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Preface

During a conference titled “TRP channels, from sensory signaling to human dis-
ease”, held at the Karolinska Institute, Stockholm, Sweden, on 26th and 27th
September, 2009, I was contacted by Springer to publish the proceedings of the
conference. After some discussion with some of the speakers, I understood that
that was not going to happen. In stead, we were happy to publish a short meet-
ing report [1]. I thought, the excitement and the momentum that resulted from the
conference could be utilized in compiling a substantial book rather than a modest
conference proceeding. The idea for a TRP book appeared very timely. This field
of research has progressed fast and a few books on the TRP channels that have
been published before have become outdated. My immediate concern was whether
I would have enough time for editing another book. From a previous book “The
Islets of Langerhans” (http://isletbook.islets.se), I knew that for completing a book,
it requires a lot more time and energy than one anticipates at the onset [2]. But
my real fear was whether I am the most appropriate person to edit a book on the
TRP channels. After all, it is a vast and expanding field dominated by a handful of
eminent electrophysiologists and biophysicists. When it comes to the TRP channels,
I am at best an enthusiast and by no means an expert. I tried to adopt co-editor(s) but
the ones I approached were already over committed. My other concern was whether
people read books these days as they used to do in the past; books are, after all, less
dynamic than journals and on-line publications. It took me some time, to overcome
these perplexing thoughts, and then there was only one thing left for me to do, i.e.,
to take the idea of this new book on TRP channels to completion as fast and as best
as possible at any cost.

During the first few weeks, it became pretty obvious to me that many scien-
tists prefer to spend their time in publishing original papers in high-impact journals
rather than in writing book chapters especially if they are not paid any remuner-
ation for their contribution. In most academic environments, a short report in a
high-impact journal counts more than an extensive and useful chapter in a book,
which, often do not have any impact factors. I wrote to many scientists who have
published something on TRP channels in any journal. I contacted scientists whom
I knew or whom I met personally. In the end, I was rather overwhelmed that so
many authors agreed to contribute a chapter in his book. The enthusiasm among the
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authors was noticeably high. My communication with the authors and the referees
was fast, smooth, informal, and very satisfying. All authors finally submitted their
respective chapters in time. The only chapter that was delayed was mine, a privilege
and a problem of being the editor.

In this book one will find diverse information on the TRP channels starting
from some of the essential background information to some of the cutting edge
researches, from some of the most established facts to some of the most hotly
debated issues of our time, and from the structural biology of the channels to the
molecular basis of some human illnesses. But it is by no means an encyclopedia.
The emphasis was not on making the book as complete as possible but on making
the best use of the competence and interests of the authors who agreed to con-
tribute. Some important topics are missing from the book simply because I could
not persuade anyone to contribute on those topics. The authors enjoyed enormous
freedom in choosing the contents of their respective chapters and in structuring the
chapters as they wished. In some instances, more than one chapter was dedicated to
somewhat overlapping topics to ensure that different views of different authors can
be accommodated in the same book. Many authors have included their own ideas,
views, and speculations which can form the basis for new testable hypotheses for
future research. In this book there is something for everyone, both for the beginners
and for the experts. But it is important that the readers treat the contents of this book
just as starting points, question everything that they read in this book and actively
find their own answers through further research.

I am grateful to all the authors and the co-authors, who, in spite of their heavy pre-
occupation with numerous other activities and deadlines, have worked hard to make
their chapters as best as possible within the limited time that they were allotted.
When I learnt from several authors that the reasons for delay of their chapters were
unexpected personal or family situations or bereavement of a family member, then I
paused and reflected; life is not just a bundle of papers. I would like to thank all the
referees who have taken time to really read the manuscripts and to come up with very
useful comments. The most important thing that I have enjoyed and I have benefited
from is the reading of the comments of many referees and the authors’ replies to
these comments. I wish I could include some of the referees’ comments in this
book. In spite, of all our efforts, I am worried that the book contains many mistakes
that we were not aware of. I will be grateful if readers point out such mistakes and
post their comments on the website of the book: http://trpbook.islets.se. This will
make the book a bit more dynamic and we all will have opportunity to learn from
the mistakes.

