

Methods of Cut-Elimination

TRENDS IN LOGIC
Studia Logica Library

VOLUME 34

Managing Editor
Ryszard Wójcicki, Institute of Philosophy and Sociology,

Polish Academy of Sciences, Warsaw, Poland

Editors
Wieslaw Dziobiak, University of Puerto Rico at Mayagüez, USA

Melvin Fitting, City University of New York, USA
Vincent F. Hendricks, Department of Philosophy and Science Studies,

Roskilde University, Denmark
Daniele Mundici, Department of Mathematics “Ulisse Dini”,

University of Florence, Italy
Ewa Orłowska, National Institute of Telecommunications,

Warsaw, Poland
Krister Segerberg, Department of Philosophy, Uppsala University,

Sweden
Heinrich Wansing, Institute of Philosophy, Dresden University of Technology,

Germany

SCOPE OF THE SERIES

Trends in Logic is a bookseries covering essentially the same area as the jour-
nal Studia Logica – that is, contemporary formal logic and its applications and
relations to other disciplines. These include artificial intelligence, informatics,
cognitive science, philosophy of science, and the philosophy of language. How-
ever, this list is not exhaustive, moreover, the range of applications, comparisons
and sources of inspiration is open and evolves over time.

Volume Editor

For further volumes:
http://www.springer.com/series/6645

Daniele Mundici

Matthias Baaz · Alexander Leitsch

Methods of Cut-Elimination

123

Matthias Baaz
Vienna University of Technology
Wiedner Hauptstraße 8-10
1040 Vienna
Austria
baaz@logic.at

Alexander Leitsch
Vienna University of Technology
Favoritenstraße 9
1040 Vienna
Austria
leitsch@logic.at

ISBN 978-94-007-0319-3 e-ISBN 978-94-007-0320-9
DOI 10.1007/978-94-007-0320-9
Springer Dordrecht Heidelberg London New York

c© Springer Science+Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1 Preface 1
1.1 The History of This Book . 1
1.2 Potential Readers of This Book 1
1.3 How to Read This Book . 2

2 Introduction 5

3 Preliminaries 9
3.1 Formulas and Sequents . 9
3.2 The Calculus LK . 14
3.3 Unification and Resolution . 24

4 Complexity of Cut-Elimination 39
4.1 Preliminaries . 39
4.2 Proof Complexity and Herbrand Complexity 44
4.3 The Proof Sequence of R. Statman 51

5 Reduction and Elimination 63
5.1 Proof Reduction . 63
5.2 The Hauptsatz . 73
5.3 The Method of Tait and Schütte 85
5.4 Complexity of Cut-Elimination Methods 93

6 Cut-Elimination by Resolution 105
6.1 General Remarks . 105
6.2 Skolemization of Proofs . 106
6.3 Clause Terms . 111
6.4 The Method CERES . 114
6.5 The Complexity of CERES . 127
6.6 Subsumption and p-Resolution 133

v

vi CONTENTS

6.7 Canonic Resolution Refutations 139
6.8 Characteristic Terms and Cut-Reduction 146
6.9 Beyond R: Stronger Pruning Methods 157
6.10 Speed-Up Results . 159

7 Extensions of CERES 163
7.1 General Extensions of Calculi 163
7.2 Equality Inference . 169
7.3 Extension by Definition . 172

8 Applications of CERES 175
8.1 Fast Cut-Elimination Classes 175
8.2 CERES and the Interpolation Theorem 189
8.3 Generalization of Proofs . 209
8.4 CERES and Herbrand Sequent Extraction 212
8.5 Analysis of Mathematical Proofs 214

8.5.1 Proof Analysis by Cut-Elimination 214
8.5.2 The System ceres . 215
8.5.3 The Tape Proof . 216
8.5.4 The Lattice Proof . 221

9 CERES in Nonclassical Logics 229
9.1 CERES in Finitely Valued Logics 230

9.1.1 Definitions . 230
9.1.2 Skolemization . 238
9.1.3 Skolemization of Proofs 238
9.1.4 CERES-m . 241

9.2 CERES in Gödel Logic . 250
9.2.1 First Order Gödel Logic and Hypersequents 251
9.2.2 The Method hyperCERES 255
9.2.3 Skolemization and de-Skolemization 256
9.2.4 Characteristic Hyperclauses and Reduced Proofs . . . 259
9.2.5 Hyperclause Resolution 265
9.2.6 Projection of Hyperclauses into HG-Proofs 267

10 Related Research 271
10.1 Logical Analysis of Mathematical Proofs 271
10.2 New Developments in CERES 272

References 275

Index 283

Chapter 1

Preface

1.1 The History of This Book

This book comprises 10 years of research by Matthias Baaz and Alexan-
der Leitsch on the topic of cut-elimination. The aim of this research was
to consider computational aspects of cut-elimination, the most important
method for analyzing formal first-order proofs. During this period a new
method of cut-elimination, cut-elimination by resolution (CERES), has been
developed which is based on the refutations of formulas characterizing the
cut-structure of the proofs. This new method connects automated theorem
proving with classical proof theory, allowing the development of new meth-
ods and more efficient implementations; moreover, CERES opens a new view
on cut-elimination in general. This field of research is evolving quite fast
and we expect further results in the near future (in particular concerning
cut-elimination in higher-order logic and in nonclassical logics).

1.2 Potential Readers of This Book

This book is directed to graduate students and researchers in the field of
automated deduction and proof theory. The uniform approach, developed by
Alexander Leitsch, serves the purpose of importing mathematical techniques
from automated deduction to proof theory, to facilitate the implementation
and derivation of complexity bounds for basically indeterministic methods.
Matthias Baaz has been responsible for proof theoretic considerations and
for the extension of CERES to nonclassical logics.

