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Introduction

Giovanni Sommaruga

Part I A Retrospective: Some Remarks on the Historiography of
FOM1

Section 1 : The Meaning of ‘FOM’ According to Mostowski,
Parsons and Wang

Before sketching the development of 120 years of studies in FOM, the following
questions ought to be addressed: What makes the studies and results considered,
analysed, discussed etc. by Andrzej Mostowski, Charles Parsons and Hao Wang
foundational studies or results, that is contributions to FOM? What are the features
or characteristics of foundational research according to these specialists and histo-
riographers on FOM?

The most important or at least characteristics highly valued and shared by all
these specialists on FOM are the following ones:

1. Some types of conceptual analysis
For Wang, the business of research in FOM is essentially conceptual analysis.
He distinguishes 2 essential ingredients of conceptual analysis in FOM (H.W.:
in mathematical logic): (i) reduction, (ii) formalisation. The purpose of this con-
ceptual analysis is to make a concept or a set of concepts or a theory more sharp,
more precise.

concerning (i): Wang characterises reduction as “one way of simplifying a con-
cept [. . .] by reducing more components to less or by simplifying each
separate aspect”.2 He continues to further divide reduction into (i.1) local
reduction and (i.2) regional or global reduction (in H.W.’s terms “whole”

1 This first part of the introduction is entirely based on the historical surveys of studies in
Foundations of Mathematics (FOM): A. Mostowski (1965), C. Parsons (2006) and H. Wang (1958).
2 Wang (1958, p. 468).
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2 G. Sommaruga

reduction). Among the types of local reduction he distinguishes the reduc-
tion by definition, the reduction by deduction (i.e. applying the axiomatic
method) and something he calls uniform local reduction which is the inter-
pretation of a formalism or formal system by another one. And by a regional
or global reduction he means the reduction of (a region or branch or) the
whole of mathematics to a (another) region or branch. Wang observes that
regional or global reductions are often of greater interest to philosophers
than local ones, but at the same time they are often not sound.

concerning (ii): Wang characterises formalisation as putting a concept or a set
of concepts into a formal system which makes all the implicit assumptions
explicit. He subdivides formalisation into thorough formalisation (a thor-
ough axiomatisation containing predicate logic and the concepts to be for-
malised which are thereby “implicitly defined”) and partial formalisation
(no or only partial axiomatisation and other concepts than the ones to be
formalised occur).

Hao Wang concludes his reflections on conceptual analysis in FOM with
two claims: Claim A: Formalisation rather than reduction is the appropri-
ate method in foundational studies, as the latter are primarily interested in
irreducible concepts. Claim B: Formalisation as a method has been mainly
practiced in mathematical logic (far more so than in any other branch of
mathematics) for the last (and the first) 80 years of studies in FOM.3

2. An orientation towards the basic distinction between constructive methods and
non-constructive (or classical) methods in mathematics.4

In his discussion of this basic distinction, Wang refers to Bernays’ 5 shades
of constructive and non-constructive methods in mathematics: in order of de-
creasing constructivity (i) anthropologism (or finitism in the narrower sense),
(ii) finitism (in the broader sense), (iii) intuitionism, (iv) predicative set theory
(or predicativism), and (v) classical set theory (or platonism). Wang makes a se-
ries of comments on these different domains, a particular and very modern com-
ment being the following one: The domains (i)–(v) should not be treated as rival
domains among which one has to choose one (for life), but they should rather
be treated “as useful reports about a same grand structure which can help us to
construct a whole picture that would be more adequate than each taken alone”.5

He identifies a central irreducible concept of each of these domains: of (i) the
concept of feasibility, of (ii) the concept of constructivity, of (iii) the concept
of (constructive) proof, of (iv) the concept of (natural) number, and of (v) the
concept of set. Then he remarks that a sharp and precise definiteness of these
only vaguely characterised domains (i)–(v) may be obtained by a conceptual

3 Reduction and formalisation also play a fairly important role in Mostowski’s (1967), however in a
more implicit way. Parsons in his (2006) treats the axiomatic method (reduction) and formalisation
explicitly in the 1st paragraph.
4 Mostowski calls the divide: infinitistic or set-theoretical vs. finitistic or arithmetical; Parsons calls
the divide: platonism vs. constructivism.
5 Wang (1958, p. 472).
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analysis, and in particular by a formalisation of these 5 central concepts. These
formalisations might form the hard core of studies in FOM. But, completely
in agreement with Mostowski, he adds that at times various ramifications and
cross-overs may be more important than the hard core itself.6 Hao Wang sub-
sequently presents a short historical characterisation of each of these domains
(i)–(v) within the development of research on FOM. And Parsons dedicates a
whole paragraph (§3) to these various domains.

3. An intimate relation with mathematical logic in its various subdisciplines (set
theory, model theory, proof theory and computability theory)

4. (For Mostowski and Parsons) being a contribution to one of the original 3 move-
ments (schools) in the philosophy of mathematics: formalism (Hilbert’s pro-
gram), intuitionism, and logicism, or later on to their more technical successors:
meta-mathematics, constructivism, and set theory resp.7

5. (For Mostowski and Parsons) being a solution or a partial solution to a major
philosophical problem, such as e.g. the completeness problem, the problem of
set-theoretical paradoxes, the decision problem, the problem of impredicative
definition etc.

6. (Esp. for Parsons) being a contribution to the solution of the problem of justify-
ing mathematical statements or principles (the so-called epistemological point
of view in FOM)

NB. These features or characteristics of studies or results on FOM (according to
Mostowski, Parsons and Wang) are obviously not mutually exclusive.

Section 2 : The First 80 Years of Studies in FOM According to
Mostowski and Wang

According to Mostowski and Wang,8 the 1st phase of studies in FOM starts in the
1880s.9 Its most important elements are: Cantor’s so-called naive set theory and
the subsequent formalisation of the central concept of set (i.e. the various axioma-
tisations of Cantorian set theory) as a reaction to the appearance of set-theoretical
paradoxes; Frege’s classical 1st order logic as a formalisation of all usual methods
of mathematical argument of a strictly logical nature; and finally, the 3 well-known
movements (schools) in the philosophy of mathematics:

6 Parsons draws the dividing line in a slightly different way from Wang: According to him pred-
icativism belongs to the side of platonism rather than to the one of constructivism in a large sense.
7 Note that all the three specialists in FOM agree (more or less; cf. the following footnote) that the
original 3 movements in the philosophy of mathematics failed and somehow came to an end (by
about the 1930s).
8 Wang presumably exempts intuitionism from the criticism and treatment to which he subjects
logicism and formalism; see below. And the same may hold for Parsons as well.
9 The following historical sketch of the development of studies in FOM concerns what is usually
called “the history of ideas” in a broad sense.
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1. Logicism as a reduction of mathematics to logic
2. Formalism (called finitism by Wang) as a reduction of mathematics to finitist

mathematical methods; it is an endeavor towards a formalisation of the central
concept of constructivity.