I believe we shall all be happy, if this book can further intensify research in
the field of the TRP channels in the context of understanding human physiology
and pathogenesis of human diseases. Let research in this field confer some of the
greatest benefits on mankind. Thanks to Karolinska Institutet that has provided the
infrastructure for my academic activities over past two decades. Thanks to Melania
Ruiz and Ilse Hansen for handling the practical aspects of handling the chapters
and rest of the book. This editorial was written on board a high speed train that
symbolizes the fast speed of research in the TRP field.
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Chapter 1
Structural Biology of TRP Channels

Minghui Li, Yong Yu, and Jian Yang

Abstract Structural studies on TRP channels, while limited, are poised for a
quickened pace and rapid expansion. As of yet, no high-resolution structure of a
full length TRP channel exists, but low-resolution electron cryomicroscopy struc-
tures have been obtained for 4 TRP channels, and high-resolution NMR and X-ray
crystal structures have been obtained for the cytoplasmic domains, including an
atypical protein kinase domain, ankyrin repeats, coiled coil domains and a Ca2+-
binding domain, of 6 TRP channels. These structures enhance our understanding of
TRP channel assembly and regulation. Continued technical advances in structural
approaches promise a bright outlook for TRP channel structural biology.

1.1 Introduction

Full understanding of ion channel function requires high-resolution three-
dimensional (3D) structures. Structural studies on ion channels entered a new phase
in 1998 after the publication of the crystal structure of the bacterial K+ channel,
KcsA [1]. Since then, there has been a rapid growth in the number of ion channel
structures. To date, there are ~90 crystal structures of full length or near full length
ion channels, ~50 electron microscopy structures of full length or near full length
ion channels, and ~130 crystal and nuclear magnetic resonance (NMR) structures
of ion channel fragments. These structures have led to a quantum leap in our under-
standing of the molecular and biophysical mechanisms of ion channel assembly,
selectivity, conduction, gating and regulation.

TRP channels constitute a distinct superfamily of ion channels and are distantly
related to voltage-gated K+, Na+ and Ca2+ superfamilies. They are expressed and
function in diverse organisms, including yeasts, worms, fruit flies, mice and humans.
Excluding yeast TRPs, there are seven subfamilies: TRPC, TRPV, TRPM, TRPA,
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1M.S. Islam (ed.), Transient Receptor Potential Channels, Advances in Experimental
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Fig. 1.1 TRP channel subfamilies and the transmembrane topology and domain organization of
their subunits. Only commonly present and readily identifiable domains or motifs in the cytoplas-
mic N and C termini are indicated. Examples of high-resolution structures of some domains or
motifs are presented

TRPN, TRPP and TRPML, with TRPN absent in mice and humans (Fig. 1.1) [2].
Each subfamily has one or more members. Mice have a total of 28 different mem-
bers, and humans 27. All TRP channel subunits have six putative transmembrane
segments and a pore-forming loop between the last two transmembrane segments
(Fig. 1.1). The amino (N) and carboxyl (C) termini are located intracellularly and
vary vastly in length (Table 1.1) and amino acid (aa) sequence. These cytoplas-
mic regions contain various well-recognized domains and motifs that are likely
involved in channel assembly, activation and regulation through protein–protein
and/or protein–ligand interactions (Fig. 1.1).

All TRP channels are cation selective, with some being highly selective for Ca2+

or Mg2+ [2]. In accord with their amino acid sequence diversity, TRP channels
exhibit varied activation and modulatory mechanisms, such as stimulation of G pro-
tein coupled receptors, extracellular and intracellular ligands (including H+, Ca2+

and Mg2+), phosphoinositide-4,5pbisphosphate (PIP2), temperature, and mechani-
cal stretch [2]. To fully understand TRP channel diversity, function and regulation,
it is necessary to gain structural information on different types of TRP channels.

Of the existing ion channel structures, most come from K+ channels. This is due,
in part, to their vast variety and their existence in bacteria, which make them more
tractable to structural approaches, especially X-ray crystallography, because they
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Table 1.1 Predicted region and length of the cytoplasmic N and C termini of TRP channel subunits
and the number of low-complexity residues in these regions

