Udo Blum

Plant-Plant Allelopathic Interactions

Phenolic Acids, Cover Crops and Weed Emergence

Plant–Plant Allelopathic Interactions

Udo Blum

Plant–Plant Allelopathic Interactions

Phenolic Acids, Cover Crops and Weed Emergence

Udo Blum Department of Plant Biology North Carolina State University Raleigh, NC 27695-7612 USA udo_blum@ncsu.edu

ISBN 978-94-007-0682-8 e-ISBN 978 DOI 10.1007/978-94-007-0683-5 Springer Dordrecht Heidelberg London New York

e-ISBN 978-94-007-0683-5

Library of Congress Control Number: 2011922311

© Springer Science+Business Media B.V. 2011

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

This book is dedicated to all who have labored and will labor in the field of plant–plant allelopathic interactions.

Preface

For part of my PhD thesis I characterized the distribution of tannic acids in soils underneath sumac (Rhus copallina L.) located in abandoned fields of central Oklahoma (Blum and Rice 1969). Large quantities of tannic acids were found in the litter and organic residues underneath sumac. Tannic acids, which are very water soluble, were also found in the soil to a depth of 75 cm, with a definite zone of concentration at 45–55 cm. The techniques utilized at the time to recover and guantify tannic acids were rudimentary, at best. Amounts below 400 ppm added to soils could not be recovered, even though concentrations as low as 33 ppm added to soils inhibited nodulation of red kidney beans (*Phaseolus vulgaris* L. "Burpee"). These observations and their implications to plant-plant allelopathic interactions intrigued me at the time and I made a promise to myself that I would take another look at this subject in the future. Around 1980 I was ready to fulfill that promise. For the next 20 plus years research in my laboratory was primarily focused on various aspects of plant-plant allelopathic interactions with an emphasis on seedling behavior, soil chemistry, and microbiology. This book is a summary and retrospective analysis of this research program.

Although research publications on allelopathy have increased at a phenomenal rate since the 1980s, what is generally lacking are in-depth analyses and integration of this literature. For example, a quick search of Science Citation Index yielded 112 publications between 1981 and 1990, 627 publications between 1991 and 2000, and 1,615 publications between 2001 and 2010. The terms "allelopathic interactions" yielded 6, 58, and 212 publications over the same time intervals. However, less than 10% of these 276 citations listed for allelopathic interactions could be classified as review papers for allelopathic interactions of higher plants. These reviews, with minor exceptions, summarized, described, pooled, and/or integrated data for plant-plant allelopathic interactions determined for different species, environments, and ecosystems utilizing a range of different methods/protocols. Such reviews are useful in that they can identify potential/likely mechanisms that may bring about plant-plant allelopathic interactions and provide general guidelines and directions for future research. However, to identify and determine actual mechanisms that control and/or regulate the expression of plant-plant allelopathic interactions within a given ecosystem requires in-depth quantitative analyses of individual ecosystem processes and their interactions utilizing consistent experimental protocols. The research described in this book is an attempt to do just that for one type of ecosystem.

This book does not provide a comprehensive review of the plant–plant allelopathic interaction literature. For a general review of this literature the reader may wish to read several of the following: Rice (1974, 1979, 1983, 1984, 1995), Putnam and Tang (1986), Waller (1987), Siqueria et al. (1991), Inderjit et al. (1995, 1999), Inderjit and Keating (1999), Macías et al. (1999, 2004), Reigosa et al. (2006), Fujii and Hiradate (2007), Willis (2007), and Zeng et al. (2008).

There are several things that are unique about this book:

- a. The general format is that of research papers published in scientific journals. The materials are organized in sections such as, Abstract, Introduction, Materials and Methods, and Results and Discussion.
- b. There are four chapters, including an introduction to allelopathic plant–plant interactions (Chapter 1). They all emphasize basic aspects of science, but Chapter 2 is more theoretical/hypothetical in nature, Chapter 3 is more practical in nature, and Chapter 4 integrates the information presented in Chapters 2 and 3 and suggests future direction for research in plant–plant allelopathic interactions.
- c. Comments regarding logic, reasons, and justifications, for various procedures used are provided throughout the book.
- d. The Scientific Method and its approach to research are emphasized. For example, instead of definitive conclusions at the end of the book cons and pros are provided so that readers can draw their own conclusions. The reader will also find an extended listing of if-then hypotheses, and
- e. Although a broad range of literature is included, the primary focus of this book is a summary and retrospective analysis of some 20 plus years of research on plant–plant allelopathic interactions at North Carolina State University.