M. Baaz, A. Leitsch, Methods of Cut-Elimination, Trends in Logic 34, 1
DOI 10.1007/978-94-007-0320-9 1, c© Springer Science+Business Media B.V. 2011

2 1 PREFACE

1.3 How to Read This Book

The book can be read from a computer-science or from a proof-theoretic
perspective as the diagram below indicates.

3
Preliminaries

5
Reduction and
Elimination

4
Complexity of

Cut Elimination

6.1–6.9
CERES

7
Extensions
of CERES

6.10
Speed-up Results

9
CERES in Non-
classical Logics

8.1
Algorithmic
Applications

8.2–8.4
Proof theoretic
Applications

8.5
Applications
to mathemat-

ical proofs

Acknowledgments We thank Daniele Mundici for his encouragement to write a
book on this topic and for his steady interest in our research during the last 15
years. We also are grateful to the Austrian Science Fund for supporting the re-
search on cut-elimination by funding the projects P16264, P17995, and P19875.

1.3. HOW TO READ THIS BOOK 3

The research on this topic began with the authors and Alessandra Carbone during
the time of her Lise Meitner fellowship. In the course of the following FWF research
projects P16264, P17995, and P19875, the Ph.D. students Stefan Hetzl, Clemens
Richter, Hendrik Spohr, Daniel Weller, and Bruno Woltzenlogel-Paleo contributed
substantially to the theoretic and, especially, to the practical development of the
CERES method. The extension of the method to Gödel logic has been carried out
together with Agata Ciabattoni and Chris Fermüller.

Our special thanks go to Tomer Libal, Daniel Weller and Bruno Woltzenlogel for
their careful and critical reading of the text. Their comments and suggestions have
been integrated in the text and have resulted in a substantial improvement of the
book.

We are very grateful to the reviewer for his numerous critical comments and sug-
gestions for improvements which had a substantial impact on the final version of
text.

Chapter 2

Introduction

Gottfried Wilhelm Leibniz called a proof analytic iff1 the proof is based
on concepts contained in the proven statement (praedicatum inest sub-
jecto [59]). His own example [60] shows that this notion is significant, as it
is connected to the distinction between inessential derivation steps (mostly
formulated as definitions) and derivation steps which may or may not be
based on concepts contained in the result:

(a) 4 = 2 + 2 (the result)

(b) 3 + 1 = 2 + 2 (by the definition 4 = 3 + 1)

(c) (2 + 1) + 1 = 2 + 2 (by the definition 3 = 2 + 1)

(d) 2 + (1 + 1) = 2 + 2 (by associativity)

(e) 2 + 2 = 2 + 2 (by the definition 2 = 1 + 1)

The interest in the notion of analytic proof and analytic provability is
twofold:

• First, the reduction of the concepts constituting a proof to the concepts
contained in the (desired) result is essential to construct a proof by an
analysis of the result (This was the main aim of Leibniz). Therefore
analytic proofs in a suitable definition are the core of any approach to
automated theorem proving.

• Second, analytic proofs allow control not only of the result but also the
means of the proof and admit the derivation of additional information

1If and only if.

M. Baaz, A. Leitsch, Methods of Cut-Elimination, Trends in Logic 34, 5
DOI 10.1007/978-94-007-0320-9 2, c© Springer Science+Business Media B.V. 2011

6 2 INTRODUCTION

related to the result from the proof. In other words: a theorem with
an analytic proof can be strengthened by looking at the proof.

In mathematics, the obvious counterpart to the notion of analytic proof is
the notion of elementary proof. What elementary means, however, changes
in time (from avoiding arguments on complex numbers in the Prime Number
Theorem [37] to omitting arguments on p-adic numbers and more recently
ergodic theory). In a more modern expression analyticity relates to the
distiction between soft and hard analysis by Terence Tao [76].
David Hilbert introduced the concept of purity of methods (Reinheit der
Methode) as an emphasis on analytic provability (and not so much on an-
alytic proofs). He discussed for the first time whether, for a given mathe-
matical theory, all provable statements are in fact analytically provable (this
line of thought is already present in Grundlagen der Geometrie [50]).

The social value of mathematics (and of science in general) is connected to
the establishment of verified statement i.e. theorems which can be applied
without (using the) knowledge of its proofs. It is not necessary to understand
the proof of the central limit theorem for working with normal distributions.

This principle also applies within mathematics w.r.t. the intermediary state-
ments i.e. lemmata. In terms of propositional reasoning this is expressed by
the rule of modus ponens

A A→ B
B

which is the historically primal example of a cut rule. The presence of such
rules in a proof, however, might hide valuable information such as an implicit
constructive content.

The introduction of cut-free derivations in the sequent calculus LK (LJ)
in Gerhard Gentzen’s seminal papers Über das logische Schliessen I+II [38]
provided a stable notion of analytic proof for classical (intuitionistic) first-
order logic based on the subformula property. The structural rules represent
the obvious derivation steps not necessarily related to the result. Gentzen
was the first to actually prove, that everything derivable can be derived
analytically (the Hauptsatz).

In this book we focus on cut-elimination for classical logic from a procedural
point of view. In the tradition of proof theory, the emphasis is on cut-
free provability with restricted means, not on the actual elimination of cuts
from proofs. We develop a more radical form of cut-elimination using the
fact, that the cuts after cancellation of other parts of the proof can be

2 INTRODUCTION 7

considered as contradictions. The method (called CERES2 – cut-elimination
by resolution) works as follows:

• extract from the parts of the axioms, leading to cuts, a set of clauses
(in the sense of the resolution calculus) which is refutable. The set of
clauses can be represented by clause terms, which are algebraic objects.

