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Preface

Electronic System Level Design, or ESL Design, is generally understood as the set
of tools, methodologies and design techniques applied to modern electronic sys-
tems design, from high-end chips and systems, to embedded devices, to integrated
hardware and software systems. Given the complexity of current systems, advanced
tools and methodologies have become absolutely essential to achieve the necessary
productivity, quality, cost and performance expected in a design process. One of
the important tenets in ESL Design is the need for early design analysis. This is
done mainly through high-level modeling and simulation, performance and power
analysis and functional verification, before committing the design to lower-levels of
abstraction aimed at synthesis and optimization. This is especially true for complex
systems involving different types of components such as processors, custom blocks
and software. In fact, it may be totally impractical to simulate such systems at a low-
level of representation such as register-transfer level, due to extremely long simula-
tion times. High-level models are simpler to write, understand, optimize and debug
than lower-level models, and they can simulate significantly faster. The more the de-
sign can be refined, optimized and verified at a high-level of abstraction, the higher
the overall design productivity, the better the quality and consequently the lower the
cost of the final result. However, high-level models and development environments
are not without their own difficulties. It is not simple to write a high-level model
at the appropriate abstraction level which will result in the best trade-off between
architectural details and simulation speed. For this end, researchers have formalized
different abstraction levels at different levels of architectural and timing accuracy.
Depending on what types of design analysis need to be done, one abstraction level
may be more suitable than another. This adds to the modeling complexity, and in the
worst case, if multiple models need to be developed, it may start reducing the pro-
ductivity advantage of a high-level modeling methodology. A high-level modeling
and simulation framework is a complex software engineering challenge. Different
types of models, such as a processor model, custom blocks and application software,
need to be compiled, linked, executed and debugged together. This goes far beyond
the correct individual modeling of a block using a high-level language. A successful
high-level design methodology depends heavily on how well automated this frame-
work is. SystemC is a system-level specification and design language (based on C++
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vi Preface

classes) that has been widely adopted for high-levels of abstraction modeling. Sys-
temC also emergence of transaction-level models (TLM) as an abstraction layer and
modeling style capable of fully separating the computation part from the commu-
nication part of a model. Despite the widespread acceptance and use of SystemC
and TLM, it is still very complex to create models which achieve a perfect balance
between the required architectural detail for the desired types of analysis and simula-
tion speed. This book addresses the very issues raised above. It presents a high-level
design methodology, support tools and framework capable of full system modeling
and design exploration, including components such as processors, custom blocks
and application software. One of the main contributions of the book is the detailed
description of ArchC. ArchC is an architectural description language (ADL) which
allows designers to model instruction-set architectures and automatically map them
into SystemC simulatable descriptions. ArchC is an ADL capable of detailed mod-
eling of instructions and supporting processor architectures. Since ArchC generates
an executable SystemC model, it can be fully integrated with other SystemC mod-
els using transaction-level interfaces, which allows the specification, modeling and
simulation of complete systems. The book also explains in detail how the overall
software environment works, including how the models are compiled, linked, ex-
ecuted together and debugged as a platform. Detailed examples using single and
dual core platforms, coupled with custom accelerators and running real life applica-
tions are presented. Power modeling is also addressed in this book. Authors describe
an interesting extension to SystemC called PowerSC, which allows switching and
power information to be gathered and computed during and integrated with the func-
tional simulation. Important to readers should the fact that the platform presented
is Open-Source and available for download, whereas comparable systems available
today are proprietary. This will certainly help researchers and developers alike to
jumpstart their modeling efforts by using a readily available platform and develop-
ment tools. Readers interested in a good overview of ESL methodologies as well
as those interested in practical implementation details of architectural-description
languages, platform modeling and support tools will be well served by this book.

Visiting Professor Reinaldo A. Bergamaschi
Odysci, Brazil/USA

University of Campinas, Campinas, Brazil
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Part I
System Design Representation



Chapter 1
Electronic System Level Design

Luiz Santos, Sandro Rigo, Rodolfo Azevedo, and Guido Araujo

1.1 The ESL Concept

Systems-on-chip (SoCs) became a reality in the mid-nineties, as a result of the long
evolution of VLSI technology and the sheer growth of integrated circuit complexity.
As it happens each time electronic design complexity impairs the expected time-to-
market, the quest for higher productivity involves a combination of the following
key notions:

Abstraction At design entry, the level of representation is raised to cope with
the increased design complexity. As a consequence, the design flow goes
through several levels and styles of representation. Hardware design representa-
tion has been raised through physical, circuit, gate, register-transfer, and func-
tional/behavioral levels.