3. Intuitionism as an endeavor towards a formalisation of the central concept of
(constructive) proof

Logicism and formalism are, according to Wang, global reductionist projects;
and moreover, they both are failures on several accounts. Hilbert’s formalism has,
however, in a 2nd phase of studies in FOM given rise to uniform local reduc-
tions which are of far greater interest than Hilbert’s original global reduction. And
Mostowski writes implicitly—and ambiguously—about the end or the decline of
the three movements in the philosophy of mathematics in the late 1920s and their
great impact on more formal and technical developments in a 2nd phase.

Mostowski identifies a new phase of FOM studies beginning in the 1930s with
three particularly influential works, namely: K. Gödel’s “Über formal unentscheid-
bare Sätze der Principia Mathematica und verwandter Systeme I” (1931), A. Heyt-
ing’s “Die formalen Regeln der intuitionistischen Logik” (1930), and A. Tarski’s
“Der Wahrheitsbegriff in formalisierten Sprachen” (1936).

In his presentation of Gödel’s incompleteness theorems, Mostowski formulates
and sketches the proofs of the 1st and the 2nd incompleteness theorems, he discusses
some important assumptions of these proofs and mentions some highly influential
effects on the subsequent development of foundational studies: first, Gödel’s 2nd
incompleteness theorem was used as a powerful tool for investigating the relative
strength of various axiomatic theories; second, his paper contains various results
regarding the decision problem(s); and third, the method he invented of comparing
intuitively true properties of mathematical objects with properties expressible in
the formal system under consideration turned out to be extremely fruitful in meta-
mathematics. His division of reasoning in intuitive meta-mathematics and formal
mathematics was a very useful tool for establishing properties of formal systems,
e.g. consistency, completeness and decidability.

An important strand in this 2nd phase of foundational studies is the development
of intuitionism and constructivism in logic and mathematics. Heyting’s just men-
tioned paper is the starting point of this strand: In this paper Heyting presents a
formalisation of intuitionistic 1st order logic. Gödel proved a bit later that classical
logic can be represented in the intuitionistic logic, and Tarski again a few years later
that open subsets of a topological space form a matrix in which all provable formulas
of intuitionistic propositional logic are valid. Subsequently, various interpretations
were proposed to prove soundness and completeness of intuitionistic logic and intu-
itionistic arithmetic: (a) Tarski’s topological interpretation was extended to yield a
soundness and completeness proof for intuitionistic 1st order logic. (b) The Beth or
tree models constitute another modification of the classical notion of model provid-
ing an adequate interpretation of intuitionistic 1st order logic. Both these interpreta-
tions suit pure intuitionistic logic very well, but seem less suitable for the interpreta-
tion of intuitionistic arithmetic. Mostowski raises the question: What is the purpose
of an interpretation of a formal system? and answers the question as follows: It is
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supposed to give a precise meaning to concepts which are either incompletely ex-
plained or taken as primitive terms in the resp. formal system. The fundamental
concept in intuitionism is, as Heyting showed, that of construction which is used
by the intuitionists without explication. In (c) Kleene’s realizability interpretation
of intuitionistic arithmetic, Kleene proposes to explicate this concept by identifying
it with partial computable functions. By means of his interpretation, he succeeds
in proving the soundness of intuitionistic arithmetic, but Rose later disproved com-
pleteness. Hence Kleene’s realizability interpretation does not provide an adequate
interpretation of intuitionistic arithmetic: There must be intuitionistically acceptable
“constructions” which are not reducible to partial computable functions. The prin-
ciple of (d) Gödel’s functional interpretation is similar to Kleene’s, but Gödel used
a much wider class of admissible constructions, namely the class of primitive re-
cursive functionals. Gödel not only proved the soundness of intuitionistic arithmetic
w.r.t. his functional interpretation, but also the relative consistency of intuitionistic
arithmetic w.r.t. his axiomatic theory of primitive recursive functionals. Mostowski
points out that all the interpretations (a)–(d) try to explain intuitionistic (logical or
arithmetical) concepts in classical terms, and that an intuitionist would of course be
far more interested in an interpretation explaining classical concepts in intuitionistic
terms. Mostowski then puts the constructivist response to the set-theoretical para-
doxes in a larger perspective, i.e. he describes other constructive, less “extreme”
attempts (than the intuitionistic one) to solve the problem of the paradoxes. One
sort of attempt employs quite arbitrary (not even necessarily constructive) means.
One attempt of this first sort is computable analysis which restricts all mathematical
notions and in particular those occurring in mathematical analysis to computable
functions. Other attempts of this first sort concern extensions of computable anal-
ysis such as Grzegorczyk’s elementarily definable analysis or hyper-arithmetical
analysis studied by Kreisel. The second kind of attempt, not merely of mathemati-
cal but also of philosophical interest, consists of the theories called strictly finitistic
by Mostowski: it is their aim to examine constructive mathematical objects by con-
structive means. One attempt of this second kind is recursive arithmetic the main
idea of which is to develop mathematics as a formal system operating exclusively
with equations. Another attempt of this second kind is Markov’s algorithmic math-
ematics which reduces all other mathematical notions to the one of algorithm and
which implicitly accepts and uses intuitionistic logic.

Another very important strand in the second phase of research in FOM is the
unfolding of computability theory. Out of the decision problem for a denumerable
class C of objects grew the need to define a class of arithmetical functions whose
values can be computed in a finitistic way. Thus, the concept of a computable func-
tion from a set of integers to the set of integers served to make precise the con-
cept of definability. In the 1930s several definitions of this concept of computable
function were proposed which turned out to all be equivalent (cf. also the Church-
Turing Thesis CT). The concept of computable function served likewise to define
the concept of a recursively enumerable (r.e.) set. Large parts of computability the-
ory were further developed by Kleene: He introduced the concept of relative com-
putability, he defined the degrees of computability based on this concept as well
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as the arithmetical hierarchy of sets of integers, and he contributed to the study of
recursive well-orderings which are part of a constructivistic program attempting to
reconstruct parts of classical set theory in computable terms. The hyper-arithmetical
hierarchy of sets of integers was but an extension of the arithmetical hierarchy into
the constructive transfinite. And the analytical hierarchy of sets of integers was a
further extension of the hyper-arithmetical hierarchy.