• For every clause, there exists a cut-free part of the original proof (the
projection), which derives the original end sequent extended by the
clause.

• Refute the set of clauses using resolution, construct a ground resolu-
tion proof and augment the clauses with the associated (substitution
instances) of projections.

By the method CERES an essentially cut-free proof is obtained. The re-
maining atomic cuts are easily removable in the presence of logical axioms.
This is even not necessary as they do not interfere with the extraction of
desired information implicitly contained in proofs as Herbrand disjunctions,
interpolants etc. To apply CERES, it is necessary to reduce compound logical
axioms to atomic ones and to replace strong quantifiers in the end-sequent by
adequate Skolem functions without increasing the complexity of the proof.
The elimination of the Skolem functions from a cut-free proof is of at most
exponential expense.
CERES simulates the usual cut elimination methods of Gentzen and Schütte/-
Tait, here formulated nondeterministically. On the other hand there are
sequences of proofs, whose cut-free normal forms according to Gentzen and
Schütte/Tait grow nonelementarily w.r.t.3 the cut-free normal forms ac-
cording to CERES. The reason is, that usual cut-elimination methods are
local in the sense that only a small part of the proof is analyzed, namely
the derivation corresponding to the introduction of the uppermost logical
connective. As a consequence many types of redundancies in proofs are left
undetected leading to a bad computational behaviour.
The strong regularity properties of cut-free normal forms obtained by CERES
(the proofs are composed from the projections) together with the simulation
results (reductive methods can be simulated by CERES) allow the formulation
of negative results also for the traditional methods. For example no cut-
free proof, whose Herbrand disjunction is not composed from substitution

2http://www.logic.at/ceres
3With respect to.

8 2 INTRODUCTION

instances of the Herbrand disjunctions of the projections can be obtained
by Gentzen or Schütte/Tait cut-elimination.
As intended, CERES is used to extract structural information implicit in
proofs with cuts such as interpolants etc. It serves as a tool for the gener-
alization of proofs (justifying the Babylonian reasoning by examples). Fur-
thermore we demonstrate how to apply CERES to the analysis of mathemat-
ical proofs using two straightforward examples. CERES relates these proofs
with cuts to the spectrum of all cut-free proofs obtainable in a reason-
able way. By analyzing CERES itself, we establish easy-to-describe classes of
proofs, which admit fast (i.e. elementary) cut elimination. Possibilities and
limits of the extension of CERES-like methods to the realm of nonclassical,
especially intermediate logics are discussed using the example of first-order
Gödel-Dummett logic (i.e. the logic of linearly ordered Kripke structures
with constant domains).
We finally stress that the proximity of CERES to the resolution calculus facil-
itates its implementation (and thereby the implementation of the traditional
cut-elimination methods) using state-of-the-art automated theorem proving
frameworks. Furthermore, resolution strategies might be employed to ex-
press knowledge about cut formulas obvious to mathematicians but usually
algorithmically difficult to represent. This includes the difference between
the proved lemma (positive occurrence of the cut formula) and its applica-
tion (negative occurrence of the cut-formula).

Chapter 3

Preliminaries

3.1 Formulas and Sequents

In this chapter we present some basic concepts which will be needed through-
out the whole book. We assume that the the reader is familiar with the most
basic notions of predicate logic, like terms, formulas, substitutions and in-
terpretations.

We denote predicate symbols by P,Q,R, function symbols by f, g, h, con-
stant symbols by a, b, c. We distinguish a set of free variables Vf and a set
of bound variables Vb (both sets are assumed to be countably infinite).

Remark: The distinction between free and bound variables is vital to proof
transformations like cut-elimination, where whole proofs have to be instan-
tiated. 3

We use α, β for free variables and x, y, z for bound ones. Terms are defined
as usual with the restriction that they may not contain bound variables.

Definition 3.1.1 (semi-term, term) We define the set of semi-terms in-
ductively:

• bound and free variables are semi-terms,

• constants are semi-terms,

• if t1, . . . , tn are semi-terms and f is an n-place function symbol then
f(t1, . . . , tn) is a semi-term.

3

Semi-terms which do not contain bound variables are called terms.

M. Baaz, A. Leitsch, Methods of Cut-Elimination, Trends in Logic 34, 9
DOI 10.1007/978-94-007-0320-9 3, c© Springer Science+Business Media B.V. 2011

10 3 PRELIMINARIES

Example 3.1.1 f(α, β) is a term. f(x, β) is a semi-term. P (f(α, β)) is a
formula. 3

Replacement on positions play a central role in proof transformations. We
first introduce the concept of position for terms.

Definition 3.1.2 (position) We define the positions within semi-terms in-
ductively:

• If t is a variable or a constant symbol then ε is a position in t and
t.ε = t

• Let t = f(t1, . . . , tn) then ε is a position in t and t.ε = t. Let µ be a
position in a tj (for 1 ≤ j ≤ n), µ = (k1, . . . , kl) and tj .µ = s; then ν,
for ν = (j, k1, . . . , kl), is a position in t and t.ν = s.

3

Positions serve the purpose to locate sub-semi-terms in a semi-term and to
perform replacements on sub-semi-terms. A sub-semi-term s of t is just a
semi-term with t.ν = s for some position ν in t. Let t.ν = s; then t[r]ν is the
term t after replacement of s on position ν by r, in particular t[r]ν .ν = r.
Let P be a set of positions in t; then t[r]P is defined from t by replacing all
t.ν with ν ∈ P by r.