Reuse Pre-designed components are assembled within a new design. Reuse goes
hand-in-hand with design paradigms, such as cell-based, IP-based, and platform-
based.
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4 L. Santos et al.

Automation To overcome the error-prone and time-consuming nature of manual
refinement, designers rely on Electronic Design Automation (EDA) tools. To
refine the design representation from higher to lower abstraction levels, (layout,
logic, register transfer, and behavioral) synthesis tools can be used. To check
for equivalent functionality across successive levels of representation, a solid
infrastructure of automatic verification tools is available.

Exploration The analysis of alternative design solutions with respect to area, per-
formance and power at a given abstraction level reduces the probability that,
after refinement through lower levels, the design might turn out not to meet the
specified requirements, leading to redesign.

Although integrated circuit design has already witnessed abstraction level raising
from the circuit level to the gate level and then to the Register-Transfer Level (RTL),
the so-called SoC Revolution [10] required a broader paradigm shift. Since the in-
tegrated circuit became an integrated system, the new abstraction should harmonize
the representation of both hardware and software. Abstraction offers system-level
design representations, such as executable hardware-software especifications [2],
transaction-level modeling (TLM) [4] and UML modeling. The platform-based de-
sign paradigm [14] guides reuse from the perspective of a reference system archi-
tecture. Automation asks for software-toolkit generation [9], such as retargetable
compilers and binary utilities (since the software embedded in the system may be
run on possibly distinct multiple target processors). Exploration addresses the joint-
evaluation of hardware and software components.

This leads to the concept of Electronic System Level (ESL) [1], a generic term for
a set of abstractions (possibly at distinct levels), which are adequate for the design
representation of SoCs. It complies with the need for hardware and software co-
design, while building upon legacy hardware design representation.

1.2 Requirements of an ESL Representation

A representation suitable for ESL design should provide a unique representation of
the platform architecture, capture parameters handled by hardware-dependent soft-
ware, allow advance performance and power evaluation on the target platform, rely
on encapsulation of processor models and non-programmable components, support
platform debugging, and enable virtual prototyping. Let us consider each of such
aspects individually:

Uniqueness of representation Actual hardware-software co-design should rely on
a unique abstraction of the hardware platform so that changes performed by
either the hardware design or the software development teams could be agreed
upon a same reference. It should also play the role of golden reference model
for the hardware verification team.

Hardware-dependent software The representation must provide a programmer’s
view of the platform that not only captures the Instruction-Set Architecture (ISA)
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of each processor, but also includes bit-accurate descriptions of I/O device reg-
isters, memory maps for all devices with configurable registers and memory lay-
out for data, application code, and initialization routines. This allows the early
development of hardware-dependent software, such as drivers and boot code,
enabling actual hardware-software co-design.

Advance performance evaluation Although it is possible to obtain a rough perfor-
mance estimate by running the application software on a stand-alone instruction-
set simulator, a much more accurate performance evaluation is obtained when
not only the processors, but all the other platform components are captured in
the design representation.

Advance power evaluation In spite of the fact that power estimation is much more
accurate at lower design levels, the ability to assess power earlier in the de-
sign flow helps in the identification of power bottlenecks, thereby allowing low-
power design from the very beginning.

Encapsulation of processor models Since processors are the most complex sys-
tem components, the expected ESL productivity gain would be seriously im-
paired if processor models had to be developed from scratch. Therefore, the rep-
resentation should encapsulate either reused processor models extracted from a
library or automatically generated processor models.

Encapsulation of non-programmable components From the perspective of hard-
ware-dependent software development, the behavior of a component is what
matters, regardless of how it will be implemented later, as far as a bit-accurate
view of its I/O registers is available. Therefore, the representation should allow
the functional modeling of hardware components.

Platform debugging The software to be embedded into the system could be run
on the host workstation and conventional debuggers could be used to pinpoint
application code bugs. Besides, code inspection could be improved by porting a
debugger so that it could run on an instruction-set simulator of a target processor
of a platform. Although yet useful, this conventional approach is clearly limited
to uncovering software bugs. Therefore, to expose architecture design bugs, the
representation should support component I/O probing or even component inner
probing.