The above format was chosen so that researchers, students, farmers, as well as layman interested in science, reduced tillage production, and plant–plant allelopathic interactions, in particular, can learn to appreciate and understand the nature of science, its benefits and limitations, and our present knowledge of the action of natural products such as phenolic acids in soil on plant growth and development.

Raleigh, NC August 19, 2010 Udo Blum

References

- Blum U, Rice EL (1969) Inhibition of symbiotic nitrogen-fixation by gallic and tannic acid and possible roles in old-field succession. Torrey Bot Club 96:531–544
- Fujii Y, Hiradate S (2007) Allelopathy: new concepts and methodology. Science Publishers, Enfield, NY

Inderjit, Keating KI (1999) Allelopathy: principles, procedures, processes, and promises for biological control. Adv Agro 67:141–231

Preface

- Inderjit, Daskshini KMM, Einhellig FA (1995) Allelopathy: organisms, processes, and applications. ACS symposium series, vol 582. American Chemical Society, Washington, DC
- Inderjit, Daskshini KMM, Foy CL (1999) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, FL
- Macías FA, Galindo JGC, Molinillo JMG, Cutler H (1999) Recent advances in allelopathy I. A science for the future. Cádiz University Press, Puerto Real Cádiz, Spain
- Macías FA, Galindo JGC, Molinillo JMG, Cutler H (2004) Allelopathy: chemistry & modes of action of allelochemicals. CRC Press, Boca Raton, FL
- Putnam AR, Tang CS (1986) Science of allelopathy. Wiley, New York, NY
- Reigosa MJ, Pedrol N, Gonzalez L (2006) Allelopathy. A physiological process with ecological implications. Springer, Dordrecht, The Netherlands
- Rice EL (1974) Allelopathy. Academic Press, Orlando, FL
- Rice EL (1979) Allelopathy an update. Bot Rev 45:15-109
- Rice EL (1983) Pest control with nature's chemicals: allelochemics and pheromones in gardening and agriculture. University of Oklahoma Press, Norman, NY
- Rice EL (1984) Allelopathy. Academic Press, Orlando, FL
- Rice EL (1995) Biological control of weeds and plant diseases: advances in applied allelopathy. University of Oklahoma Press, Norman, NY
- Siqueira JO, Nair MG, Hammerschmidt R, Safir GR (1991) Significance of phenolic compounds in plant-soil-microbial systems. Crit Rev Plant Sci 10:63–121
- Waller GR (1987) Allelochemicals: role in agriculture and forestry. ACS symposium series, vol 330. American Chemical Society, Washington, DC
- Willis RJ (2007) The history of allelopathy. Springer, Dordrecht, The Netherlands
- Zeng RS, Mallik AU, Luo SM (2008) Allelopathy in sustainable agriculture and forestry. Springer, New York, NY

Acknowledgements

Although my research interests in allelopathy have been a primary focus for most of my academic career, I did take several excursions into other research areas (e.g., air pollution biology, and salt marsh ecology) before returning full time to the subject matter of allelopathy. In retrospect these excursion turned out to be extremely beneficial to my understanding of stress physiology and ecosystem biology, important insights needed when studying plant–plant allelopathic interactions. My teaching of beginning and advanced undergraduate botany courses and graduate courses in plant physiology, ecology, plant physiological ecology, and root ecology also proved to be invaluable in my pursuit of understanding the mechanisms of plant–plant allelopathic interactions by providing me with an opportunity to develop a much more in-depth appreciation of plant morphology, anatomy, physiology, and population biology, and soil physics, chemistry and microbiology.

Equally as important as a solid understanding of plant, microbial, and soil biology was an appreciation of the scientific method. The importance of the scientific method as a tool for studying biological systems was instilled within me by EL Rice, my PhD mentor at The University of Oklahoma, and was reinforced by my teaching of botany courses using the Socratic Method at both the University of Oklahoma and at North Carolina State University.