Example 3.1.2 Let t = f(f(α, β), a) be a term. Then

t.ε = t,

t.(1) = f(α, β),
t.(2) = a,

t.(1, 1) = α,

t.(1, 2) = β,

t[g(a)].(1, 1) = f(g(a), β).

3

Positions in formulas can be defined in the same way (the simplest way is
to consider all formulas as terms).

Definition 3.1.3 (substitution) A substitution is a mapping from Vf ∪Vb
to the set of semi-terms s.t. σ(v) 6= v for only finitely many v ∈ Vf ∪ Vb.

3.1. FORMULAS AND SEQUENTS 11

If σ is a substitution with σ(xi) = ti for xi 6= ti (i = 1, . . . , n) and σ(v) = v
for v 6∈ {x1, . . . , xn} then we denote σ by {x1 ← t1, . . . , xn ← tn}. We call
the set {x1 ← t1, . . . , xn ← tn} the domain of σ and denote it by dom(σ).
Substitutions are written in postfix, i.e. we write Fσ instead of σ(F). 3

Substitutions can be extended to terms, atoms and formulas in a homomor-
phic way.

Definition 3.1.4 A substitution σ is called more general than a substitu-
tion ϑ (σ ≤s ϑ) if there exists a substitution µ s.t. ϑ = σµ. 3

Example 3.1.3 Let ϑ = {x ← a, y ← a} and σ = {x ← y}. Then σµ = ϑ
for µ = {y ← a} and thus σ ≤s ϑ. Note that for the identical substitution
we get ∅ ≤s λ for all substitutions λ. 3

Definition 3.1.5 (semi-formula, formula) > and ⊥ are formulas.
If t1, . . . , tn are terms and P is an n-place predicate symbol then P (t1, . . . , tn)
is an (atomic) formula.

• If A is a formula then ¬A is a formula.

• If A,B are formulas then (A→ B), (A∧B) and (A∨B) are formulas.

• If A{x← α} is a formula then (∀x)A, (∃x)A are formulas.

Semi-formulas differ from formulas in containing free variables in Vb. 3

Example 3.1.4 P (f(α, β)) is a formula, and so is (∀x)P (f(x, β)). P (f(x, β))
is a semi-formula. 3

Definition 3.1.6 (logical complexity of formulas) If F is a formula in
PL then the complexity comp(F) is the number of logical symbols occurring
in F . Formally we define

comp(F) = 0 if F is an atomic formula,

comp(F) = 1 + comp(A) + comp(B) if F ≡ A ◦B for ◦ ∈ {∧,∨,→},

comp(F) = 1 + comp(A) if F ≡ ¬A or F ≡ (Qx)A for Q ∈ {∀,∃} and
x ∈ Vb.

3

12 3 PRELIMINARIES

Gentzen’s famous calculus LK is based on so called sequents; sequents are
structures with sequences of formulas on the left and on the right hand side
of a symbol which does not belong to the syntax of formulas. We call this
symbol the sequent sign and denote it by `.

Definition 3.1.7 (sequent) Let Γ and ∆ be finite (possibly empty) se-
quences of formulas. Then the expression S: Γ ` ∆ is called a sequent. Γ is
called the antecedent of S and ∆ the consequent of S. 3

Let
1∧
i=1

Ai = A1,
n+1∧
i=1

Ai = An+1 ∧
n∧
i=1

Ai for n ≥ 1,

and analogous for
∨

.

Definition 3.1.8 (semantics of sequents) Semantically a sequent

S:A1, . . . , An ` B1, . . . , Bm

stands for

F (S):
n∧
i=1

Ai →
m∨
j=1

Bj .

In particular we defineM to be an interpretation of S ifM is an interpreta-
tion of F (S). If n = 0 (i.e. there are no formulas in the antecedent of S) we
assign > to

∧n
i=1Ai, if m = 0 we assign ⊥ to

∨m
j=1Bj . Note that the empty

sequent is represented by > → ⊥ which is equivalent to ⊥ and represents
falsum. We say that S is true in M if F (S) is true in M. S is called valid
if F (S) is valid. 3

Example 3.1.5

S: P (a), (∀x)(P (x)→ P (f(x))) ` P (f(a))

is a sequent. The corresponding formula

F (S): (P (a) ∧ (∀x)(P (x)→ P (f(x))))→ P (f(a))

is valid; so S is a valid sequent. 3

Definition 3.1.9 A sequent A1, . . . , An ` B1, . . . , Bm is called atomic if the
Ai, Bj are atomic formulas. 3

3.1. FORMULAS AND SEQUENTS 13

Definition 3.1.10 (composition of sequents) If S = Γ ` ∆ and S′ =
Π ` Λ we define the composition of S and S′ by S ◦S′, where S ◦S′ = Γ,Π `
∆,Λ. 3

Definition 3.1.11 Let Γ be a sequence of formulas. Then we write Γ− A
for Γ after deletion of all occurrences of A. Formally we define

(A1, . . . An)−A = (A2, . . . An)−A for A = A1,

= A1, ((A2, . . . An)−A) for A 6= A1,

ε−A = ε.

3

Definition 3.1.12 (permutation of sequents) Let S be the sequent
A1, . . . , An ` B1, . . . , Bm, π be a permutation of {1, . . . , n}, and π′ be a
permutation of {1, . . . ,m}. Then the sequent

S′:Aπ(1), . . . , Aπ(n) ` B1, . . . , Bm

is called a left permutation of S (based on π), and

S′′:A1, . . . , An ` Bπ′(1), . . . , Bπ′(m)

is called a right permutation of S (based on π′). A permutation of S is a left
permutation of a right permutation of S. 3

Definition 3.1.13 (subsequent) Let S, S′ be sequents. We define S′ v S
if there exists a sequent S′′ s.t. S′ ◦ S′′ is a permutation of S and call S′ a
subsequent of S. 3

Example 3.1.6 S′: P (b) ` Q(a) is a subsequent of

S: P (a), P (b), P (c) ` Q(a), Q(b).