Another big subject in computability theory (other than hierarchies) is that of
functionals which was first introduced by Gödel: He extended the concepts of prim-
itive recursiveness and computability of functions and sets to objects of higher log-
ical types called functionals. Whereas arbitrary functionals are highly infinitistic
objects, Gödel considered the very narrow class of primitive recursive function-
als, Kleene the much larger class of partial computable functionals, and Spector
an intermediate class of so-called Bar-recursive functionals. The main drives for
departing from the ideal simplicity of computable functions and sets and heading
towards more and more infinitistic objects (objects of higher hierarchies and func-
tionals) were according to Mostowski on the one hand to round off the theory of
computability, and on the other to find objects which would be useful for the reali-
sation of Hilbert’s program (of consistency). Mostowski doubts whether these more
infinitistic objects still fit into a constructivist philosophical program.

A special area of research in computability theory (or closely related to it) is the
one of decision problems. Hilbert’s original decision problem was: Is there a method
allowing to decide effectively whether any 1st order formula is provable or not? The
decision problem: Is there a method allowing to decide effectively whether any given
formula of 1st order logic is satisfiable in some domain? could be called (the seman-
tical version of) a Hilbert-type decision problem. Now, several partial Hilbert-type
decision problems were found to have positive solutions, and Mostowski mentions
several classes of 1st order formulas which are decidable. The decision problem:
Is there a method allowing to decide effectively whether a given formula (in the
theory’s language) is provable in a theory T or not? could be called a Skolem-type
decision problem. Skolem and Tarski designed a method, called the elimination
method, to tackle this problem, and they used it successfully to solve positively the
Skolem-type decision problem for various theories such as e.g. the theory of real
closed fields. There are however important negative solutions of Hilbert-type de-
cision problems, the most prominent being Church’s negative solution of Hilbert’s
original decision problem in the 1930s, that is Church’s proof of the undecidability
of full 1st order logic. The basic method, called the reduction method, used in the
proofs of undecidability (negative solutions to a Hilbert-type decision problem) is
the reduction of a decision problem for a set of formulas K to the decision prob-
lem for another set K0 for which the solution is known to be negative. Church also
solved in the negative the Skolem-type decision problem for 1st order arithmetic.
And Rosser even proved the essential undecidability of 1st order arithmetic (that is,
the undecidability of every consistent extension of 1st order arithmetic). Mostowski
finally distinguishes a third sort of decision problem: Is there a method allowing one
to decide effectively whether any given 1st order formula is true in a given model M
or not? which could be called a model-type decision problem. The Robinsons proved
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that in most cases the undecidability of a model M can be obtained if one shows the
integers and usual arithmetical operations on integers to be definable in M.

According to Mostowski, the strand of (abstract) set theory is of special impor-
tance in the history of studies in FOM. In 1940 Gödel made a contribution to the
consistency problem of hypotheses in set theory which had a deep influence on
meta-mathematical work in the following 20 years. Gödel constructed a model of
set theory in which the set-theoretical axioms, the Axiom of Choice AC and the
Continuum Hypothesis CH, are valid by extending the arithmetical hierarchy into
the (Cantorian) transfinite. A set which can be constructed at one of the finite or
transfinite levels of this extended arithmetical hierarchy was called by Gödel “con-
structible”. The constructible sets form this model denoted by L and they form a
hierarchy. The family of constructible sets represents a realisation of the predicative
foundation of mathematics. Gödel’s Axiom of Constructibility ACon is the follow-
ing one: Every set is constructible (where a set in Gödel’s sense is a transitive and
ground set), for short, V = L. ACon is considered as a highly dubious statement
(even by Gödel). The effect of ACon is to give the not sharply defined concept of
an arbitrary subset of a given infinite set a very definite limitation and interpreta-
tion. There seems to exist the possibility of 2 equally acceptable set theories: an
axiomatic set theory + ACon, and an axiomatic set theory + not-ACon. Now, ACon
is not only consistent relative to the other axioms of set theory, it also implies e.g.
the Generalised Continuum Hypothesis GCH or the well-ordering theorem. A big
philosophical question is: Is ACon true? Since ACon is also provably independent
of the other axioms of set theory, there exist indeed 2 mutually contradictory sys-
tems of set theory. Mostowski wonders whether the choice is a matter of taste or
whether there are compelling reasons for choosing the one set theory rather than the
other. The just mentioned question touches on the fundamental problem of truth of
set-theoretical hypotheses.

The problem of inconsistencies in Cantor’s naïve set theory sparked off a num-
ber of axiomatic set theories all of which trying to modify Cantor’s original theory
in such a way that the inconsistencies disappear. Cantor distinguishes in his theory
between “consistent” and “inconsistent sets”. While Zermelo-Fraenkel’s axiomatic
set theory ZF simply ignored the inconsistent sets, the Bernays-Gödel axiomatic set
theory BG mimics this distinction by assuming not only sets (as ZF does), but also
classes. Whereas there is not much difference in mathematical content between ZF
and BG, there are considerable differences between ZF or BG and extensions of
these systems: in particular, those extensions adopting Tarski’s axiom of the exis-
tence of inaccessible cardinals or Levy’s axiom schema of the existence of various
kinds of inaccessible cardinals, or even a very strong Axiom of Infinity: There are
compact regular ordinals µ > ω. These extensions are essential extensions of ZF
and BG and they cannot be proven to be consistent relative to ZF or BG. The big
question of course is on which grounds these strong or very strong axioms of in-
finity can be taken to be consistent (in order not to introduce inconsistencies again
through the back door).