I also want to acknowledge the help of several statisticians at North Carolina State University who over the years provided me with the opportunity to develop and refine my skills in experimental design, data analysis, and modeling. In particular, I would like to express my appreciation to Professors RJ Monroe, JO Rawlings, and TM Gerig of the Department of Statistics.

Along the way there were numerous faculty members, graduate and undergraduate students, and technicians who influenced, shaped, and reshaped my research program in allelopathy. A deep felt thank you to all of them. In particular, I would like to express my appreciation to faculty members C Brownie, RC Fites, TM Gerig, F Louws, LD King, SR Shafer, SB Weed, TR Wentworth, and AD Worsham, visiting scientist S-W Lyu, technicians/graduate students BR Dalton and K Klein, graduate students MF Austin, CL Bergmark, FL Booker, LJ Flint, AB Hall, LD Holappa, M Kochhar, ME Lehman, JV Perino, KJ Pue, J Rebbeck, JR Shann, K Staman, ER Waters, and AG White, and the assistance of CG Van Dyke in processing the samples and taking the electron micrographs of microbial populations on cucumber root surfaces.

I would also like to acknowledge the following organizations for providing research support and/or funding: North Carolina Agricultural Research Service, USDA Competitive Research Grants Program, Southern Region Low-Input Agricultural Systems Research and Extension Program, North Carolina Agricultural Foundation Graduate Research Assistantship Program, and the Departments of Botany (now Plant Biology), Soil Science, and Statistics.

Finally, the author wishes to thank MA Blum, SO Duke, JR Troyer, JD Weidenhamer, and AD Worsham for editing, reviewing, and for thoughtful and constructive comments.

Contents

1	Plan	t-Plant	t Allelopathic Interactions	1
	Rele	irences .		0
2	Plan	t-Plant	t Allelopathic Interactions. Phase I: The Laboratory	9
	2.1	Criteri	a for Model Systems	10
	2.2	Materi	als, Methods, and Commentary	11
		2.2.1	General Bioassay Procedures	12
		2.2.2	Bioassay Species	14
		2.2.3	Soil Substrates	14
		2.2.4	Seedling Containers	16
		2.2.5	Sorption and Microbial Utilization Studies	18
		2.2.6	Phenolic Acids	18
		2.2.7	Phenolic Acid Solutions	19
		2.2.8	Solution Additions to Seedling Systems	20
		2.2.9	Phenolic Acid Extraction Procedures	22
		2.2.10	Quantification of Individual Phenolic Acids	24
		2.2.11	Rhizosphere and Soil Microbial Populations	25
		2.2.12	Measurements	26
		2.2.13	Data Analyses	29
	2.3	Resear	ch Objectives	30
	2.4	Result	s and Discussion	31
		2.4.1	Effects and Duration of Effects of Phenolic Acids	
			on Seedlings in Nutrient Culture	31
		2.4.2	Effects of Seedlings, Mixtures of Phenolic Acids,	
			and Microbes on Phenolic Acid Concentrations	
			in Nutrient Culture	37
		2.4.3	Interactions of Phenolic Acids with Sterile	
			and Non-sterile Soils	41
		2.4.4	Effects of Phenolic Acids on Bulk-Soil	
			and Rhizosphere-Microbial Populations	50
		2.4.5	Effects and Duration of Effects of Phenolic Acids	20
			on Seedlings in Soil Culture	54