S′′ has to be defined as P (a), P (c) ` Q(b). Then clearly

S′ ◦ S′′ = P (b), P (a), P (c) ` Q(a), Q(b).

The left permutation (12) then gives S. 3

By definition of the semantics of sequents, every sequent is implied by all of
its subsequents. The empty sequent (which stands for falsum) implies every
sequent.

14 3 PRELIMINARIES

Definition 3.1.14 Substitutions can be extended to sequents in an obvious
way. If S = A1, . . . , An ` B1, . . . , Bm and σ is a substitution then

Sσ = A1σ, . . . , Anσ ` B1σ, . . . , Bmσ.

3

Definition 3.1.15 (polarity) Let λ be an occurrence of a formula A in
B. If A ≡ B then λ is a positive occurrence in B. If B ≡ (C ∧ D), B ≡
(C ∨D), B ≡ (∀x)C or B ≡ (∃x)C and λ is a positive (negative) occurrence
of A in C (or in D respectively) then the corresponding occurrence λ′ of A
in B is positive (negative). If B ≡ (C → D) and λ is a positive (negative)
occurrence of A in D then the corresponding occurrence λ′ in B is positive
(negative); if, on the other hand, λ is a positive (negative) occurrence of A
in C then the corresponding occurrence λ′ of A in B is negative (positive).
If B ≡ ¬C and λ is a positive (negative) occurrence of A in C then the
corresponding occurrence λ′ of A in B is negative (positive). If there exists
a positive (negative) occurrence of a formula A in B we say that A is of
positive (negative) polarity in B. 3

Definition 3.1.16 (strong and weak quantifiers)
If (∀x) occurs positively (negatively) in B then (∀x) is called a strong (weak)
quantifier. If (∃x) occurs positively (negatively) in B then (∃x) is called a
weak (strong) quantifier. 3

Note that (Qx) may occur several times in a formula B; thus it may be
strong and weak at the same time. If confusion might arise we refer to the
specific position of (Qx) in B. In particular we may replace every formula
A by a logically equivalent “variant” A′ s.t. every (Qx) (for Q ∈ {∀,∃} and
x ∈ V) occurs at most once in A′. In this case the term ”(Qx) is a strong
(weak) quantifier” has a unique meaning.

Definition 3.1.17 A sequent S is called weakly quantified if all quantifier
occurrences in S are weak. 3

3.2 The Calculus LK

Like most other calculi Gentzen’s LK is based on axioms and rules.

Definition 3.2.1 (axiom set) A (possibly infinite) set A of sequents is
called an axiom set if it is closed under substitution, i.e., for all S ∈ A and
for all substitutions θ we have Sθ ∈ A. If A consists only of atomic sequents
we speak about an atomic axiom set. 3

3.2. THE CALCULUS LK 15

Remark: The closure under substitution is required for proof transforma-
tions, in particular for cut-elimination. 3

Definition 3.2.2 (standard axiom set) Let AT be the smallest axiom
set containing all sequents of the form A ` A for arbitrary atomic formulas
A. AT is called the standard axiom set. 3

Definition 3.2.3 (LK) Basically we use Gentzen’s version of LK (see [38])
with the exception of the permutation rule. There are two groups of rules,
the logical and the structural ones. All rules with the exception of cut have
left and right versions; left versions are denoted by ξ: l, right versions by ξ: r.
Every logical rule introduces a logical operator on the left or on the right side
of a sequent. Structural rules serve the purpose of making logical inferences
possible (e.g. permutation) or to put proofs together (cut). A and B denote
formulas, Γ,∆,Π,Λ sequences of formulas. In the rules there are introducing
or auxiliary formulas (in the premises) and introduced or principal formulas
in the conclusion. We indicate these formulas for all rules. In particular
we mark the auxiliary formula occurrences by + and the principal ones by
?. We frequently say auxiliary (main) formula instead of auxiliary (main)
formula occurrence.

The logical rules:

• ∧-introduction:

A+,Γ ` ∆
(A ∧B)?,Γ ` ∆

∧: l1
B+,Γ ` ∆

(A ∧B)?,Γ ` ∆
∧: l2

Γ ` ∆, A+ Γ ` ∆, B+

Γ ` ∆, (A ∧B)? ∧: r

• ∨-introduction:

A+,Γ ` ∆ B+,Γ ` ∆
(A ∨B)?,Γ ` ∆ ∨: l

Γ ` ∆, A+

Γ ` ∆, (A ∨B)?
∨: r1

Γ ` ∆, B+

Γ ` ∆, (A ∨B)?
∨: r2

• →-introduction:

Γ ` ∆, A+ B+,Π ` Λ
(A→ B)?,Γ,Π ` ∆,Λ →: l

A+,Γ ` ∆, B+

Γ ` ∆, (A→ B)?
→: r

• ¬-introduction:

Γ ` ∆, A+

¬A?,Γ ` ∆ ¬: l
A+,Γ ` ∆
Γ ` ∆,¬A? ¬: r

16 3 PRELIMINARIES

• ∀-introduction:
A{x← t}+,Γ ` ∆

(∀x)A?,Γ ` ∆ ∀: l

where t is an arbitrary term.

Γ ` ∆, A{x← α}+

Γ ` ∆, (∀x)A? ∀: r

where α is a free variable which may not occur in Γ,∆, A. α is called
an eigenvariable.

