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Preface

The thermodynamics of flowing fluids is an active and very challenging topic in 
modern non-equilibrium thermodynamics and statistical mechanics. After ten years 
of publication of the first edition of this book, we felt that a fully renewed, updated 
and enlarged edition was necessary to cover some of the progress made in these 
fields. A book on the thermodynamics of flowing fluids was published in 1994 
by A. N. Beris and S. J. Edwards, Thermodynamics of Flowing Fluids with Inter-
nal Microstructure, Oxford University Press, New York, 1994: it was based on the 
Poisson bracket formalism and focused on fluids with internal microstructure. The 
books by D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium 
Liquids (Australian National University E Press, 2007), A. Onuki, Phase Transition 
Dynamics (Cambridge University Press, 2002) and V. Garzó and A. Santos, Kinetic 
theory of gases in shear flow (Kluwer, Dordrecht, 2003) have also been useful and 
important contributions to a global vision of this field, the first with more empha-
sis on molecular dynamical simulations, the second one with special attention on 
critical phenomena, and the third one from the perspective of the kinetic theory of 
gases. The central perspective of the present book is, instead, on non-equilibrium 
thermodynamics beyond local equilibrium. The more macroscopic and phenom-
enological character of this approach allows to deal with a wider range of systems, 
going from ideal gases and phonon hydrodynamics to polymer solutions and melts, 
and to laminar and turbulent superfluids.

The interest of the thermodynamics of flowing fluids is both theoretical and 
practical. From the theoretical point of view, the influence of the flow on the ther-
modynamic potentials requires the formulation of thermodynamic theories beyond 
the local-equilibrium hypothesis; this is a field with many open challenges, which 
fosters an active dialogue between macroscopic and microscopic theories, the latter 
based either on the kinetic theory of gases, or on molecular dynamical simulations 
of fluids. Furthermore, it also requires an open discussion between thermodynamics 
and hydrodynamics, because some of the observed phenomena may have a purely 
thermodynamic origin (due to the modification of some equations of state) or a pure-
ly hydrodynamic origin, but in general there will be an interplay of both thermody-
namics beyond the local-equilibrium regime, and its relationship with microscopic 
theories and with hydrodynamic theories currently represents an important frontier 
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of research. In our book by G. Lebon, D. Jou and J. Casas-Vázquez, Understanding 
Non-equilibrium Thermodynamics. Foundations, Applications, Frontiers (Springer, 
Berlin, 2008) we have discussed and examined in detail several different avenues 
towards the formulation of such thermodynamics beyond local equilibrium.

From the practical point of view, many situations of technological interest are 
present in flowing systems. Indeed, the modification of the thermodynamic equa-
tions of state for the chemical potential imply modifications in the phase diagram 
of substances in non-equilibrium steady states, or on the conditions of chemical 
equilibrium and stability. The ability to control the thermodynamic state of the sys-
tem is essential in technology and also in fundamental science. For instance, much 
study has been devoted to flow-induced changes in the phase diagram of polymer 
solutions or in shear-induced flow of macromolecules. The practical importance 
of the problems arising under flow is easily understood. Most industrial processes 
take place in flowing fluids (pumping, extruding, injecting, molding, mixing…), 
in which the polymer macromolecules undergo different shear and elongational 
stresses, depending on the position. Thus, a flow-induced change of phase could 
take place in some positions and not in others, affecting both rheological and struc-
tural properties of the flow. The materials formed in these processes may be very 
sensitive to the extent of the phase transitions occurring in the fluids previous to 
solidification.

Other related fields of interest are the thermodynamically induced polymer deg-
radation under flow, which may be important in viscous drag reduction, or in flows 
of polymer solutions through packed porous beds, as in membrane permeation or 
flow of oil through soil and rocks. Also, in biological experiments shear-induced 
precipitation and degradation of proteins has been observed, and new separation 
techniques have been devised on the effects of the interaction between viscous pres-
sure and diffusion. Microfluidics and nanofluidics have experienced a strong devel-
opment in the last ten years, opening new and surprising applications of flowing 
fluids at a minuscule scale. In particular, phonon hydrodynamics provides a useful 
phenomenological basis to analyze heat transport from the diffusive to the ballistic 
regimes, with application to nanosystems and nanowires, thin layers, tubular layers, 
porous superlattices and so on.

