωn. The left-hand limits are similar.
For c), let ε > 0. There exists δ > 0 such that

∫
Ω
‖f(s)‖ ds < ε whenever

μ(Ω) < δ. If {(ai, bi)} is a finite collection of disjoint subintervals of [a, b] with∑
i(bi − ai) < δ, then taking Ω =

⋃
i(ai, bi), we deduce that

∑
i

‖F (bi)− F (ai)‖ =
∑
i

∥∥∥∥∥
∫ bi

ai

f(s) ds

∥∥∥∥∥ ≤
∫
Ω

‖f(s)‖ ds < ε.

To prove the statement d), observe first that, for any partition π of [a, b],

V (π, F ) =
∑
i

∥∥∥∥∥
∫ ti

ti−1

f(s) ds

∥∥∥∥∥ ≤
∫ b

a

‖f(s)‖ ds.

Thus, V (F ) ≤ ∫ b

a
‖f(s)‖ ds. Conversely, given ε > 0, we may choose a step function

g such that
∫ b

a
‖f(s) − g(s)‖ ds < ε. There is a partition π of [a, b] such that g is

constant on each interval (ti−1, ti). Then∫ b

a

‖f(s)‖ ds− V (F ) ≤
∫ b

a

‖f(s)‖ ds− V (π, F )

≤
∫ b

a

‖g(s)‖ ds+ ε−
∑
i

∥∥∥∥∥
∫ ti

ti−1

f(s) ds

∥∥∥∥∥
=

∑
i

(∥∥∥∥∥
∫ ti

ti−1

g(s) ds

∥∥∥∥∥−
∥∥∥∥∥
∫ ti

ti−1

f(s) ds

∥∥∥∥∥
)

+ ε

≤
∫ b

a

‖f(s)− g(s)‖ ds+ ε

≤ 2ε.

Since ε > 0 is arbitrary, this completes the proof of d).
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In the scalar case, the fundamental theorem of calculus [Rud87, Theorem
8.18] states that any absolutely continuous function F : [a, b]→ C is differentiable

a.e., f := F ′ is Lebesgue integrable, and F (t)− F (a) =
∫ t

a
f(s) ds for all t ∈ [a, b].

We will see below (Example 1.2.8) that the fundamental theorem does not hold
for Lipschitz continuous functions with values in arbitrary Banach spaces. The
following weaker statement holds for all Banach spaces.

Proposition 1.2.3. Let F : [a, b] → X be absolutely continuous, and suppose that

f(t) := F ′(t) exists a.e. Then f is Bochner integrable and F (t) = F (a)+
∫ t

a
f(s) ds

for all t ∈ [a, b].

Proof. Since f(t) = limn→∞ n(F (t + 1/n) − F (t)), it follows from Corollary 1.1.2
that f is measurable. Let G(t) := V[a,t](F ), so G : [a, b]→ R is absolutely contin-
uous by Proposition 1.2.1. Hence G is differentiable a.e. and G′ ∈ L1[a, b]. Since

‖F (t+ h)− F (t)‖ ≤ V[t,t+h](F ) = G(t+ h)−G(t),

‖f(t)‖ ≤ G′(t) a.e. Hence ‖f‖ ∈ L1[a, b], so f is Bochner integrable by Theorem
1.1.4. For x∗ ∈ X∗,

〈F (t), x∗〉 = 〈F (a), x∗〉+
∫ t

a

〈f(s), x∗〉 ds

=

〈
F (a) +

∫ t

a

f(s) ds, x∗
〉

by the scalar fundamental theorem of calculus. By the Hahn-Banach theorem,
F (t) = F (a) +

∫ t

a
f(s) ds.

Let I be any interval in R. A function F : I → X is said to be absolutely
continuous if it is absolutely continuous on each compact interval of I. We now
consider the property that every absolutely continuous function F : I → X is
differentiable a.e. It is easy to see that this property is independent of the interval
I, so it is a property of X alone.

Proposition 1.2.4. For any Banach space X the following are equivalent:

(i) Every absolutely continuous function F : R+ → X is differentiable a.e.

(ii) Every Lipschitz continuous function F : R+ → X is differentiable a.e.

Proof. Clearly, (i) implies (ii). Assume that statement (ii) holds and let F : R+ →
X be absolutely continuous. By Proposition 1.2.1, F is locally of bounded variation
and G is absolutely continuous where G(t) := V[0,t](F ). Let h(t) := G(t)+ t. Then
h is strictly increasing, h(0) = 0, and h(R+) = R+. Moreover,

‖F (t)− F (s)‖ ≤ G(t)−G(s) ≤ h(t)− h(s)