Moreover, Cantor (as well as Frege) used in his naive set theory a naive Com-
prehension Principle CP of set existence: Whenever F is a formula (with one free
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variable), there exists a set S consisting of all elements a satisfying F. Since CP
turned out to be inconsistent, subsequent axiomatic set theories tried to make set
theory consistent by modifying CP in 3 different ways: (a) by not accepting CP for
all formulas F; (b) by restricting the variability of a; (c) by imposing at the same
time restrictions (a) and (b). Chwistek’s and Ramsey’s Simple Type Theory STT
accepts (c). The ZF and BG set theories accept (b). And an axiomatic system due
to Quine and referred to by NF accepts (a). Mostowski surmises that the axioms of
set theory have not reached their definitive form yet. Another axiom of set theory
which at the beginning stirred up a lot of philosophical debate, namely AC, was
in the 2nd phase of foundational studies investigated concerning its relative consis-
tency as well as its independence. In the 1960s Cohen introduced a new method
allowing him to establish the independence of AC and GCH from practically every
axiomatic system of set theory built along the ZF-lines. The success of his method
is based on the new meta-mathematical concept of forcing. This concept of forcing
is of considerable interest also apart from its applications. Furthermore, Cohen’s
forcing method suggested the study of an essential ingredient of it, namely of the
generic sets. These sets seem to satisfy intuitions underlying Brouwer’s intuitionis-
tic conception of sets (of integers), and they can be defined not only for set theory,
but also for arithmetic and other theories. Cohen’s proof that there are (at least) 2
consistent and mutually incompatible set theories launched some more philosophi-
cal questioning: (i) Will mathematics accept the existence of these 2 incompatible
set theories? or (ii) Will mathematics try to find new axioms which will eliminate
one of them? or (iii) Will mathematics try to limit itself to more finitistic domains?
The issue between formalists (option (i)), platonists (option (ii)) and intuitionists
(option (iii)) is still open.

Yet another strand in the 2nd phase of development of studies in FOM is proof
theory which is rooted in Hilbert’s program (formalism). The main inputs in proof
theory were given by Herbrand and Gentzen. Herbrand’s main result contains a cer-
tain reduction (although obviously not a complete one) of 1st order logic to proposi-
tional logic. It shows that if a formula F is provable in 1st order logic, then there ex-
ists a proof of it consisting exclusively of subformulas of F. This result greatly sim-
plifies the study of formal proofs. Herbrand’s results were rediscovered and greatly
improved by Gentzen who devised a new logical system equivalent to the one of the
Hilbert school, but much more flexible. The flexibility of Gentzen’s approach is ob-
vious from the fact that it is applicable not only to classical logic, but also to many
non-classical logics, esp. to intuitionistic logic. Gentzen’s other great result is his
conception of a consistency proof of arithmetic based on transfinite induction. Her-
brand’s and Gentzen’s work clearly belong to what Mostowski calls the finitistic or
arithmetical trend in the studies of FOM. Subsequent work in proof theory, however,
borrowed many ideas from the infinitistic or set-theoretical trend, as witnessed by
Bernays’ general consistency theorem in which set-theoretical semantical notions
are consciously imitated in finitistic terms. Mostowski emphasizes that Herbrand’s
and Gentzen’s methods enable certain particular cases of infinitistic, set-theoretical
constructions to be made finitistic. There is thus an intertwining of the 2 trends in
the studies on FOM.
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A last strand in the 2nd phase of studies in FOM is model theory (or “logical se-
mantics”) which is the study of relations between expressions of a formal language
and mathematical objects (or, more precisely, between sentences of a formal lan-
guage and a class of objects called models): one of the fundamental relations here is
that of satisfaction. NB. The nature of these sentences as well as the nature of these
models is fairly arbitrary which makes for the great flexibility of model theory. The
systematic development of model theory is due to Tarski, started in the early 1950s,
and became henceforth one of the most important parts of research in FOM.

Tarski began by showing that all semantical concepts can be reduced to the fun-
damental concept of a value of a formula (or sentence). He then used this concept
to precisely define other important semantical concepts such as e.g. the concepts of
satisfiability, validity, logical consequence and that of definability in a given model
M. Starting from the observation that under certain conditions it is possible to re-
place the semantical relation: the value of a sentence F in M isV (= true) (or: model
M satisfies sentence F), by the arithmetical relation (*) f is the Gödel number of a
sentence F satisfied by M, Tarski raises two questions: (i) Is the arithmetical rela-
tion (*) definable in M? (ii) If (*) is not definable in M, what new relations should
be added to M to ensure the definability of (*) in the extended model? The answer
to question (i) is Tarski’s well-known undefinability theorem: The set of sentences
true in M is not definable in M. Tarski’s undefinability theorem applied to PA yields
Gödel’s 1st incompleteness theorem. Question (ii) cannot be answered in a uniquely
determined way: Various relations can be added to the model M in such a way that
the arithmetical relation (*) becomes definable in M. A remarkable result here is
the following theorem connecting model theory with the theory of inductive defini-
tions: There exist types of inductive definitions which are not reducible to ordinary
inductive definitions in a purely arithmetical way.

A particular, typically model-theoretical and highly important problem is the so-
called completeness problem. Mostowski presents two formulations of it: (a) Con-
sider an uninterpreted formal system described in a purely syntactic way. Try to find
a semantical interpretation, i.e. a model for it satisfying all and only the sentences of
that system. (b) Assume given an interpreted language. Try to find a formal system
with purely syntactic proof rules allowing one to prove exactly the true sentences of
the language. Two different methods were devised to solve the completeness prob-
lem of type (a) for 1st order logic. According to the first method which has an alge-
braic character and is due to Sikorski, Tarski and Rieger, this completeness problem
is solved if one shows the existence of a maximal filter A with the property (**) for
every formula F with one free variable, if the sentence ∃xF(x) belongs to A then
so does at least one sentence of the form F(t). (As a matter of fact, this solution is
a consequence of the fundamental theorem of Boolean filter theory.) According to
the second method clearly influenced by Gentzen-style formalisations of logic and
due to Beth, Hintikka and Schütte, the completeness problem for 1st order logic is
solved by looking systematically for a possible counter-example to a given sentence
F. Mostowski observes that underlying the completeness problem is a philosophical
question concerning the relations between formal systems and their interpretations
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or models; but despite this philosophical origin the completeness problem has found
many purely mathematical applications especially in algebra.