From a more fundamental point of view, some of the main experiments in nu-
clear and particle physics refer to the transition from nuclear hadronic to a quark-
gluon plasma. This is pursued through very energetic ultrarelativistic collisions 
of heavy nuclei. The total duration of such collisions is of the order of five to ten 
times the mean time between successive collisions amongst nucleons in the nuclei. 
Therefore, the nuclei are rather far from local equilibrium during the collision and 
it is problematic to what extent an analysis based on the local-equilibrium equa-
tions of state for nuclear matter and for quark-gluon plasma and normal hydrody-
namics may be sufficient to provide a reliable description of the transition. Efforts 
towards using more general non-equilibrium thermodynamic and hydrodynamic 
theories are a challenge in this field. Another topic where the flow has a deep influ-
ence on the fluids is in turbulent superfluids, where a tangle of quantized vortex 
filaments appears for sufficiently high values of the heat flow or of the relative 
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velocity between normal and superfluid components. This vortex tangle contrib-
utes to the internal friction of the fluid, and it is by itself an interesting phase of 
matter, constituted of vortex loops and filaments. Finally, at a more abstract level, 
understanding the meaning and the mutual relationships between several defini-
tions of temperature and entropy finds in flowing fluids an interesting benchmark 
where explicit illustrations are possible.

From a thermodynamic perspective, the already mentioned book by Beris and 
Edwards was based on Hamiltonian formalisms, as Poisson brackets, which has 
achieved a more general and elegant formulation in the so-called GENERICS, 
which has been presented in detail by H. C. Öttinger in the book Beyond Equilib-
rium Thermodynamics (Wiley, New York, 2005). Here, instead, we adopt extended 
irreversible thermodynamics as our general framework, and we try to emphasise 
both the general thermodynamic structure underlying fluids without internal struc-
ture (namely, ideal gases, phonons, real gases, simple fluids) as well as fluids with 
internal structure (namely, polymer solutions and blends, and turbulent superfluids). 
In this way, this volume may be seen as a complement of our monograph D. Jou, 
G. Lebon and J. Casas-Vázquez, Extended Irreversible Thermodynamics (fourth 
edition, Springer, Berlin, 2010), dealing with a variety of problems that were not 
included in that volume for the lack of space.

A decisive step in the thermodynamic understanding of flowing fluids is to for-
mulate a free energy depending explicitly on the characteristics of the flow. This im-
portant problem in non-equilibrium thermodynamics has not yet received as much 
attention as it deserves. It must be noted that several authors have preferred to fol-
low another method, to analyse the phase separation or phase homogenization under 
shear from a dynamical point of view, i.e. by writing dynamical equations for the 
behaviour of concentration and velocity fluctuations and analysing the stability of 
the corresponding set of equations. Of course, the dynamical procedure has a wider 
range of potentialities than the pure thermodynamic analysis: the latter may be able 
to set the spinodal line limiting the regions of stability, but it certainly cannot give 
a detailed view of the processes of segregation of both phases, or about the changes 
in viscosity observed during the segregation. However, the existence of both meth-
ods is not contradictory, e.g., the dynamical method may describe the instability 
through the change of sign of an effective diffusion coefficient, but this change of 
sign is produced at the spinodal line, and this fact is related, in many situations, to 
the vanishing of the first derivative of an effective chemical potential with respect 
to the composition. Furthermore, the dynamical analysis cannot avoid the use of 
equations of state of the flowing fluid; therefore, to find and analyse equations of 
state in non-equilibrium conditions is always of interest. Thus, although there is a 
common ground for thermodynamical and dynamical analyses, both methods have 
their own advantages and disadvantages, so that it would be unwise to dismiss a 
priori either of them.