		2.4.6	Relationships Between Phenolic Acid-Utilizing Microbes and Phenolic Acid Inhibition	57
		2.4.7	Effects of Seedling-Microbe-Soil Systems on the Available Concentrations of Phenolic Acids	
			in Soil Solutions	60
		2.4.8	Comparison of the Effects of Phenolic Acids	
			on Seedlings in Nutrient and Soil Culture	63
		2.4.9	Effects of Phenolic Acids at Various Life Stages	64
	2.5	Summ	nary of Major Points for Model Systems	65
		2.5.1	Seedlings	65
		2.5.2	Microbes	66
		2.5.3	Phenolic Acids	67
	2.6	Releva	ance of Model Systems to Field Studies	70
		2.6.1	Promoters, Modifiers, and Inhibitors	74
	Refe	rences		75
3	Plan	t–Plan	t Allelopathic Interaction. Phase II:	
	Field	d/Labo	ratory Experiments	85
	3.1	Annua	al Broadleaf Weed Control in No-Till Systems	86
	3.2	Mater	ials, Methods, and Commentary	87
		3.2.1	Soil and Plant Tissue/Residue Analyses	87
		3.2.2	Laboratory Bioassays	90
		3.2.3	Field Studies	92
		3.2.4	Data Analyses	97
	3.3	Resear	rch Objectives	97
	3.4	Result	ts and Discussion	98
		3.4.1	Characterize the Phenolic Acids in Soils of	
			No-Till and Conventional-Till Systems and to	
			Establish Correlations Between Easily Obtained	
			Soil Characteristics and Phenolic Acids in Soils	
			(Blum et al. (1991); Plenum Publishing	
			Corporation, Excerpts Used with Permission of	
			Springer Science and Business Media)	98
		3.4.2	Determine if Soil Extracts could be Used Directly	
			in Laboratory Bioassays for the Detection of	
			Allelopathic Activity (Blum et al. (1992); Plenum	
			Publishing Corporation, Excerpts Used with	
			Permission of Springer Science and Business Media)	107
		3.4.3	Characterize How Cover Crop Residues in	
			No-till Systems Affect Early Emergence of	
			Broadleaf Weeds and to Establish and Characterize	
			Potential Relationships Between Early Broadleaf	
			Weed Seedling Emergence and the Physical	
			and Chemical Environments Resulting from the	
			Presence of Cover Crop Residues (Blum et al.	
			(1997); Henry A Wallace Institute for Alternative	

		3.4.4	Agriculture Inc, Summarized with Permission of Cambridge University Press)	111
		3.4.5	Inc, Summarized with Permission of Cambridge University Press) Determine Under Controlled Conditions How Effects of Shoot Cover Crop Residues Taken from the Field Change with Time After Desiccation and How Such Effects Are Modified By Temperature, Moisture, and Nitrogen Levels (Lehman and	116
		3.4.6	Blum (1997); Summarized with Permission of International Allelopathy Foundation) Determine the Respective Importance of Shoot and Root Residues in Regulating Early Broadleaf Weed Seedling Emergence (Blum et al. (2002); Summarized with Permission of International	123
		3.4.7	Allelopathy Foundation)	128
	3.5	Summ	of Springer Science and Business Media)	133 135
		3.5.1 3.5.2 3.5.3 3.5.4 3.5.5	Effects of Cover Crop Residues on the Physicochemical Environment of the Soil Phenolic Acids in Cecil Soils Bioassays of Soil Extracts Field Residue Bioassays: Seedling Emergence Laboratory Bioassays: Seedlings and Microbes	135 136 138 139 141
	Refe	rences		143
4	Phas	se III: S	Summing Up	151
	4.1	Hypot	heses	151
		4.1.1 4.1.2	Plant–Plant Allelopathic Interaction. Phase I: The Laboratory	153
			Field/Laboratory Experiments	160
	4.2	Final (4.2.1	Comments	167

		Present in Wheat No-Till Crop Systems for	
		Inhibition of Broadleaf Weed Seedling Emergence	
		to Occur?	168
	4.2.2	Do Phenolic Acids Have a Dominant Role	
		in Regulating Broadleaf Weed Seedling	
		Emergence or Are Phenolic Acids Just One	
		Component of a Larger Promoter/Modifier/	
		Inhibitor Complex that Regulates Broadleaf Weed	
		Seedling Emergence in Wheat No-Till Crop Systems?	174
4.3	The P	resent Paradigm	176
	4.3.1	Phenolic Acids in Soils: Soil Extractions	
		and Dose Response	177
4.4	A Mo	dified Paradigm	179
	4.4.1	Criteria for Plant–Plant Allelopathic Interactions:	
		An Update	180
	4.4.2	Potential Tools	181
4.5	Concl	uding Remarks	184
Refe	erences		185
Author	Index		191
Subject	Index		195