Mostowski continues to sketch two main results of the model theory for the (ele-
mentary) language L of 1st order logic. Before doing so, he introduces three impor-
tant model-theoretical concepts: a model M1 is a submodel of a model M2; a model
M1 is an elementary submodel of a model M2; two models M1 and M2 are elemen-
tarily equivalent. (1) the different Skolem-Löwenheim theorems, that is, the down-
ward Skolem-Löwenheim theorem and the upward Skolem-Löwenheim theorem.
The upward Skolem-Löwenheim theorem is a logical consequence of the compact-
ness theorem (which in turn is a consequence of Gödel’s completeness theorem for
1st order logic). Two particularly interesting applications of the Skolem-Löwenheim
theorems are on the one hand the characterisation of the so-called spectra of sets X of
sentences of L, and on the other hand the discovery of new methods for the solution
of the completeness problem: One method due to Vaught is based on the concept
of elementary equivalence of two models, and the other one due to A. Robinson
on the new concepts of diagram D(M) of a model M and model-completeness (not
to be confused with the concept of completeness). (2) the (semantical version) of
the Craig interpolation lemma. On the one hand this lemma was used by Addison
to explore the field of logical and set-theoretical separation principles, on the other
hand it was applied by Beth in the theory of definitions. Mostowski then turns to
the model theory for non-elementary (higher-order and infinitistic) languages; he
briefly discusses the language Qa, the language LIIa of weak 2nd order logic, the lan-
guage LII of strong 2nd order logic, the sequential 2nd order language Ls0, the weak
and strong higher order languages L(n)

a and L(n), the infinitistic languages Lω1,ω0 and
Lωµ,ων as well as their resp. models. The main difference between the model theory
for the language L and the model theory for the languages Qa – Lωµ,ων is the failure
of the compactness theorem in most of the latter (namely in L0, LIIa , LII, Ls0 and
most of the languages Lωµ,ων ). The downward Skolem-Löwenheim theorem is valid
(with some modifications) w.r.t. all the languages Qa – Lωµ,ων , whereas the upward
Skolem-Löwenheim theorem fails for almost all these languages (due to the fact
that it follows from the compactness theorem). Because of the failure of the upward
Skolem-Löwenheim theorem, the structure of the spectra in these languages is much
more complex than in the case of language L. The study of analogues of the com-
pleteness theorem of 1st order logic for non-elementary languages has produced
many interesting problems but only few solutions to these problems.

To draw attention to the great flexibility of model theory mentioned above,
Mostowski points to a special algebraic construction in model theory, i.e. to the
construction of a model as a direct product of a certain family of models. A special
case of this very fruitful model construction is the model called the reduced direct
product of a certain family of models. Feferman and Vaught applied the direct prod-
uct model construction to several decision problems. Major applications of the new
concept (or construction) of reduced direct product are: (1) a new and simple proof
of the compactness theorem for 1st order logic; (2) the following theorem in abstract
set theory: If A is a σ-multiplicative filter, then the reduced direct product of well-
ordered models is itself a well-ordered model. This theorem forms the basis for a
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number of results on denumerably additive filters in Boolean algebras of all subsets
of a set; (3) in arithmetic, it provides a simple method for constructing non-standard
models of arithmetic; (4) in the theory of real numbers, Robinson used it to con-
struct a non-standard model of analysis containing infinitesimals, and he moreover
showed how to get in this way a completely rigorous theory—called non-standard
analysis—which is equivalent to classical or standard analysis.

Section 3 : The Subsequent 40 Years of Studies in FOM According
to Parsons

In his account of the subsequent 40 years of studies in FOM, Charles Parsons
sketches first the more technical mathematical-logical development and then the
more philosophical development.

Since he considers computability theory and model theory to have become almost
purely mathematical, with hardly any foundational-philosophical impact, they drop
out of his account completely.

As for proof theory, Parsons distinguishes two new proof-theoretical programs:
(i) The analysis of strong subsystems of classical analysis (2nd order arithmetic) by
means which could still be thought of as constructive, but are much more power-
ful and abstract than the means applied in the 2nd phase of development of FOM.
(ii) The attempt to reconstruct classical analysis predicatively: it was shown by Har-
vey Friedman, Stephen Simpson and others that suitable reformulations of standard
theorems of analysis can be proved in weak systems of analysis (cf. the method of
reverse mathematics).

In Parsons’ opinion the most striking foundational results were obtained in set
theory: By means of Cohen’s forcing method many more independence results were
found in set theory and its applications. This discovery of new important indepen-
dent statements sparked off a search for new set-theoretical axioms along the lines
suggested by Gödel in the 1940s. And some progress has been made in this search
by developing the consequences of two sorts of new axioms: (a) strong axioms of
infinity, (b) special cases of the game-theoretical Axiom of Determinacy AD. It was
discovered in particular that strong axioms of infinity implying PD (i.e. the assump-
tion asserting that the axiom AD holds for projective sets of real numbers) have the
convenient feature that their consequences in 2nd order arithmetic cannot be altered
by forcing. And W. Hugh Woodin’s approach to CH aims at extending this result to
a higher level. This can be conceived of as an important step in the solution of the
problem of whether CH has a determinate truth-value.

On the philosophical side, Parsons draws attention to a number of new philo-
sophical conceptions of foundational interest:

(1) A kind of neo-logicism: This conception was inaugurated in the early 1980s by
Crispin Wright who defined what he called Frege Arithmetic FA by 2nd order
logic plus Hume’s Principle HP plus a Fregean number operator (NxFx) and



12 G. Sommaruga

then proved the axioms of 2nd order PA from FA using Frege’s definitions (this
is nowadays called Frege’s theorem since it was essentially already proved by
Frege). Wright’s and Bob Hale’s proposal is to take FA as basic arithmetic and
to argue that the notion of cardinal number is a logical notion and that HP is a
logical principle. This proposal has led to a lot of discussion and debate about
the status of abstraction principles like HP. Parsons notes that “[t]he program of
axiomatizing parts of mathematics by abstraction principles is of independent
logical interest, and work has been done on analysis, and preliminary work on
set theory”.10

(2) A kind of default platonism: Parsons presumes that “[t]aking the language of
classical mathematics at face value, as implying the existence of abstract math-
ematical objects, even forming uncountable and still larger totalities, and allow-
ing reasoning using both the law of excluded middle and impredicative defini-
tions, is probably a default position among philosophers and logicians”.11 He
doubts that any strong (decisive) philosophical arguments can be given for a
stronger kind of platonism than the default one, a conception he dubs “robust
platonism”. Wang and Penelope Maddy accept default platonism as “the limit
of what one should claim about the determinateness of the reality described
by mathematical theories”.12 This somehow corresponds to the application to
mathematics of Quine’s naturalistic position, however, without Quine’s privi-
leging of empirical science.