Here, we give a brief description of the contents of the book, and point to the 
changes made with respect to the first edition. In Chap. 1, we provide the general 
basis from a macroscopic point of view, or more precisely from the perspective of 
extended irreversible thermodynamics, and we compare it with other macroscopic 
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theories, as rational thermodynamics, theories with internal variables, and Hamil-
tonian theories. Chapters 2 and 3—the much enlarged outcomes of the Chap. 2 of 
the first edition—deal with ideal gases: in Chap. 2 we use information theory to 
describe the steady state of flowing ideal gases under Couette flow, and we explore 
in depth how several definitions of temperature behave in the presence of a non-
vanishing viscous pressure, and how they relate to each other. Of course, in the 
absence of the viscous pressure all of them tend to the same value, identical to the 
local-equilibrium temperature. In Chap. 3 we remind the basic concepts of the ki-
netic theory description of flowing ideal gases, and we discuss with some detail the 
application of thermodynamic ideas to the flow of phonons in the so-called phonon 
hydrodynamics, with special emphasis on the application of this formalism to heat 
transfer in nanosystems. This requires taking into detailed consideration the bound-
ary conditions for the slip heat flow along the walls of the system. This topic was 
not considered in the second edition.

Chapter 4 is devoted to non-ideal gases, with a comparison with some results 
of molecular dynamical simulations, and with an application to some thermody-
namic and hydrodynamic aspects of relativistic ion collisions. Chapter 5 discusses 
the microscopic description of polymer solutions, as kinetic theory of dilute solu-
tions, reptation model for concentrated solutions, and double-reptation model for 
polymer blends, to which much attention is devoted in further chapters. Chapter 6 
analyzes the influence of a shear flow on the phase diagram of polymer solutions, 
and shear-induced phase transitions; the first edition was limited to dilute solu-
tions whereas the present one incorporates also concentrated solutions and poly-
mers blends. Chapter 7 considers dynamical effects, the role of hydrodynamically 
enhanced fluctuations, and provides an understanding of the range of application 
of the thermodynamic formalism. Chapters 8 and 9 enlarge the contents of Chap. 7 
of the first edition. Chapter 8 deals with the couplings of viscous pressure and dif-
fusion; in particular, much attention is devoted to shear-induced diffusion and its 
applications to macromolecular separation in cone-and-plate and in tube configura-
tions. Chapter 9 is also devoted to diffusion in the presence of a velocity gradient, 
with special attention to Taylor dispersion and its applications, and to anomalous 
diffusion, both in a system at rest as in a fluid with a velocity gradient. Chapter 10 
deals with chemical reactions under flow, both for ideal gases and polymer solu-
tions; the latter case is applied to the analysis of polymer degradation due to the 
flow. Chapter 11 discusses the thermodynamics of flowing superfluids, not only 
in the well-known laminar regime, but also in the more intriguing and challenging 
turbulent regime, with quantized vortices. Appendix A is devoted to a survey of 
experimental information on the relevant material functions used for the evaluation 
of the non-equilibrium chemical potential in the examples considered in the book, 
and Appendix B briefly describes the results on the influence of a shear flow on the 
isotropic-nematic transition in liquid crystals. Appendices C–E contain other useful 
information related to mathematical results.

We acknowledge fruitful discussions on a variety of these topics with Profs. 
G. Lebon (Université de Liège, Belgium), M. S. Mongiovì (Università di Palermo, 
Italy), R. Luzzi (Universidade de Campinas, Brazil), M. Grmela (École Polytechnique 
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Local-equilibrium thermodynamics assumes that the equations of state retain the 
same form out of equilibrium as in equilibrium, but with a local meaning (Prigogine 
1961; De Groot and Mazur 1962; Gyarmati 1970). According to this point of view, 
there is not strictly any especial thermodynamic features characteristic of flowing 
fluids, since the flow does not change the equations of state, though it may modify 
the transport equations. This approach is insufficient to deal with systems with in-
ternal degrees of freedom, in which case the flow may influence the thermodynamic 
equations of state through its action on such internal variables. In such occasions 
(Meixner 1949, 1954; Verhas 1997; Lhuillier and Ouibrahim 1980; Maugin and 
Drouot 1983; Maugin and Muschik 1994a, b, Maugin 1999) one includes in the set 
of thermodynamic variables some internal variables describing the relevant details of 
the microstructure of the system, such as, for instance, the polymeric configuration.

In the 1960s was proposed the so-called rational thermodynamics (Truesdell 
1971, 1984), which assumes that the entropy and the (absolute) temperature are 
primitive quantities, not restricted to situations near local-equilibrium. Instead of a 
local-equilibrium assumption, it was assumed that the entropy, or the free energy, 
could depend on the history of the strain, or of the rate of strain, or of the tempera-
ture gradient, thus allowing for an explicit influence of the flow on the thermody-
namic analysis through the history of these non-equilibrium variables. The theory 
developed a powerful and elegant formalism to obtain thermodynamic restrictions 
on the memory functions relating viscous stress to the history of the strain. Howev-
er, the analysis was centred on the constitutive equations, but it paid little attention 
to the consequences of the generalised entropy on the non-equilibrium equations 
of state.