Abbreviations

ACT	Basal medium for actinomycetes
CAF	Caffeic acid
C-clover	Crimson clover
CFU	Colony-forming units
C/N	Carbon/nitrogen ratio
DBW3	EDTA extraction of soil at room temperature and soil extraction ratio
	of 1:100
DTPA	Diethylenetriaminepentaacetic acid
EDTA	Ethylenediaminetetraacetic acid
FER	Ferulic acid
GUE	Sodium hydroxide extraction of soil at room temperature and soil
	extraction ratio of 1:1 (GUE2) or at 121°C and soil extraction ratio
	of 1:43 (GUEN)
GLM	General linear model
GLU	Glucose
HPLC	High performance liquid chromatograph
kv	kilovolts
MEOH	Methanol
MES	2-(N-morpholino) ethanesulfonic acid
mOsm	milliosmoles
NLIN	Non linear
OMe	Methoxy
PEG	Polyethylene glycol
PPFD	Photosynthetic photon flux density
PCO	<i>p</i> -Coumaric acid
PDMS	Polydimethylsiloxane
РОН	<i>p</i> -Hydroxybenzoic acid
PRO	Protocatechuic acid
PVP	Polyvinylporrolidone
RCM-100	Radical Pak cartridge
R	Root
R + S	Root plus shoot

S	Shoot
S-clover	Subterranean clover
SIN	Sinapic acid
SYR	Syringic acid
VAN	Vanillic acid

List of Figures

2.1	A seedling-microbe-soil model system	11
2.2	Light banks: a general view, b nutrient culture, c soil cup	
	system, and d continuous-flow system	13
2.3	Containers: a Wheaton glass bottles, b split-root systems,	
	c soil cups, and d soil columns	17
2.4	Some common simple plant phenolic acids, cinnamic acid	
	derivatives on the right and benzoic acid derivatives on the	
	left, where H equals hydrogen, OH equals hydroxy, and	
	OMe equals methoxy	19
2.5	Changes in net phosphorous uptake (\mathbf{a} ; $\mathbf{r}^2 = 0.52$), net	
	water uptake (b ; $r^2 = 0.19$), and absolute growth rates of	
	leaf expansion (b ; r^2 for FER = 0.76 and PCO = 0.58) of	
	13-15 day-old cucumber seedlings as the proportion of the	
	root systems in contact with a phenolic acid was increased	
	in nutrient culture, where FER equals 0.5 mM ferulic	
	acid and PCO equals 0.5 mM p-coumaric acid. Figures	
	based on regressions from Lyu and Blum (1990) (a, b) and	
	Lehman et al. (1994) (b). Plenum Publishing Corporation,	
	regressions used with permission of Springer Science and	
	Business Media	32
2.6	Effects of ferulic acid and initial nutrient solution pH on net	
	phosphorous uptake (a ; 22 day old; r^2 for pH 5.5 = 0.71,	
	and pH $6.5 = 0.45$), absolute growth rates of leaf expansion	
	(b ; 16–18 day old; r^2 for pH 5.5 = 0.90, pH 6.25 = 0.69,	
	and pH 7.0 = 0.72), and net water utilization (c; 16–18 day	
	old; r^2 for pH 5.5 = 0.95, for pH 6.25 = 0.88, and for	
	pH 7.0 = 0.69) of cucumber seedlings. Figures based on	
	regressions and data from Lehman and Blum (1999b)	
	(a) and regressions from Blum et al. (1985b) (b, c). Plenum	
	Publishing Corporation, regressions and data used with	
	permission of Springer Science and Business Media	33
2.7	The effects of pH on the ionic state of a theoretical phenolic	
	acid with a pK _a value of 4.5 (a) and estimated pK _a values for	