(3) One way of rejecting default platonism is by adopting a constructivist stance
(constructivism): Parsons observes that in the 40 years of studies in FOM under
consideration constructivism has declined significantly as a general approach
to FOM competing with classical mathematics. The most remarkable construc-
tivist appearances in this phase of the development of studies in FOM are on the
one hand Per Martin-Löf’s constructive type theory CTT, and on the other hand
Errett Bishop’s and Douglas Bridges’ constructive approach to mathematics.

(4) Another way of rejecting default platonism is by adopting a nominalist stance
(nominalism): The traditional way refuses to take the language of mathematics
at face value and tries to reformulate it in such a way that commitment to ab-
stract mathematical objects is avoided. A more radical way was worked out by
Hartry Field who rejected “the view that statements of classical mathematics,
taken at face value with regard to meaning, are true and even that mathematics
aims at truth. He sought to account for the apparent objectivity of mathematics
by viewing it instrumentally, as a device for making inferences within scientific
theories”.13

10 Parsons (2006, p. 49).
11 Ibid. p. 49.
12 Ibid. p. 51.
13 Ibid. p. 50.
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(5) Structuralism: Two related intuitions about modern mathematics are fairly com-
mon: (a) modern mathematics is a study of (abstract) structures; (b) “mathemat-
ical objects have no more of a nature than is expressed by the basic relations of
a structure to which they belong”.14

The structuralist conception of mathematical objects is an elaboration of in-
tuition (b). Its relation to default platonism is ambiguous and admits of at least
2 different positions: (i) eliminative structuralism: it refuses default platonism’
s taking the language of mathematics at face value and proposes paraphrases
eliminating reference to mathematical objects or at least to the most typical
mathematical objects. (ii) non-eliminative structuralism: it rather constitutes an
ontological gloss on default platonism and uses the structuralist conception as
an explication of what the reference to mathematical objects in mathematical
language amounts to.

“One version of structuralism would allow sets as basic objects. This would
be a natural way of developing the first intuition [viz. (a)] , understanding struc-
tures as set-theoretic constructs. But a general structuralist view of mathemat-
ical objects would naturally aim not to exempt sets from structuralist treat-
ment. At this point modality has been introduced.”15 With his system of Modal-
Structural mathematics MS, Geoffrey Hellman worked out a version of elimi-
native structuralism based on this idea.

Parsons ends off his sketch of structuralism with the following critical re-
mark: What the (eliminative) structuralist constructions accomplish depends on
the status of 2nd order logic. And this question arises equally for neologicism
and for nominalism. There has been much debate concerning this question.

(6) Naturalism and a Gödelian epistemological view : Whereas the philosophical
conceptions (2)–(5) often have a strong ontological character, the conceptions
(1) and (6) are of a strong epistemological type.

In the early 1970s Paul Benacerraf raised the following problem: If default
platonism is true, how is it possible to have mathematical knowledge? Par-
sons generalises this problem in the following way: Is it possible to provide
an epistemology for mathematics which is naturalistic? After stating that not
much of philosophical-foundational interest has resulted from these questions,
he turns to a Gödelian epistemological view which he takes to be possibly more
interesting: “Gödel’s view apparently was that much of mathematics (includ-
ing some higher set theory) could be seen to be evident in an a priori way,
not contaminated by evidence derived from application in empirical science.
However, particularly in higher set theory axioms could obtain additional jus-
tification through the theories constructed on their basis, and such justification
would be possible for stronger axioms, such as the stronger large cardinal ax-
ioms that have been proposed, where a convincing intrinsic justification is not
available”. 16 Parsons considers this Gödelian epistemological view to be of

14 Ibid. p. 50.
15 Ibid. p. 50/51.
16 Ibid. p. 52.
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great interest for the justification of assumptions applied in the accepted solu-
tion of the classical problems of descriptive set theory (e.g. in the justification
of the axiom AD) as well as for the justification of any possible solution to the
problem of CH to be expected in the future.

Part II The Present Perspective : Analytical Summaries of the
Present Contributions17

Section 1

In his contribution Foundational Frameworks Geoffrey Hellman starts off by char-
acterising the sort of questions asked in FOM: they are questions of justification (as
opposed to questions of discovery), and moreover questions of an ideal, an on prin-
ciple possible justification (as opposed to questions of actual justification). Thus,
FOM according to Hellman is neither hermeneutics of mathematics, i.e. claiming to
tell what working mathematics really is (reminiscent of Shapiro’s “philosophy-last
principle”), nor a cultural revolution of mathematics, i.e. advocating the replace-
ment of working mathematics by a certain favored mathematical system or scheme
(reminiscent of Shapiro’s “philosophy-first principle”).

Hellman then continues to enumerate important desiderata for any foundations
(foundational frameworks) of mathematics (FOM): there are on the one hand the
following traditional desiderata: (1) standards of proof, (2) means of expressing
mathematical structures and their interrelations, (3) identification and explanation
of the logical and mathematical primitives; on the other hand the modern (or post-
modern) desiderata: (4) preservation of past gains, (5) accomodation of multiple
approaches, i.e. providing for pluralism, (6) extendability of universes of discourse
for mathematics. NB. Only some of these desiderata are actually requirements. A
minimal requirement for a foundational framework is the following: providing a
resolution of the conflicting tendencies of “creative progress” (desideratum 6 and
perhaps desideratum 5) and striving for “all-embracing completeness” (desiderata
1–3). (Zermelo)

After laying down the desiderata of a foundational framework, Hellman goes
about assessing set theory and category theory in terms of these desiderata.

First, he considers the prevailing set theory ZFC and many of its variants:
desiderata 1-3: ZFC is a major success story, may be the least w.r.t. desideratum

1(c), which is the most philosophical one. 1(c) concerns the epistemological sense
of the foundations of mathematics.

desideratum 5: this desideratum is not met very well by ZFC: if a fixed-universe
ontology is assumed for ZFC, then respecting other foundations of mathematics
becomes problematic.