At the end of the 1960s, a new approach, called extended irreversible thermody-
namics (EIT) (Jou et al. 1988, 1992, 1996, 1998, 1999, 2010; Müller and Ruggeri 
1998; Sieniutycz and Salamon 1992; Eu 1992, 1998, 2002; Wilmanski 1998; Net-
tleton and Sobolev 1995a, b, 1996), was proposed and it was much developed dur-
ing the 1980s and 1990s. (For a wide bibliography on this topic see http://telemaco.
uab.es or Nettleton and Sobolev 1995a, b, 1996; Jou et al. 1988, 1992, 1998, 1999, 
2010). This theory assumes that the entropy depends, besides the classical variables, 
on the dissipative fluxes, such as the viscous pressure tensor, the heat flux or the 
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diffusion flux. Its motivation is to make the relaxational transport equations for 
the heat flux (Maxwell–Cattaneo equation) or the viscous pressure tensor (Max-
well viscoelastic fluids) compatible with the positiveness of the entropy production, 
which is not satisfied, in general, when such generalised transport equations are 
combined with the local-equilibrium entropy. The direct influence of the viscous 
pressure tensor and other fluxes on the thermodynamic potentials clearly opens a 
way towards a thermodynamics under flow.

Once the expression of the entropy is known, there is no difficulty in deriv-
ing the corresponding equations of state, which are directly obtained as the first 
derivatives of the entropy with respect to the basic variables. Thus, EIT links the 
generalised transport equations with generalised equations of state which contain 
non-equilibrium contributions. A natural question concerns the physical meaning of 
these equations of state which, of course, depend on the fluxes and therefore differ 
from their analogous local-equilibrium expressions. Recall that in classical thermo-
dynamics, the first derivatives of the entropy with respect to the internal energy, the 
volume and the number of moles are related to the absolute temperature, the pres-
sure, and the chemical potential, respectively. At this point, it may be asked whether 
the derivatives of the generalised entropy introduced in EIT still enable one to de-
fine an absolute non-equilibrium temperature as well as a non-equilibrium pressure 
and a non-equilibrium chemical potential. This is a very subtle question which has, 
however, received partial answers in recent years, after that some specific thought 
experiments were proposed (Casas-Vázquez and Jou 1994) a real experiment was 
interpreted (Luzzi et al. 1997) and non-equilibrium molecular dynamics simulations 
were carried out (Baranyai 2000a, b; Daivis 2008). Here, we will mainly concen-
trate our attention on the equation of state for the chemical potential at a given 
temperature and pressure; this will play a central role in Chaps. 6–10.

In this chapter, we provide a short introduction to the basic rheological concepts. 
Furthermore, we present EIT, both as an extension of the classical theory and of the 
rational thermodynamics, and we compare it with two alternative thermodynamic 
theories: the internal variable approach and the Hamiltonian formalisms. We have 
not aimed to be exhaustive, but only to provide the necessary basis to work out the 
consequences of the non-equilibrium equations of state; therefore, we have omitted 
a comparison with other valuable theories, such as the matrix model of irreversible 
processes (Jongschaap 1990), or variational approaches (Sieniutycz 1994). Sec-
tions 1.3 and 1.5 correspond to a slightly more advanced and specialised level: they 
may be skipped in a first reading, but will be stimulating to the researcher interested 
in going beyond the linear approximation presented in Sects. 1.2 and 1.4.

1.1  �A Short Review of Rheological Concepts

Since we are dealing with flowing fluids, it is not surprising that in our analysis 
we will often find rheological quantities, rheology being the science of flow. Here, 
we provide a short review of some basic rheological concepts and of the most 
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widely used rheological models. The knowledge of these is necessary since we will 
often relate rheology and thermodynamics. It must be emphasized that we have 
attempted to focus our attention on the concepts necessary for the purposes of the 
present monograph, rather than to provide an extensive account of the wide topic 
of rheology.