N terminus C terminus

Protein
Channel
region # of residues

# of low-
complexity
residues

Channel
region # of residues

# of low-
complexity
residues

TRPC1 1–316 316 14 610–759 150 0
TRPC2 1–626 626 92 918–1,172 255 82
TRPC3 1–351 351 0 671–848 178 0
TRPC4 1–327 327 38 618–977 360 21
TRPC5 1–327 327 41 622–973 352 56
TRPC6 1–404 404 22 726–931 206 7
TRPC7 1–351 351 11 671–862 192 0
TRPV1 1–433 433 0 681–839 159 0
TRPV2 1–390 390 0 645–764 120 0
TRPV3 1–438 438 56 675–790 116 0
TRPV4 1–468 468 26 716–871 156 0
TRPV5 1–326 326 0 577–729 153 22
TRPV6 1–326 326 16 577–725 149 10
TRPM1 1–760 760 84 1,053–1,533 481 27
TRPM2 1–750 750 40 1,046–1,503 458 26
TRPM3 1–716 716 59 955–1,554 600 34
TRPM4 1–687 687 43 1,041–1,214 174 34
TRPM5 1–643 643 0 975–1,158 184 0
TRPM6 1–742 742 15 1,075–2,022 948 34
TRPM7 1–756 756 15 1,102–1,864 763 13
TRPM8 1–692 692 16 977–1,104 128 24
TRPML1 1–69 69 12 518–580 63 13
TRPML2 1–61 61 0 508–566 59 0
TRPML3 1–66 66 13 503–553 51 0
TRPP2 1–224 224 99 681–968 288 87
TRPP3 1–104 104 15 558–805 248 22
TRPP5 1–33 33 0 492–613 122 12
TRPA1 1–717 717 0 962–1,119 158 0

All amino acid sequences are from humans except TRPC2, which is from mice, as human TRPC2
is a pseudogene. Transmembrane helices were predicted using the TMHMM Server v. 2.0 at
http://www.cbs.dtu.dk/services/TMHMM/. Low-complexity sequences were predicted using the
program SEG [80] with the default settings.

can be more abundantly expressed, are more stable, and hence, are more amicable
to purification and crystallization. TRP channels, however, are not endogenously
expressed in bacteria. This is perhaps a major contributing factor in the present
lack of even a single high-resolution structure of any full length TRP channel.
Nevertheless, low-resolution structures have been obtained for 4 full length TRP
channels by electron microscopy (EM). Meanwhile, X-ray crystallography and
NMR spectroscopy have been employed effectively to garner high-resolution struc-
tures of functionally important cytosolic domains of 6 TRP channels (Table 1.2).
This chapter describes the existing TRP channel structures and, when available,
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Table 1.2 High-resolution structures of TRP channel fragments

Structural
description

Channel
region Species Resolution Method

PDB
code References

TRPM7
α-kinase

1,549–1,828 Mouse 2.8 Å X-ray
crystallography

1IAJ [27]

TRPM7
α-kinase,
with
AMP·PNP

1,549–1,828 Mouse 2.0 Å X-ray
crystallography

1IA9 [27]

TRPM7
α-kinase,
with ADP

1,549–1,828 Mouse 2.4 Å X-ray
crystallography

1IAH [27]

TRPV1
ankyrin
repeats

101–364 Rat 2.7 Å X-ray
crystallography

2PNN [39]

TRPV2
ankyrin
repeats

75–326 Rat 1.65 Å X-ray
crystallography

2ETB [37]

TRPV2
ankyrin
repeats

69–319 Human 1.7 Å X-ray
crystallography

2F37 [40]

TRPV4
ankyrin
repeats

133–382 Chicken 2.3 Å X-ray
crystallography

3JXI [38]

TRPV6
ankyrin
repeats

44–265 Mouse 1.7 Å X-ray
crystallography

2RFA [41]

TRPM7
coiled coil

1,230–1,282 Rat 2.01 Å X-ray
crystallography

3E7K [57]

TRPP2 coiled
coil, long

833–895 Human 1.9 Å X-ray
crystallography

3HRN [58]

TRPP2 coiled
coil, short

833–872 Human 1.9 Å X-ray
crystallography

3HRO [58]

TRPP2 E-F
hand

724–796 Human NMR 2KLE [74]

TRPP2 E-F
hand

720–797 Human NMR 2KQ6 [75]

the mechanistic insights they provide, beginning with a brief overview of structural
approaches and considerations. Advances in TRP channel structural biology have
been covered in several recent reviews [3–7].

1.2 Structure-Determination Methods and Considerations

When examining the structure of a protein or a protein complex, the first and fore-
most concern is its resolution. At nanometer-resolutions, certain general features of
the protein can be ascertained, including its shape, dimension, subunit stoichiometry
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and domain organization (Fig. 1.2a). At 4- to 9-Å resolutions, secondary structures
can be discerned (Fig. 1.2b). At resolutions below 3.7 Å, amino acid side-chains can
be visualized and assigned – the higher the resolution, the higher the precision and
confidence (Fig. 1.2c). For example, aromatic side-chains can be identified at 3.5 Å,
and individual atoms can be resolved at 1.5 Å [8].