17 These analytical summaries of the various contributions have all been approved by their resp.
authors.
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desideratum 6: On a fixed hierarchy view of ZFC, the problem of providing for
extendability without exceptions is especially intractable: In a certain sense, ZFC
does comply with extendability, namely by treating models of (consistent) theories
as sets and recognizing sets and models of arbitrarily higher cardinality. But the
unresolved problems are:

• A possible distortion of intended meanings
• The problem raised by the presumed fixed universal, hence maximal back-

ground of sets and ordinals (which thereby precludes the possibility of still
further objects, other than sets and ordinals)

Second, Hellman deals with category and topos theory (CT & TT):
desiderata 5–6: CT & TT are through Bell’s “many toposes” perspective a great

success story (unlike set theory). Characteristic of this perspective is a plurality of
universes.

desiderata 1–3: Here is where the most serious problems with CT & TT arise.
2 main category-theoretic axiom systems have been proposed with a foundational
role in mind, namely: ETCS (the Elementary Theory of the Category of Sets) and
CCAF (the Category of Categories As a Foundation).

as for CCAF: desideratum 2: considered as a system of Fregean-style axioms.
These axioms are satisfied by “structures” (or at least “interrelated things”).
Hence there is some dependence on a background explicating satisfaction of
sentences by structures, and this background is not CT itself (it may be a depen-
dence on a background set theory or on a higher-order logic or on a mereology
+ plural quantification). The conclusion is that w.r.t. the desiderata 1–6, CCAF
is not yet adequate.

as for ETCS (or ECTS + R (Replacement)): desiderata 5–6: ETCS(+R) inherits
some of the same problems affecting ZFC (cf. ibid.). desiderata 1–3: First, it
seems that ETCS(+R) can only be really understood given a prior understand-
ing of general notions such as “collection”, “operation” or “relation” (Fefer-
man). Second, a fundamental dilemma concerning categorical foundations of
mathematics is the following: if desiderata 2–3 are met by categorical set the-
ory, then desiderata 5–6 will not be met (due to limitations analogous to those
of membership-based set theory); if however desiderata 5–6 are met by categor-
ical set theory, then desiderata 2–3 won’t be met. The conclusion in this case is
that w.r.t. desiderata 1–6, ETCS(+R) is not adequate (yet) either.

Hellman goes on to assess modal-structural mathematics (MS) in terms of the
desiderata of a foundational framework.

The modal-structural mathematics MS interpretation of mathematics has 2 com-
ponents:

1. A hypothetical component: a translation pattern sending any ordinary mathe-
matical sentence to a sentence asserting what would hold in any structure of
appropriate type that there might be.

2. A corresponding categorical component: structures of the relevant type are
(logico-mathematically) possible.
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The Core System of MS is the following:

• The (monadic) logic of plurals
• 2 comprehension principles of mereology
• As an improvement over his original presentation Mathematics without Num-

bers, this presentation adopts both an Extendability Principle for structures for
set theories (or precursors) and certain instances of a Modal Reflection Principle
suitable to the MS framework, based on the idea that the logico-mathematical
possibilities of structures should be “indescribable” by 1st or 2nd order sen-
tences in a specific sense explained by him. From these 2 principles applied
within the realm of finite structures, Hellman then can derive the compossibil-
ity of infinitely many objects and a “set” of them as needed for reconstructing
classical analysis. Thus, it is not necessary to postulate an axiom of infinity
separately as it is in set theory and category theory.

desiderata 1–2: MS’ coverage of mathematics as practiced is almost as “com-
plete” as that of set theory and category and topos theory; that is, these desiderata
are about as well satisfied by MS as by ZFC and CT & TT.

desideratum 1(c): MS provides an interesting epistemological alternative to the
acceptance of actual infinities without being as restricted or restrictive as strict
finitism.

desiderata 5–6: These are MS’ fortes. None of the alternative foundations of
mathematics seems to be capable of satisfying them as well as MS.

desideratum 3: Hellman has done some work to make MS meet it; but more re-
mains to be done.

Hellman rejects a strong foundationalism, i.e. which seeks to found all of math-
ematics on certain or self-evident assumptions, but he adopts a “modest, well-
tempered foundationalism”, i.e. the search for foundations providing a measure of
epistemic order and a balance of unity and diversity (and perhaps, as Hellman puts
it, even some insight into the nature of mathematics).

Bob Hale begins his contribution The Problem of Mathematical Objects by
distinguishing two senses of ‘foundations of mathematics’ FOM:

1. The logical sense of FOM: foundations consist of a single, unified set of princi-
ples from which all or at least a large part of mathematics can be derived.

2. The epistemological sense of FOM: foundations consist of an account explain-
ing how standard mathematical theories can be known to be true or at least be
justifiably believed. Foundations in this sense cannot be mathematical theories,
but have to be philosophical accounts of how working mathematics is getting
known.

Hale’s interest is clearly in the epistemological sense of FOM—independently
of whether the search for such a foundation is a legitimate (“right”) or possible
endeavor.

Hale’s point of departure is what he calls the problem of mathematical objects,
and more specifically the problem whether one can be justified in believing in an
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infinity of objects of any kind. He subsequently distinguishes two approaches to-
wards a solution of this problem:

(a) The so-called object-based approach: This is an approach arguing directly that
it is possible to have access to or knowledge of an at least potentially infinite
sequence of objects.

(b) The so-called property-based approach: This sort of approach argues indirectly
for an infinity of objects by making the latter depend on an underlying infinity
of properties.

According to Hale, Charles Parsons’ study of mathematical intuition presents the
most clear and convincing example of the object-based approach:

After distinguishing between intuition of objects and intuition that p where p is a
proposition, Parsons makes it clear that the objects of intuition have to be restricted
to the concrete and the quasi-concrete (and do not extend to the abstract). He claims
that intuition of quasi-concrete stroke-string types can ground propositional knowl-
edge concerning the system of stroke-string types, and that it can provide knowledge
of analogues of the elementary Dedekind-Peano axioms. Hence it is possible to have
intuitive knowledge of the existence of potentially infinitely many objects.

Hale starts his criticism of Parsons’ object-based approach by pointing out that
some of the (Parsons’) Dedekind-Peano axioms are general and that it is hard to see
how intuition of objects can yield knowledge of general truths. He carries on by em-
phasizing another, more fundamental problem in Parsons’ approach: The difficulty
concerns what is taken to be required for the existence of a stroke-string type: Is it
(i) that there exists at least one token of that type? (ii) that it exists totally indepen-
dently of any actual, possible or imaginative instantiation? or (iii) that there could
exist at least one token of that type?

