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This book is dedicated to all who have
labored and will labor in the field of
plant–plant allelopathic interactions.





Preface

For part of my PhD thesis I characterized the distribution of tannic acids in
soils underneath sumac (Rhus copallina L.) located in abandoned fields of central
Oklahoma (Blum and Rice 1969). Large quantities of tannic acids were found in the
litter and organic residues underneath sumac. Tannic acids, which are very water
soluble, were also found in the soil to a depth of 75 cm, with a definite zone of
concentration at 45–55 cm. The techniques utilized at the time to recover and quan-
tify tannic acids were rudimentary, at best. Amounts below 400 ppm added to soils
could not be recovered, even though concentrations as low as 33 ppm added to soils
inhibited nodulation of red kidney beans (Phaseolus vulgaris L. “Burpee”). These
observations and their implications to plant–plant allelopathic interactions intrigued
me at the time and I made a promise to myself that I would take another look at this
subject in the future. Around 1980 I was ready to fulfill that promise. For the next
20 plus years research in my laboratory was primarily focused on various aspects
of plant–plant allelopathic interactions with an emphasis on seedling behavior, soil
chemistry, and microbiology. This book is a summary and retrospective analysis of
this research program.

Although research publications on allelopathy have increased at a phenomenal
rate since the 1980s, what is generally lacking are in-depth analyses and integration
of this literature. For example, a quick search of Science Citation Index yielded 112
publications between 1981 and 1990, 627 publications between 1991 and 2000, and
1,615 publications between 2001 and 2010. The terms “allelopathic interactions”
yielded 6, 58, and 212 publications over the same time intervals. However, less
than 10% of these 276 citations listed for allelopathic interactions could be classi-
fied as review papers for allelopathic interactions of higher plants. These reviews,
with minor exceptions, summarized, described, pooled, and/or integrated data for
plant–plant allelopathic interactions determined for different species, environments,
and ecosystems utilizing a range of different methods/protocols. Such reviews are
useful in that they can identify potential/likely mechanisms that may bring about
plant–plant allelopathic interactions and provide general guidelines and directions
for future research. However, to identify and determine actual mechanisms that con-
trol and/or regulate the expression of plant–plant allelopathic interactions within
a given ecosystem requires in-depth quantitative analyses of individual ecosystem
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processes and their interactions utilizing consistent experimental protocols. The
research described in this book is an attempt to do just that for one type of
ecosystem.

This book does not provide a comprehensive review of the plant–plant allelo-
pathic interaction literature. For a general review of this literature the reader may
wish to read several of the following: Rice (1974, 1979, 1983, 1984, 1995), Putnam
and Tang (1986), Waller (1987), Siqueria et al. (1991), Inderjit et al. (1995, 1999),
Inderjit and Keating (1999), Macías et al. (1999, 2004), Reigosa et al. (2006), Fujii
and Hiradate (2007), Willis (2007), and Zeng et al. (2008).

There are several things that are unique about this book:

a. The general format is that of research papers published in scientific journals. The
materials are organized in sections such as, Abstract, Introduction, Materials and
Methods, and Results and Discussion.

b. There are four chapters, including an introduction to allelopathic plant–plant
interactions (Chapter 1). They all emphasize basic aspects of science, but
Chapter 2 is more theoretical/hypothetical in nature, Chapter 3 is more practical
in nature, and Chapter 4 integrates the information presented in Chapters 2 and 3
and suggests future direction for research in plant–plant allelopathic interactions.

c. Comments regarding logic, reasons, and justifications, for various procedures
used are provided throughout the book.

d. The Scientific Method and its approach to research are emphasized. For example,
instead of definitive conclusions at the end of the book cons and pros are provided
so that readers can draw their own conclusions. The reader will also find an
extended listing of if-then hypotheses, and

e. Although a broad range of literature is included, the primary focus of this book
is a summary and retrospective analysis of some 20 plus years of research on
plant–plant allelopathic interactions at North Carolina State University.

The above format was chosen so that researchers, students, farmers, as well as
layman interested in science, reduced tillage production, and plant–plant allelo-
pathic interactions, in particular, can learn to appreciate and understand the nature
of science, its benefits and limitations, and our present knowledge of the action of
natural products such as phenolic acids in soil on plant growth and development.

Raleigh, NC Udo Blum
August 19, 2010
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