	cinnamic and benzoic acids (b). Where CAF equals caffeic acid, PCO equals <i>p</i> -coumaric acid, FER equals ferulic acid, SIN equals sinapic acid, POH equals <i>p</i> -hydroxybenzoic acid, SYR equals syringic acid, and VAN equals vanillic acid. A pK _a value for caffeic acid was not available. Figure (b) based on data from Blum et al. (1999b). CRC Press LLC, data used with permission of Taylor & Francis Ltd, http://www.tandf.co.uk/journals. Original sources of data: AJ Leo, personal communication, Leo et al. (1971), Nordstrom	
	and Lindberg (1965), Kenttamaa et al. (1970), Connors and Lipari (1976); Glass (1975)	34
2.8	Change in absolute and relative rates of leaf expansion of 12 day-old cucumber seedlings as <i>p</i> -coumaric acid declines due to root uptake and microbial utilization in nutrient culture in the presence and absence of aeration, and when solutions were not changed or changed every 4 h. Figures reproduced from Blum and Gerig (2005). Figures used with	
2.9	permission of Springer Science and Business Media $\dots \dots$ Electron micrographs (2500× 17 kv) of root surfaces of 13 day-old cucumber seedlings grown in nutrient culture not treated (controls; a , b) or treated 4 times (starting with day 6) every other day with 0.5 mM <i>p</i> -coumaric acid (c , d). Nutrient solutions (pH 5.0) with or without <i>p</i> -coumaric acid were changed every other day. Fine matrix material in micrographs is very likely mucigel generated by root and associated microbes. Micrographs chosen represent the maximum (a , c) and minimum (b , d) differences observed for 8 micrographs taken along the first 10 mm (tip) of the control and <i>p</i> -coumaric acid treated roots. Finally, microbes observed in these micrographs represent all types of microbes, not just microbes that can utilize phenolic acids	30
2.10	as a sole carbon source, since phenolic acid utilizers cannot be distinguished by morphology from other carbon utilizers Net depletion of phenolic acid by 12 day-old cucumber seedlings grown in a growth chamber (\mathbf{a} ; $\mathbf{r}^2 = 0.78$) and by 14–18 day-old cucumber seedlings grown in a light bank (\mathbf{b} ; $\mathbf{r}^2 \ge 0.79$), where FER equals ferulic acid and POH equals <i>p</i> -hydroxybenzoic acid. Nutrient solutions were aerated. Initial pH values for nutrient solutions of (\mathbf{a}) were 5.5. Initial pH values for (\mathbf{b}) varied as indicated. All phenolic acid values were determined after 5 h. \mathbf{a} based on regression from Lehman and Blum (1999b) (Plenum Publishing Corporation, regression used with permission of	37
	Springer Science and Business Media) and b based on data points of two figures from Shann and Blum (1987a)	38

2.11	The net depletion of phenolic acids in the absence	
	or presence of a second phenolic acid at equal-molar	
	concentrations from nutrient solution by 15-day old	
	cucumber seedlings growing in a light bank. Where FER	
	equals ferulic acid, PCO equals <i>p</i> -coumaric acid, and VAN	
	equals vanillic acid and data in (a) are depletion of ferulic	
	acid, b depletion for <i>p</i> -coumaric acid, and c depletion for	
	vanillic acid. Nutrient solutions were not aerated and had an	
	initial pH of 5.5. The absence of standard error bars indicates	
	that the error bars are smaller than the symbols representing	
	the mean. Figures based on data from Lyu et al. (1990).	
	Plenum Publishing Corporation, data used with permission	
	of Springer Science and Business Media	40
2.12	The decline of 0.5 mM p -coumaric acid (a) and the	
	accumulation and decline of initial phenolic acid breakdown	
	products (b) in nutrient solutions (pH 5.0) surrounding roots	
	of 12 day-old cucumber seedlings. Breakdown products are	
	in <i>p</i> -coumaric acid equivalence. Nutrient solutions were	
	aerated or not aerated. Figures reproduced from Blum and	
	Gerig (2005). Figures used with permission of Springer	
	Science and Business Media	40
2.13	Recovery of ferulic acid by various extraction procedures	
	from sterile soils 90 days after ferulic acid solutions	
	(1,000 mg/kg soil, pH 6.0) were added to soils. Soil-ferulic	
	acid mixtures were stored in the dark at room temperature.	
	LSD _{0.05} for Cecil A and B and Portsmouth A and B soils	
	were 28.70, 44.15, 40.69, and 28.66, respectively. Meaning	
	of the abbreviations and details for extraction procedures	
	are provided in Table 2.3. Figure based on data from Dalton	
	et al. (1987). Data used with permission of Soil Science	
	Society of America	42
2.14	Recovery of ferulic (FER) acid (\mathbf{a} ; $r^2 = 0.99$) and vanillic	
	(VAN) acid (b ; $r^2 \ge 0.95$) by 0.5 M EDTA (pH 8) or	
	water 42 days after addition of a range of phenolic acid	
	concentrations to sterile Cecil A and B soils. Figures based	
	on regressions from Blum et al. (1994). Plenum Publishing	
	Corporation, regressions used with permission of Springer	
	Science and Business Media	47
2.15	Recovery, over time, of ferulic (FER) acid (\mathbf{a} ; $r^2 \ge 0.89$)	
	and vanillic (VAN) acid (b) from sterile Cecil A and B soils	
	by 0.25 M EDTA (pH 7) or water. Phenolic acid added at	
	time zero was 2.5 μ mol/g soil. Standard error bars for (b)	
	are smaller than the symbol representing the mean. a based	
	on regressions and b based on data points of two figures	
	from Blum et al. (1994). Plenum Publishing Corporation,	