(i) already requires knowing that there are infinitely many concrete objects. This
option is no good. (ii) implies rampant Platonism. This option runs counter to Par-
sons’ attempt to exhibit intuitive knowledge of quasi-concrete stroke-string types.
(iii) seems to imply that given any perceived or imagined stroke-string token, a sin-
gle stroke-string extension of it is imaginable. But spelling out what ‘imaginable’
means just seems to get Parsons into further troubles.

Since Hale cannot see how any object-based approach could get around some
appeal or other to some such grasp of possibilities, he infers that such an approach
cannot work.

Question: Can a property-based approach to the problem of mathematical objects
do better? Hale’s intention is to show that indeed it can. G. Frege sought to prove the
existence of successors for all finite numbers given Hume’s principle (HP). His pur-
ported proof exemplifies according to Hale the so-called property-based approach.
For Frege, numbers are essentially numbers belonging to concepts (i.e. a number ex-
ists only if there is a concept which it essentially belongs to), and Hale interprets this
as saying: numbers essentially belong to properties. Given HP, Frege not only suc-
ceeds in proving that the sequence of finite numbers is infinite, but also in proving
the Dedekind-Peano axioms in 2nd order logic (the latter is nowadays called Frege’s
theorem). Whereas Hale considers these proofs to be of considerable philosophical
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importance, other philosophers of mathematics have raised doubts concerning that
importance. The first doubts or objections to be tackled by Hale are Michael Dum-
mett’s. According to Hale’s analysis, Dummett objects:

i. That Frege can procede in his Grundlagen der Arithmetik only on the assump-
tion that there exist inifinitely many objects, but that this assumption cannot be
grounded in logic only.

ii. That there is some sort of a vicious circle in Frege’s procedure (in Frege’s def-
inition of number or in HP) due to the fact that the numbers themselves are
taken to belong to the domain over which the individual quantifiers range. Hale
claims that his objection can be interpreted in two ways: the alleged circularity
can be definitional or it can be epistemological.

Hale dismisses the definitional vicious circularity objection as it seems to imply
that for any specific kind of object lying in the range of some (individual) quantifiers
one must possess the concept of that kind of object (e.g. here the concept of number).
But this, so he argues, is not the case. Hale’s rejoinder to Dummett’s epistemological
vicious circularity objection as well as to Dummett’s objection i. is basically the
same: According to Dummett, Frege makes the assumption that numerical terms
have reference. For Hale there is no such assumption, at least not when HP is put
forward as an implicit definition. HP is an instance of a general abstraction principle
whose instances are biconditionals which are to be so understood that their truth is
consistent with their ingredient abstract terms (e.g. in HP the number terms) lacking
reference. In the particular case of HP, there are instances the truth of whose right-
hand sides is indeed a matter of logic.

Dummett’s objection could be strengthened and would be quite closely related to
an objection of Charles Parsons’:

iii. Even if there is no explicit assumption to the effect that there exist infinitely
many objects (or which boils down to the same thing, that number terms have
reference), there is such an assumption implicit in the use of HP: HP quantifies
over properties and makes the assumption of the existence of infinitely many
objective properties.

Hale admits that if the assumption of existence of infinitely many properties were
as problematic as the assumption of existence of infinitely many objects, Dummett’s
strengthened objection would be devastating. He, moreover, concedes that the first
assumption would indeed be as problematic, if properties were conceived of in an
extensional way (that’s essentially Parsons’ objection: there is no philosophical ad-
vantage of higher-order logic over set theory). Hale concludes first that the strength-
ened objection is justified if directed against Frege, and second that any property-
based approach appears to be a waste of time if properties are indeed treated exten-
sionally.

But as Hale puts it: “[i]f one thinks instead of properties as individuated non-
extensionally, there is at least some chance of philosophical advantage” of higher-
order logic over set theory and there is hope for a property-based approach. The as-
sumption of the existence of infinitely many properties may be significantly weaker
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and so epistemologically less problematic than the assumption that there are in-
finitely many objects; it may, Hale suggests, even be weak enough to form part of
a foundation of mathematics. A big task of the property-based approach will be to
clarify what a non-extensional conception of properties amounts to. He provides a
few hints at what such a conception might look like.

In her contribution Set Theory as a Foundation, Penelope Maddy recalls that
set theory as a FOM goes back to the founders of set theory and has become part of
contemporary orthodoxy in the philosophy of mathematics and even in mathemat-
ics itself. She briefly shows how natural numbers, integers etc. up to the reals and
complex numbers can be represented as set theoretic entities and points out that all
its standard theorems can be proved from ZFC. This is a remarkable mathematical
fact. The philosophical question is what this fact means. What does it show? Maddy
presents and discusses 6 interpretations of this fact. They will be called the 6 senses
of (set theory as a) ‘foundations of mathematics’ FOM.

1. The metaphysical sense (attributed to a so-called strong reading of Frege’s
project): The current set theoretic versions of numbers, functions, spaces etc.
show what numbers, functions, spaces, etc. really are; they exhibit the true na-
ture of the various mathematical entities.

Benacerraf objected to this metaphysical interpretation of FOM that there is
not a unique or clearly priviledged identification of natural numbers with certain
(pure) sets, but that many different identifications seem equally good. And the
same holds in an analogous way for identifications of integers, reals, functions
etc.

According to Maddy, there is a weaker reading of Frege’s according to which
Frege was merely concerned about the just mentioned mathematical fact with-
out any associated metaphysical ambition.

2. The ontological sense (Quine’s ontological reduction): The current set theoretic
versions of numbers, functions, spaces etc. admit of an ontological economy: it
suffices for a mathematical ontology to merely accept the existence of these cur-
rent set theoretic versions of the various mathematical entities. Quine advocated
such an “ontological reduction”, i.e. a replacement of a world view countenanc-
ing both numbers, functions, spaces and sets, with a world view countenancing
only the sets.

3. The methodological sense (e.g. Moschovakis): the current set theoretic versions
of numbers, functions, spaces, etc. are set theoretic surrogates of mathematical
entities sharing with them the same mathematically relevant features.

Maddy appears to view a certain order in these senses. These senses are all mu-
tually exclusive and there’s an order of decreasing strength in them: the metaphys-
ical sense is the philosophically strongest sense, the ontological sense is somewhat
weaker, and the methodological sense is the philosophically weakest one (making
the least philosophical presuppositions).

To each of these senses is attached a certain benefit (and it appears that such a
benefit ought to be attached): in the case of the metaphysical sense, it is a metaphys-
ical insight; in the case of the ontological sense, it is an ontological economy; in the