1.1.1  �Basic Rheological Quantities

A central quantity in fluid mechanics and rheology is the viscous pressure tensor 
Pv, which describes the forces between neighbouring fluid elements moving at dif-
ferent speeds. The knowledge of these forces is necessary to describe the evolu-
tion of the flow. The relation between the viscous pressure tensor and the velocity 
gradient, the tensor describing the local features of the flow, plays an essential role 
in rheology. The coefficients relating these tensors depend on the fluid being con-
sidered and are the basic quantities of interest in rheology. The main coefficients 
are defined by considering the simplest flow exhibiting a velocity gradient, namely, 
the plane Couette flow, i.e. the flow between two plane parallel layers moving at 
different speeds.

The main rheological quantities of interest in steady flows are the shear viscosity 
and the first and second normal stress coefficients η(γ̇ ), �1(γ̇ )  and �2(γ̇ ), respec-
tively, which are defined as

� (1.1a)

� (1.1b)

� (1.1c)

where P v
ij , with i, j = 1, 2, 3 indicate components of the viscous pressure tensor Pv 

and γ̇  the shear rate in a planar Couette flow, i.e. γ̇ = ∂vx/∂vy. We will often take 
as component x or 1 the component along the velocity, y or 2 the component along 
the velocity gradient, and z or 3 the component orthogonal to the two previous ones. 
In the so-called Newtonian fluids, the normal stress coefficients vanish. Recall that 
Pv is related to the total pressure tensor P as P = pU + Pv, with p the equilibrium 
pressure and U the unit tensor.

In non-steady situations some memory effects, such as those described in visco-
elastic models, appear. The rheological properties thus depend on the frequency of 
the perturbation: for instance, viscoelastic liquids are materials which behave as 
Newtonian liquids under low frequency perturbations (low in comparison with the 
inverse of a characteristic relaxation time), and as elastic solids at high frequencies. 
The shear linear viscoelastic effects are usually summarized in terms of a com-
plex viscosity *( ), or, alternatively, in terms of two other complex functions: a 

Pv
12 = −η(γ̇ )γ̇ ,

P v
11 − P v

22 = −�1(γ̇ )γ̇ 2,

P v
22 − P v

33 = −�2(γ̇ )γ̇ 2,

1.1 A Short Review of Rheological Concepts



4

complex stress–strain modulus G*( ); or a complex compliance J*( ). Assuming 
the simplest oscillatory behaviour for the shear strain  and the shear stress P v

12

� (1.2)

with 0 and P v0
12  the amplitudes of the respective oscillations, the coefficients *( ), 

G*( ) and J*( ) are defined as (Ferry 1980; Coleman et al. 1966; Tanner 1988; Bird 
et al. 1987a)

� (1.3a)

�
(1.3b)

� (1.3c)

where 0 and γ̇ 0 are the amplitudes of the oscillatory shear strain and shear rate, 
respectively. These three functions are closely related to each other, stemming from 
their definition, by means of

� (1.4)

where i is the imaginary unit.
The three mentioned quantities are often split in their real and imaginary parts as

� (1.5)

Complex quantities are used here to account both for the response in phase with the 
perturbation (real part) as the response 90° out of phase (imaginary part). Note that 
J ′( ) is the strain in phase with stress divided by the stress, so that it is a measure of 
the energy stored and recovered per cycle, while J ″( ) is the strain 90° out of phase 
with the stress divided by the stress, and it is a measure of the energy lost into heat 
per cycle. It is not then surprising that the compliance will play an important role in 
the connection between thermodynamics and rheology.

1.1.2  �Basic Rheological Models

In the study of polymeric systems it is assumed that the viscous pressure tensor 
depends not only on the velocity gradient but also on its own time rate of change 
by means of a relaxational term, which will account for the different behaviours 
observed at low and high frequency. Such a relaxational contribution is usually 
written in terms of a frame-indifferent time derivative (Ferry 1980; Coleman et al. 

γ = γ 0 cos ωt , P v
12 = P v0

12 cos ωt ,

P v0
12 = −η∗(ω)γ̇ 0,

P v0
12 = −G∗(ω)γ 0,

γ 0 = −J ∗(ω)P v0
12 ,

η∗(ω) = (iω)−1G∗(ω), J ∗(ω) = 1/G∗(ω),

J ∗(ω) = J ′ − iJ ′′, G∗(ω) = G′ + iG′′, η∗(ω) = η′ − iη′′.
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1966; Tanner 1988; Bird et al. 1987a), as the co-rotational derivative or the up-
per convected derivative, rather than in terms of the material time derivative. We 
will discuss here these different time derivatives, leading to different rheological 
models.