	regressions and data used with permission of Springer	
	Science and Business Media	47
2.16	Amounts of ferulic acid in soil solution, reversibly sorbed	
	and fixed (irreversibly sorbed) in sterile Cecil A (\mathbf{a}) and B	
	(b) soils 35 days after addition. Standard error bars for (a)	
	and (\mathbf{b}) are smaller than the symbol representing the mean.	
	Figures reproduced from Blum (1998) Plenum Publishing	
	Cornoration figures used with permission of Springer	
	Science and Business Media	17
2 17	Utilization of ferulic acid in soil solution and reversibly	÷,
2.17	sorbed to Cecil Λ (a) and B (b) soils by microbes. Fertilic	
	sold added at time zero was 2 u mol/g soil. Standard arror	
	actu audeu at time zero was 2 μ mol/g son. Standard error	
	the mean Eigener engradues d from Divers (1008). Discuss	
	The mean. Figures reproduced from Blum (1998). Plenum	
	Publishing Corporation, figures used with permission of	40
a 10	Springer Science and Business Media	48
2.18	Percent ferulic acid and vanillic acid reversibly sorbed and	
	fixed (irreversibly sorbed) by sterile Cecil A (a) and B (b)	
	soils over time. Percentages based on $1-3 \mu$ mol/g soil added	
	at time zero. Figures based on data from Blum et al. (1999b).	
	CRC Press LLT, data used with permission of Taylor &	
	Francis Ltd, http://www.tandf.co.uk/journals. Original	
	sources of data: Blum (1997, 1998) and Blum et al. (1994)	48
2.19	Response of bacteria (a), fast-growing bacteria (b), and	
	fungi (c) in Portsmouth A and B soils to 0 and 0.5 μ mol/g	
	soil ferulic acid applied every other day starting with day 1,	
	where fast-growing bacteria represent colonies that were \geq	
	1 mm in diameter after 6 days of incubation. For (a) $LSD_{0.05}$	
	$= 2.9 \times 10^5$, for (b) LSD _{0.05} $= 2.88 \times 10^5$, and for (c)	
	$LSD_{0.05} = 2.4 \times 10^2$. Figures reproduced from Blum and	
	Shafer (1988)	52
2.20	The effects of multiple treatments of 7- (a) and 4-	
	(b) equal-molar phenolic acid mixtures on cucumber	
	seedling rhizosphere bacterial populations that can utilize	
	phenolic acids as sole carbon sources, where CFU equals	
	colony-forming units. Seedlings were grown in Cecil A	
	soil. The 7-phenolic acid mixture was composed of caffeic,	
	<i>p</i> -coumaric, ferulic, <i>p</i> -hydroxybenzoic, sinapic, syringic, and	
	vanillic acids. The 4-phenolic acid mixture was composed	
	of <i>p</i> -coumaric, ferulic, <i>p</i> -hydroxybenzoic, and vanillic acids.	
	Figure based on data from Blum et al. (2000). Plenum	
	Publishing Corporation, data used with permission of	
	Springer Science and Business Media	53
2.21	Concentrations for one to a mixture of four phenolic acids	
	required for a 30% inhibition of mean absolute rates of leaf	
	*	