Three methods are commonly used to determine protein 3D structures – electron
cryomicroscopy (cryo-EM), NMR spectroscopy and X-ray crystallography. These
methods have different applications, advantages and disadvantages, especially when
applied to integral membrane proteins.

Cryo-EM can be used to determine the structure of proteins of various shapes,
forms and sizes [9–11]. It is particularly useful for proteins that are too large or too
difficult for NMR and X-ray crystallography. Moreover, cryo-EM can probe pro-
teins in their native lipid environment. Cryo-EM can be used to visualize proteins
in two-dimensional (2D) sheets or helices or in non-crystal forms. The resolution of
single-particle cryo-EM, the most widely used cryo-EM method, generally ranges
from 30 to ~6 Å, depending on the quality of protein preparation, protein symmetry,

Fig. 1.2 Examples of membrane protein structures at different resolutions. (a) Side view (left) and
top view (right) of a cryo-EM structure of the Drosophila Shaker K+ channel at 25 Å resolution,
revealing a fourfold symmetry and a two-layered architecture [76]. (b) Side view of the structure
of a monomer of aquaporin 1 obtained by 2D cryo-EM at 6 Å resolution, revealing 6 distinct tilted
rods that correspond to membrane-spanning α helices [77]. (c) X-ray crystal structure of the rat
Kv1.2 channel at 2.9 Å resolution (left, PDB code 2A79) [78] and (d) The electron density map
and side chain assignment of the ion selectivity filter of a rat Kv1.2–Kv2.1 chimeric channel at
2.4 Å resolution (right, PDB code 2R9R) [79]
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sample size, data processing, and reconstruction. Near atomic resolution can be
obtained for highly symmetrical complexes (see e.g., [12]). With 2D crystals, cryo-
EM can achieve atomic resolution. For example, the structure of aquaporin-0 in
double-layered 2D crystals has been determined at 1.9 Å [13], the highest resolution
protein structure solved to date by cryo-EM.

Both NMR and X-ray crystallography allow the determination of protein struc-
tures at atomic resolutions. NMR is mainly applicable to relatively small proteins
or protein fragments, usually less than 25 kDa, for structural determination, though
technical advances allow proteins of up to 900 kDa to be studied [14]. Also, both
soluble and membrane proteins can be examined [14, 15]. For partially or wholly
unstructured proteins or protein fragments that are resistant to crystallization, NMR
is often the only method for structural determination.

X-ray crystallography is by far the most widely used and most effective structure-
determination method. As of March 2010, ~86% of the protein structures deposited
in the Protein Data Bank and ~88% of the ion channel structures (full length and
fragments) are solved by X-ray crystallography. The number of unique structures
of membrane proteins solved by X-ray crystallography has been increasing expo-
nentially, from a total of 25 in 1998 when the KcsA structure was published to 212
in 2009. Despite its power, X-ray crystallography has limitations, especially when
applied to membrane proteins. Major challenges include maintaining the protein
in a soluble form and in its native oligomeric state, crystallizing the protein, and
achieving atomic resolution.

An important consideration in protein structure determination is the expression
system. Four types of cells have been routinely employed to overexpress membrane
proteins: bacteria (Escherichia coli), yeast (Saccharomyces cerevisiae and Pichia
pastoris), insect cells (Sf9 cells), and mammalian cells (HEK293 cells and COS7
cells). Obviously, proteins that are endogenously expressed in bacteria are likely to
yield better expression in E. coli. There are yet no well-defined guiding principles
in choosing an expression system for vertebrate membrane proteins. Trial-and-error
seems to be the most effective strategy.