• The logical rules for ∃-introduction (the variable conditions for ∃ : l
are the same as those for ∀: r, and similarly for ∃ : r and ∀: l):

A{x← α}+,Γ ` ∆
(∃x)A?,Γ ` ∆ ∃: l

Γ ` ∆, A{x← t}+

Γ ` ∆, (∃x)A? ∃: r

The structural rules:

• permutation
S
S′

π: l S
S′′

π′: r

where S′ is a left permutation of S based on π, and S′′ is a right
permutation of S based on π′ . In (: lπ) : l all formulas on the left side
of S′ are principal formulas and all formulas on the left side of S are
auxiliary formulas; similarly for p(π) : r. Mostly we write the rules in
the form

S
S′

p: l S
S′′

p: r

when we not interested in specifying the particular permutation.

• weakening:
Γ ` ∆

Γ ` ∆, A?
w: r Γ ` ∆

A?,Γ ` ∆ w: l

• contraction:

A+, A+,Γ ` ∆
A?,Γ ` ∆ c: l

Γ ` ∆, A+, A+

Γ ` ∆, A?
c: r

3.2. THE CALCULUS LK 17

• The cut rule: Let us assume that A occurs in ∆ and in Π. Then we
define

Γ ` ∆ Π ` Λ
Γ,Π∗ ` ∆∗,Λ

cut(A)

where Π∗ is Π after deletion of at least one occurrence of A, and ∆∗

is ∆ after deletion of at least one occurrence of A. The formula A
is the auxiliary formula of cut(A) and there is no principal one. If
Π∗ = Π − A and ∆∗ = ∆ − A, i.e. we delete all occurrences of A in
Π and ∆ we speak about a mix. If A is not an atomic formula we call
the cut essential, and inessential if A is an atom.

The cut rule can be simulated by mix and other structural rules. In-
deed let ψ be the proof

(ψ1)
Γ ` ∆

(ψ2)
Π ` Λ

Γ,Π∗ ` ∆∗,Λ
cut(A)

Then the proof ψ′:

(ψ1)
Γ ` ∆

(ψ2)
Π ` Λ

Γ,Π−A ` ∆−A,Λ mix (A)

Γ,Π∗ ` ∆∗,Λ
w∗ + p∗

is a derivation of the same end sequent. The number of additional
weakenings is bounded by the number of occurrences of A in Π and
∆. At most two permutations are necessary to obtain the desired end
sequent.

Note that the version of cut we are defining here is more general than
the cut and mix rules in Gentzen’s original paper. If we delete only
one occurrence of A in Π and ∆ we obtain the cut rule (according to
Gentzen’s terminology); if we delete all occurrences in Π and ∆ we
get a mix (which corresponds to Gentzen’s terminology). As we are
dealing with classical logic only this version of cut does not lead to
problems and makes the analysis of cut-elimination more comfortable.

3

Definition 3.2.4 Let
S1 S2

S
ξ

18 3 PRELIMINARIES

be a binary rule of LK and let S′, S′1, S
′
2 be instantiations of the schema

variables in S, S1, S2. Then (S′1, S
′
2, S

′) is called an instance of ξ. The
instance of a unary rule is defined analogously. 3

Example 3.2.1 Consider the rule

Γ ` ∆, A+ Γ ` ∆, B+

Γ ` ∆, (A ∧B)?
∧: r

Then

(∀x)P (x), (∀x)Q(x) ` P (a)+ (∀x)P (x), (∀x)Q(x) ` Q(b)+

(∀x)P (x), (∀x)Q(x) ` (P (a) ∧Q(b))?
∧: r

is an instance of ∧: r. 3

Definition 3.2.5 (LK-derivation) An LK-derivation is defined as a fi-
nite directed labeled tree where the nodes are labelled by sequents (via the
function Seq) and the edges by the corresponding rule applications. The
label of the root is called the end-sequent. Sequents occurring at the leaves
are called initial sequents or axioms. We give a formal definition:

• Let ν be a node and Seq(ν) = S for an arbitrary sequent S. Then ν
is an LK-derivation and ν is the root node (and also a leaf).

• Let ϕ be a derivation tree and ν be a leaf in ϕ. Let (S1, S2, S) be an
instance of the binary LK-rule ξ. We extend ϕ to ϕ′ by appending
the edges e1: (ν, µ1), e2: (ν, µ2) to ν s.t. Seq(µ1) = S1, Seq(µ2) = S2,
and the label of e1, e2 is ξ. Then ϕ′ is an LK-derivation with the same
root as ϕ. µ1, µ2 are leaves in ϕ′, but ν is not. ν is called a ξ-node in
ϕ′.

• Let ϕ be a derivation tree and ν be a leaf in ϕ. Let (S′, S) be an
instance of a unary LK-rule ξ. We extend ϕ to ϕ′ by appending the
edge e: (ν, µ) to ν s.t. Seq(µ) = S′, and the label of e is ξ. Then ϕ′ is
an LK-derivation with the same root as ϕ. µ is a leaf in ϕ′, but ν is
not. Again ν is called a ξ-node in ϕ′.