1.1.2.1  �Linear Viscoelastic Models

In the simplest Maxwell model, the viscous pressure tensor is described by the 
constitutive equation

� (1.6)

with V the symmetric part of the velocity gradient, whose components are given 
by Vij = (1/2)[(∂vj/∂xi) + (∂vi/∂xj)], and where  is the shear viscosity and  the re-
laxation time. Maxwell’s model captures the essential idea of viscoelastic models: 
the response to slow perturbations is that characteristic of a viscous fluid, namely 
Pv = −2V, whereas for fast perturbations, with characteristic time t of the order 
of  or less, it behaves as an elastic solid with Pv standing for the elastic pressure, 
Pv = −2G(∇X)s, X being the deformation vector field, and G = / being related to 
the elastic Young modulus of the material.

However, the material time derivative used in (1.6) is not very satisfactory, nei-
ther from a theoretical viewpoint, since it is not invariant under rigid rotations, nor 
on the practical predictions, and it must be substituted by some frame-indifferent 
derivatives which are invariant under rigid motions of the system. The simplest 
example of such derivatives is the co-rotational time derivative

� (1.7)

where W is the antisymmetric part of the velocity gradient, whose components 
are given by Wij = (1/2)[(∂vj/∂xi) − (∂vi/∂xj)]. This derivative describes the rate of 
change of Pv as seen in a local reference system which rotates with the fluid. Other 
widely used frame-indifferent time derivatives are the upper or contravariant con-
vected time derivative, namely

� (1.8a)

or the lower or covariant convected time derivative

� (1.8b)

where superscript T indicates transposition.

dPv

dt
= −

1

τ
Pv − 2

η

τ
V,

DPv

Dt
=

dPv

dt
+ W · Pv − Pv · W,

D↑Pv =
dPv

dt
−

[
(∇v)T · Pv + Pv · (∇v)

]
,

D↓Pv =
dPv

dt
+ (∇v) · Pv + Pv · (∇v)T ,

1.1 A Short Review of Rheological Concepts



6

If one uses (1.8a) instead of the material time derivative, one has the upper-
convected Maxwell model (Ferry 1980; Coleman et al. 1966; Tanner 1988; Bird 
et al. 1987a) for which the evolution equation for the viscous pressure tensor Pv has 
the form

� (1.9)

If, instead of (1.8a), the time derivative (1.8b) is used, one has the so-called lower-
convected Maxwell model.

The fluid will be considered as incompressible from here on. This implies that 
∇ · v = 0 and since ∇ · v is the trace of the ∇v tensor one could think that this will 
mean that the trace of the viscous pressure tensor will also vanish, i.e. TrPv = 0. 
However, though it is true that the linear contribution to TrPv, which is proportional 
to ∇ · v, will be zero, second-order non-linear contributions may appear, giving a 
non-vanishing trace of Pv.

For further discussions it will be convenient to have explicit expressions for Pv 
in some steady flows. In a purely shear flow corresponding to v = ( vx( y), 0, 0), the 
velocity gradient tensor, is

� (1.10)

where γ̇  is the shear rate. Introduction of (1.10) into (1.7) yields, in the steady situ-
ation, for the co-rotational Maxwell model

�
(1.11)

and therefore the steady-state viscometric functions are

� (1.12a)

� (1.12b)

� (1.12c)

For the upper-convected Maxwell model (1.9), one has

� (1.13)

dPv

dt
− (∇v)T · Pv − Pv · (∇v) = −

1

τ
Pv − 2

η

τ
V.

∇v =






0 0 0

γ̇ 0 0

0 0 0




,

Pv =






−τηγ̇ 2(1 + τ 2γ̇ 2)−1 −ηγ̇ (1 + τ 2γ̇ 2)−1 0

−ηγ̇ (1 + τ 2γ̇ 2)−1
τηγ̇ 2(1 + τ 2γ̇ 2)−1 0

0 0 0




 ,

P v
12 = −ηγ̇ (1 + τ 2γ̇ 2)−1,

P v
11 − P v

22 = −2τηγ̇ 2(1 + τ 2γ̇ 2)−1,

P v
22 − P v

33 = τηγ̇ 2(1 + τ 2γ̇ 2)−1.