Another key consideration is the choice of detergents. Membrane proteins
are embedded in lipids and thus require detergents for solublization, purifi-
cation and crystallization [16, 17]. Nonionic and zwitterionic detergents are
generally less harsh on proteins than ionic detergents and have been much
more successfully utilized in structural investigation. Commonly used nonionic
and zwitterionic detergents include n-decyl-β-D-maltoside (DM), n-dodecyl-β-D-
maltoside (DDM), lauryldimethylamine-N-oxide (LDAO), n-octyl-β-D-glucoside
(OG), dodecyl octaethylene glycol ether (C12E8), and 3-[(3-cholamidopropyl)-
dimethylammonio]-1-propane sulfonate (CHAPS). In general, detergent concen-
trations should be significantly higher than the critical micelle concentration
(CMC), the concentration at which detergent monomers aggregate to form micelles.
Sometimes, different detergents are used for solublization and for purification
and crystallization. As with choosing the expression system, there is not a set of
rules regarding detergent choice and the concentration to be used; they are largely
determined empirically.
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Yet another critical consideration is whether to work on full length proteins or
smaller fragments. From the functional point of view, it is obviously more desirable
to obtain the structure of full length proteins. With cryo-EM, this is usually achiev-
able, even for very large proteins. This is, however, not often feasible with X-ray
crystallography. To facilitate protein expression, purification, crystallization, and to
improve resolution, it is often necessary to remove parts of a protein. Even with such
maneuvers, it is still often unattainable to solve the structure of a membrane protein.
In such cases, an alternative is to obtain the structure of the soluble domains of the
protein. The extracellular and intracellular regions of membrane proteins usually
contain functionally important domains and motifs, which often fold into com-
pact and defined structures. These domains and motifs often can be independently
expressed, purified and crystallized, and their structures can provide useful insights
into the workings of a protein. Still, the extracellular and intracellular regions of ion
channel proteins, including TRP channels, often contain low-complexity sequences
(Table 1.1), which are generally detrimental to structural determination by both
NMR and X-ray crystallography [18]. Thus, even when working with channel frag-
ments, it is usually necessary to trim them further. Indeed, none of the available
high-resolution structures of TRP channels comes from a full length N or C ter-
minus (Table 1.2). Finally, it should be cautioned that the structure of an isolated
protein fragment may not always represent its structure in the intact protein. Thus,
the validity and usefulness of such a structure needs to be tested in the full length
protein.

1.3 EM Structures

Low-resolution (15–35 Å) EM structures have been obtained for 4 TRP chan-
nels from 3 different subfamilies: TRPM2, TRPC3, TRPV1 and TRPV4 (Fig. 1.3)
[19–22]. The structures of the latter 3 channels were determined by cryo-EM, but
that of TRPM2 was determined by EM with negative staining. A common feature
of all four structures is that they exhibit a fourfold rotational symmetry, consistent
with the tetrameric subunit stoichiometry that has been demonstrated for several
TRP channels by other methods [23, 24]. Strikingly, while the general structure of
TRPV1 and TRPV4 is similar, that of TRPM2 and TRPC3 is markedly different
(Fig. 1.3).

The structure of rat TRPV1 was determined by single particle cryo-EM at 19 Å
resolution (Fig. 1.3a) [21]. The reconstructed 3D structure stands ~150 Å high and
contains two interconnected regions. The small region measures ~60×60 Å, with
a height of 40 Å, and accounts for ~30% of the total mass. It likely corresponds
to the transmembrane portion of the channel, as suggested by its relative mass
and a reasonable fit of the high-resolution structure of the transmembrane domains
of the Kv1.2 K+ channel into this region. The large region is shaped like a bas-
ket, with a central cavity, and is connected to the small region by 4 bridges. This
region, comprising ~70% of the total mass, is ~100 Å wide and 110 Å high and
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Fig. 1.3 TRP channel EM structures. (a) Cryo-EM structure of TRPV1 [21], superimposed with
the crystal structure of the Kv1.2 transmembrane domains (maroon; PDB code 2A79) and of the
ankyrin repeat domain of TRPV1 (green; PDB code 2PNN). (b) Cryo-EM structure of TRPV4 [22],
superimposed with the crystal structure of Mlotik1 (top; PDB code 3BEH) and of the ankyrin repeat
domain of TRPV1 (bottom). (c) EM structure of TRPM2 with negative staining [19]. (d) Cryo-EM
structure of TRPC3 [20]. All structures are side-views. The white lines mark putative transmem-
brane regions, so do the blue lines, as presented in [20]. The resolutions of all four structures are
based on the 0.5 cutoff criterion in the Fourier shell correlation

probably corresponds to cytoplasmic N and C termini. Indeed, the 6 ankyrin repeats
present in the N terminus of TRPV1 can be comfortably fitted into this region in
the vertical orientation. The functional importance of the vacant central chamber is
unknown.

The structure of rat TRPV4, reconstructed to 35 Å resolution, is similar to that
of TRPV1 and shares the two-layered general architecture (Fig. 1.3b) [22]. This is
consistent with the similar size of the two channels (rat TRPV1 and TRPV4 sub-
units contain 838 and 871 amino acids, respectively). The small region accounts
for 30% of the total volume and has a dimension of ~85 Å. The transmembrane
domains of Mlotik1, a prokaryotic K+ channel, can be largely superimposed onto
this region. The large region is ~112 Å wide, and as in TRPV1, is linked to the
putative transmembrane region through 4 short bridges. The N terminus of TRPV4