We write
(ψ)
S

to express that ψ is an LK- derivation with end sequent S. 3

3.2. THE CALCULUS LK 19

Definition 3.2.6 Let ϕ be an LK-derivation with initial sequent S and end
sequent S′ s.t. all edges are labelled by unary structural rules (these are all
structural rules with the exception of cut). Then we may represent ϕ by

S
S′

s∗

Moreover, if the structural rules are only weakenings we may write w∗ in-
stead of s∗, for weakenings and permutations (w+p)∗, for arbitrary weaken-
ings and one permutation w∗+ p. This notation applies to any combination
of unary structural rules, where w stands for weakening, p for permutation
and c for contraction. 3

Example 3.2.2 Let ϕ be the LK-derivation

ν1:P (a) ` P (a)
ν2: (∀x)P (x) ` P (a) ∀: l

ν3:P (a) ` Q(a)
ν4:P (a) ` (∃x)Q(x) ∃: r

ν5: (∀x)P (x) ` (∃x)Q(x)
cut

ν6: ` (∀x)P (x)→ (∃x)Q(x)
→: r

The νi denote the nodes in ϕ. The leaf nodes are ν1 and ν3, the end node
is ν6. Seq(ν2) = (∀x)P (x) ` P (a). In practice the representation of nodes
is omitted in writing down LK-proofs. 3

Definition 3.2.7 (cut-complexity) Let ϕ be an LK-derivation with cuts
and C be the set of all cut-formulas occurring in ϕ . Then max{comp(A) |
A ∈ C} is called the cut-complexity of ϕ and is denoted by cutcomp(ϕ). If ϕ
is cut-free (i.e. C = ∅) we define cutcomp(ϕ) = −1 3

Example 3.2.3 Let ϕ be the LK-derivation in Example 3.2.2. Then

cutcomp(ϕ) = 0.

In fact the only cut formula in ϕ is P (a) which is atomic. 3

Definition 3.2.8 Let A be an axiom set. An LK-proof ϕ of S from A is an
LK-derivation of S with initial sequents in A. If A is the standard axiom
set we simply call ϕ a proof of S. The set of all LK-proofs from A is denoted
by ΦA. If the axiom set A is clear from the context we frequently write Φ.
For all i ≥ 0 we define:

ΦA
i = {ϕ | ϕ ∈ ΦA, cutcomp(ϕ) ≤ i}.

The set of cut-free proofs is denoted by ΦA
∅ . 3

20 3 PRELIMINARIES

Example 3.2.4 Let A = {P (a) ` P (a), P (a) ` Q(a)}. Then A is an
axiom set (indeed there are no variables in the sequents of A). The LK-
derivation ϕ, defined in Example 3.2.2, is an LK-proof of Seq(ν6) from A,
i.e. ϕ ∈ ΦA. Moreover ϕ ∈ ΦA

0 . Note that A is not a subset of the standard
axiom set. 3

Definition 3.2.9 (path) Let π: µ1, . . . , µn be a sequence of nodes in an
LK-derivation ϕ s.t. for all i ∈ {1, . . . , n − 1} (µi, µi+1) is an edge in ϕ.
Then π is called a path from µ1 to µn in ϕ of length n − 1 (denoted by
lp(π) = n − 1). If n = 1 and π = µ1 then ψ is called a trivial path. π is
called a branch if µ1 is the root of ϕ and µn is a leaf in ϕ. We use the terms
predecessor and successor contrary to the direction of edges in the tree: if
there exists a path from µ1 to µ2 then µ2 is called a predecessor of µ1. The
successor relation is defined in a analogous way. E.g. every initial sequent
is a predecessor of the end sequent. 3

Example 3.2.5 Let ϕ =

ν1:P (a) ` P (a)
ν2: (∀x)P (x) ` P (a) ∀: l

ν3:P (a) ` Q(a)
ν4:P (a) ` (∃x)Q(x) ∃: r

ν5: (∀x)P (x) ` (∃x)Q(x)
cut

ν6: ` (∀x)P (x)→ (∃x)Q(x)
→: r

as in Example 3.2.2. ν6, ν5, ν2, ν1 is a path in ϕ which is also a branch. ν2

is a predecessor of ν6. ν1 is not a predecessor of ν4. 3

Definition 3.2.10 (subderivation) Let ϕ′ be the subtree of an LK-deri-
vation ϕ with root node ν (where ν is a node in ϕ). Then ϕ′ is called a
subderivation of ϕ and we write ϕ′ = ϕ.ν.
Let ρ be an (arbitrary) LK-derivation of Seq(ν). Then we write ϕ[ρ]ν for the
deduction ϕ after the replacement of the subderivation ϕ.ν by ρ on the node
ν in ϕ (under the restriction that ϕ.ν and ρ have the same end-sequent). 3

Example 3.2.6 Let ϕ =

ν1:P (a) ` P (a)
ν2: (∀x)P (x) ` P (a) ∀: l

ν3:P (a) ` Q(a)
ν4:P (a) ` (∃x)Q(x) ∃: r

ν5: (∀x)P (x) ` (∃x)Q(x)
cut

ν6: ` (∀x)P (x)→ (∃x)Q(x)
→: r

ϕ.ν4 =
ν3:P (a) ` Q(a)

ν4:P (a) ` (∃x)Q(x) ∃: r

3.2. THE CALCULUS LK 21

Let ρ =
ν8:P (a), P (a) ` Q(a)

ν9: P (a), P (a) ` (∃x)Q(x) ∃: r

ν10: P (a) ` (∃x)Q(x) c: l

Then ϕ[ρ]ν4 =

ν1:P (a) ` P (a)
ν2: (∀x)P (x) ` P (a) ∀: l

ν8:P (a), P (a) ` Q(a)
ν9: P (a), P (a) ` (∃x)Q(x) ∃: r

ν10: P (a) ` (∃x)Q(x) c: l

ν5: (∀x)P (x) ` (∃x)Q(x)
cut

ν6: ` (∀x)P (x)→ (∃x)Q(x)
→: r

Note that ϕ[ρ]ν4 is an LK-proof from the axiom set

{P (a) ` P (a); P (a), P (a) ` Q(a)}.