Virtual prototyping The representation should support the co-simulation of hard-
ware and software in such a way that a virtual prototype could be used to evalu-
ate the functionality, the performance, and the power/energy consumption of the
final product. Such a prototype would contain application software, hardware-
dependent software and platform architecture, elements allowing sufficiently ac-
curate pre-evaluation without the need to dive into more time-consuming RTL-
based prototyping or emulation.

1.3 ESL Design Flow

As a consequence of platform-based design, ESL flows are typically a combination
of bottom-up and top-down approaches. In spite of that, Fig. 1.1 shows an idealized
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Fig. 1.1 An idealized top-down ESL design flow

top-down ESL design flow, which is used here as a frame to illustrate the main
design steps rather than to advocate a particular design flow. Figure 1.1 adopts the
terminology introduced in [1].

From a natural language specification, i.e. a document capturing the product re-
quirements and constraints, the first design step consists in obtaining a specification
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written in an executable or declarative language. (This book focuses on executable
specifications, such as those obtained with SystemC [5]).

The resulting executable model, which captures the functional specification of
a system, is submitted to a preliminary analysis step so as to provide grounds for
future architectural decisions. By means of proper instrumentation, initial estimates
for performance, storage space, power, and communication traffic can be obtained.

Based upon that preliminary analysis, the next design step leads to an architec-
tural specification of a system, obtained from its functional specification through
hardware-software partitioning, i.e. the mapping of algorithms to software running
on target processors or to non-programmable hardware blocks. Although the result-
ing architecture specification captures hardware and software views, they should
be built as interacting engines that execute cooperatively within a unified architec-
tural model. To reach a threshold of simulation performance that enables hardware-
software codesign, such architectural model may rely on the TLM style. (In Chap. 5,
this book proposes an open-source infrastructure to build executable architectural
models that comply with TLM, which is reviewed in Chap. 3).

Once an architectural specification is available after partitioning, it has to be
verified with respect to the original functional specification. Essentially, such post-
partitioning verification aims at demonstrating that the design satisfies the specified
requirements.

A few building blocks are required for the architectural specification, such as
processors, non-programmable hardware components, memories, and buses. On the
one hand, a building block representing a non-programmable hardware component
is easily modeled by its (single) behavior (e.g. the C++ implementation of its under-
lying algorithm). On the other hand, since processors exibit many complex behav-
iors, their executable models are usually generated from declarative processor mod-
els written in an Architecture Description Language (ADL). (This book describes
an open-source ADL in Chap. 2).

The resulting architectural model also enables a post-partitioning analysis step,
where more accurate estimates can be obtained. For instance, performance, storage
space, and power can be evaluated at the light of the chosen target processors; com-
munication traffic can be correlated with the number of transactions. This analysis
leads to the exploration of alternative architectural solutions, for instance by exper-
imenting with distinct target processors. For such an exploration, cross compilers
and binary tools must be available for the target processors. (This book describes
open-source infrastructure for automatically retargeting binary utilities in Chap. 6).

Post partitioning analyses of the hardware and software models provide grounds
for proper hardware and software implementation, giving rise to an RTL model for
the hardware and application binaries for the software.

The resulting implementations have to be verified with respect to the architectural
specification. The ultimate goal of such implementation verification is to demon-
strate that the implementation has no flaws. For this, the observability of a device
under verification has to be increased through white-box techniques allowing the
inspection of a component’s inner structure. (A suitable infrastructure for white-box
verification is proposed in Chap. 7).
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Although, at the first glance, executable models may seem able to track behavior
only (and thereby performance), they have to be extended to simultaneously track
other important issues, like power consumption, for instance. (Chapter 8 shows how
SystemC descriptions can be instrumented to account for power).

This book addresses a few important aspects of the ESL design flow. It focuses on
languages and artifacts used as infrastructure for executable specification, hardware-
software modeling, and design tools (implementation, analysis, and verification).

1.4 Target Audience, Scope and Organization

Although several ESL technologies are currently provided by EDA vendors, this
book focuses on technologies available under open-source licenses, such as Sys-
temC [5], OSCI TLM [12], ArchC [13], and PowerSC [8].

This book intends to provide grounds for further research on ESL, by means of
open-source artifacts and tools, thereby stimulating the unconstrained deployment
of new concepts, tools, and methodologies. It devises electronic system design from
the pragmatic perspective of a SystemC-based ESL representation, by showing how
to build and how to use ESL languages, models, and tools.

Other specification languages suitable for ESL design such as MATLAB [15],
UML [11], SDL [7] and SystemVerilog [6] are outside the scope of this book. Pro-
prietary ESL-compliant processor modeling, such as [3], are also beyond the in-
tended scope.

Most of the requirements enumerated in Sect. 1.2 are covered in the next chap-
ters, which are organized as follows:

• ESL Specification: SystemC is one of the most promising ESL languages. It is
actually a class library that extends the C++ language in such a way that hardware
and software components can be described within an executable specification.
Some relevant aspects of SystemC are reviewed in Chap. 2 as a basis for the
discussions in further chapters.

• ESL-Compliant Processor Modeling: Since describing processor models di-
rectly in SystemC would not be practical, most of processor modeling and soft-
ware toolkit generation relies on ADLs. Since the ADLs designed in the mid-
nineties preceded the rise of SystemC, the executable processor models generated
by them were not thought to be encapsulated as SystemC modules. The ArchC
language is an ADL born in the SystemC era. Instead of directly generating an
executable processor model, a functional or cycle-accurate SystemC model is
produced. The ArchC language is summarized in Chap. 2, while Chap. 4 and
Chap. 5 explain how ArchC can be efficiently used to build ESL-compliant pro-
cessor models. As an important complement, Chap. 6 shows how the ArchC ADL
can be used as a starting point for the automatic generation of assemblers, linkers,
and debuggers.

• TLM-Based ESL Design: A crucial concept to ESL is the separation between
computation and communication of a system module. Since SystemC is already
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built upon that concept, the definition of interfaces to encapsulate communication
protocols within channels allows a convenient style of design representation: the
system can be described as a set of modules (each exhibiting its concurrent be-
havior) that communicate by means of transactions through channels. The TLM
style provides a programmer’s view of the platform that allows early development
of hardware-dependent software. Chapter 3 reviews the main assets of the TLM
design representation.

• ESL Design Verification: Since the SystemC Verification Library is an already
well-established verification infrastructure based on the conventional black-box
approach, Chap. 7 focuses on a complementary verification aspect: the use of data
introspection to enable white-box verification strategies.

• ESL Power-Conscious Exploration: Although SystemC can model hardware
and software functionalities, thereby allowing performance-based exploration, it
does not come with support for modeling power consumption. Chapter 8 shows
how SystemC can be extended to capture signal transitions, to correlate them
with dynamic power consumption, to add up the static power contribution from
technology libraries, and to accommodate distinct power macromodels.

References

1. B. Bailey, G. Martin, A. Piziali, ESL Design and Verification: A Prescription for Electronic
System Level Methodology (Morgan Kaufmann, San Mateo, 2007)

2. D.C. Black, J. Donovan, SystemC: From the Ground Up (Springer, Berlin, 2004)
3. Coware Inc., CoWare® Processor Designer. Available at http://www.coware.com. Accessed

in February 2009
4. F. Ghenassia, Transaction-Level Modeling with SystemC: TLM Concepts and Applications for

Embedded Systems (Springer, New York, 2006)
5. IEEE Standards Association, IEEE 1666™ Standard SystemC© Language Reference Manual.

Available at http://standards.ieee.org, December 2005
6. IEEE Standards Association, IEEE 1800-2005™ Standard for SystemVerilog: Unified Hard-

ware Design, Specification and Verification Language. Available at http://standards.ieee.org,
2005

7. International Telecommunication Union, Specification and Description Language (SDL),
ITU-T Recommendation Z.100. Available at http://www.itu.int, August 2002

8. F. Klein, G. Araujo, R. Azevedo, R. Leao, L.C.V. dos Santos, An efficient framework for high-
level power exploration, in 50th Midwest Symposium on Circuits and Systems (MWSCAS)
(2007), pp. 1046–1049

9. R. Leupers, P. Marwedel, Retargetable Compiler Technology for Embedded Systems: Tools
and Applications (Kluwer Academic, Dordrecht, 2001)

10. G. Martin, H. Chang, Winning the SoC Revolution: Experiences in Real Design (Kluwer Aca-
demic, Dordrecht, 2003)

11. Object Management Group, OMG Unified Modeling Language™, Superstructure, V2.1.2.
Available at http://www.omg.org. Accessed in February 2009

12. Open SystemC Initiative, TLM Transaction Level Modeling Library, Release 2.0 Draft 2.
Available at http://www.systemc.org. Accessed in February 2009

http://www.coware.com
http://standards.ieee.org
http://standards.ieee.org
http://www.itu.int
http://www.omg.org
http://www.systemc.org