3

Definition 3.2.11 (depth) Let ϕ be an LK-derivation and ν be a node
in ϕ. Then the depth of ν (denoted by depth(ν)) is defined by the maximal
length of a path from ν to a leaf of ϕ.ν. The depth of any leaf in ϕ is zero.
3

Definition 3.2.12 (regularity) An LK-derivation ϕ is called regular if

• all eigenvariables of quantifier introductions ∀: r and ∃: l in ϕ are mu-
tually different.

• If an eigenvariable α occurs as an eigenvariable in a proof node ν then
α occurs only above ν in the proof tree.

3

There exists a straightforward transformation from LK-derivations into reg-
ular ones: just rename the eigenvariables in different subderivations. The ne-
cessity of renaming variables was the main motivation for changing Hilbert’s
linear format to the tree format of LK. From now on we assume, without
mentioning the fact explicitly, that all LK-derivations we consider are reg-
ular.
The formulas in sequents on the branch of a deduction tree are connected
by a so-called ancestor relation. Indeed if A occurs in a sequent S and A is

22 3 PRELIMINARIES

marked as principal formula of a, let us say binary, inference on the sequents
S1, S2, then the auxiliary formulas in S1, S2 are immediate ancestors of A
(in S). If A occurs in S1 and is not an auxiliary formula of an inference then
A occurs also in S; in this case A in S1 is also an immediate ancestor of A
in S. The case of unary rules is analogous. General ancestors are defined
via reflexive and transitive closure of the relation.

Example 3.2.7 Instead of using special symbols for formula occurrences
we mark the occurrences of a formula in different sequents by numbers. Let
ϕ =

ν1:P (a)4 ` P (a)
ν2: (∀x)P (x)5 ` P (a)

∀: l
ν3:P (a) ` Q(a)1

ν4:P (a) ` (∃x)Q(x)2
∃: r

ν5: (∀x)P (x)6 ` (∃x)Q(x)3
cut

` (∀x)P (x)→ (∃x)Q(x)7
→: r

1 is ancestor of 2, 2 is ancestor of 3, 3 is ancestor of 7. 1 is ancestor of 3 and
of 7. 4 is ancestor of 5, 5 of 6 and 6 of 7. 4 is ancestor of 7, but not of 2. 3

Definition 3.2.13 (ancestor path) A sequence ᾱ: (α1, . . . , αn) for formula
occurrences αi in an LK-derivation ϕ is called an ancestor path in ϕ if for
all i ∈ {1, . . . , n− 1} αi is an immediate ancestor of αi+1. If n = 1 then α1

is called a (trivial) ancestor path. 3

Example 3.2.8 In Example 3.2.7 the sequence 4, 5, 6, 7 is an ancestor path.
3

Definition 3.2.14 Let Ω be a set of formula occurrences in an LK-derivation
ϕ and ν be a node in ϕ. Then S(ν,Ω) is the subsequent of Seq(ν) obtained
by deleting all formula occurrences which are not ancestors of occurrences
in Ω. 3

Example 3.2.9 Let ϕ =

ν1:P (a) ` P (a)
ν2: (∀x)P (x) ` P (a) ∀: l

ν3:P (a) ` Q(a)
ν4:P (a) ` (∃x)Q(x) ∃: r

ν5: (∀x)P (x) ` (∃x)Q(x)
cut

ν6: ` (∀x)P (x)→ (∃x)Q(x)
→: r

and α the left occurrence of the cut formula in ϕ, and β the right occurrence.
Let Ω = {α, β}. Then

S(ν1,Ω) = ` P (a),
S(ν3,Ω) = P (a) ` .

3.2. THE CALCULUS LK 23

3

Remark: If Ω consists just of the occurrences of all cut formulas which
occur “below” ν then S(ν,Ω) is the subsequent of Seq(ν) consisting of all
formulas which are ancestors of a cut. These subsequents are crucial for the
definition of the characteristic set of clauses and of the method CERES in
Chapter 6. 3

Definition 3.2.15 The length of a proof ϕ is defined by the number of
nodes in ϕ and is denoted by l(ϕ). 3

Definition 3.2.16 (cut-derivation) Let ψ be an LK-derivation of the
form

(ψ1)
Γ1 ` ∆1

(ψ2)
Γ2 ` ∆2

Γ1,Γ∗2 ` ∆∗
1,∆2

cut(A)

Then ψ is called a cut-derivation; note that ψ1 and ψ2 may contain cuts. If
the cut is a mix we speak about a mix-derivation. ψ is called essential if
comp(A) > 0 (i.e. if the cut is essential). 3

Definition 3.2.17 (rank, grade) Let ψ be a cut-derivation of the form

(ψ1)
Γ1 ` ∆1

(ψ2)
Γ2 ` ∆2

Γ1,Γ∗2 ` ∆∗
1,∆2

cut(A)

Then we define the grade of ψ as comp(A).
Let µ be the root node of ψ1 and ν be the root node of ψ2. An A-right
path in ψ1 is a path in ψ1 of the form µ, µ1, . . . , µn s.t. A occurs in the
consequents of all Seq(µi) (note that A clearly occurs in ∆1). Similarly an
A-left path in ψ2 is a path in ψ2 of the form ν, ν1, . . . , νm s.t. A occurs in
the antecedents of all Seq(νj). Let P1 be the set of all A-right paths in ψ1

and P2 be the set of all A-left paths in ψ2. Then we define the left-rank of
ψ (rankl(ψ)) and the right-rank of ψ (rankr(ψ)) as

rankl(ψ) = max{lp(π) | π ∈ P1}+ 1,
rankr(ψ) = max{lp(π) | π ∈ P2}+ 1.

The rank of ψ is the sum of right-rank and left-rank, i.e. rank(ψ) =
rankl(ψ) + rankr(ψ). 3