Pv =






−2τηγ̇ 2 −ηγ̇ 0

−ηγ̇ 0 0

0 0 0




 .
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The corresponding steady-state viscometric functions are thus

� (1.14)

so that the second normal stress is zero and the first normal stress coefficient Ψ1 is

� (1.15)

For the lower-convected Maxwell model, the viscous pressure tensor in the steady 
state is given by

� (1.16)

and therefore, the viscometric coefficients are given by

� (1.17)

It turns out that the upper-convected model agrees rather satisfactorily with a wide 
range of experimental results, while the predictions (1.17) of the lower-convected 
model or (1.12) of the co-rotational model are at variance with experiments.

Another flow of much viscometric and practical interest is the planar extensional 
flow, in which the velocity field has two components v = ( vx( x), vy( y), 0), such that 
its gradient takes the form

� (1.18)

with ε̇(= ∂vx/∂x = −∂vy/∂y) the extensional rate. In the steady state, (1.6) yields

� (1.19)

The expressions of Pv for the other viscoelastic models may easily be obtained.
In the previous Maxwell models we have considered only one relaxation time. In 

many cases, one must consider that Pv is the sum of several (or many) independent 
contributions, i.e. Pv =

∑
j Pv

j  with each Pv
j  obeying a linear evolution equation 

such as (1.6) or (1.9), characterized by its own viscosity i and relaxation time i. 
These independent contributions arise from the different internal degrees of free-
dom of the macromolecule, as will be explained in detail in Chap. 5. These models 
are known as generalised Maxwell models.

P v
12 = −ηγ̇ , P v

11 − P v
22 = −2τηγ̇ 2 , P v

22 − P v
33 = 0,

�1(γ̇ ) = 2τη.

Pv =






2τηγ̇ 2 −ηγ̇ 0

−ηγ̇ 0 0

0 0 0




 .

P v
12 = −ηγ̇ , P v

11 − P v
22 = 2τηγ̇ 2, P v

22 − P v
33 = 0.

∇v =






ε̇ 0 0

0 −ε̇ 0

0 0 0




,

Pv =






−2ηε̇(1 − 2τ ε̇)−1 0 0

0 2ηε̇(1 + 2τ ε̇)−1 0

0 0 0




.

1.1 A Short Review of Rheological Concepts
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It is often useful, in linear models for viscoelasticity, to write the viscous pres-
sure tensor in terms of a memory function as

� (1.20)

where the memory function G( t − t′) is known as the relaxation modulus, and γ̇  as 
the rate-of-strain tensor, which is twice V. The Fourier transform of G( t − t′) is the 
complex strain–stress modulus G*( ) defined in (1.3). In a generalised Maxwell 
model, one has for G( t − t′)

� (1.21)

with i and i the different viscosities and relaxation times corresponding to the 
different degrees of freedom of the macromolecules (see Chap. 5). If one has only 
one relaxation time, this expression is the one corresponding to the simple Maxwell 
model (1.6). Note that for t = t′ one has G(0) = / and therefore, according to (1.4b) 
the compliance is J(0) = /. The value J(0) is usually called the steady-state com-
pliance, and it will appear in the generalised Gibbs Eq. (1.31).

In a small-amplitude oscillatory motion, integration of (1.20) and the use of the 
definitions (1.3–1.5) of * and G* yields

� (1.22)

or

�
(1.23)

where i and i now correspond to the ith degree of freedom.

1.1.2.2  �Non-linear Viscoelastic Models

In the models defined by (1.6) or (1.9), the viscometric coefficients do not depend 
on the shear rate. However, there are many phenomena which show that, in general, 
the viscometric functions depend in a complicated way on the shear rate and which 
require non-linear constitutive equations for their description. For instance, many 
fluids exhibit a decrease in viscosity with increasing shear rate, an effect known as 
“shear thinning” (or pseudoplasticity). A few fluids (usually concentrated suspen-
sions of very small particles) exhibit the opposite behaviour, namely, an increase 
of viscosity with shear rate, which is known as “shear thickening” (or dilatancy). 

Pv = −
∫ t

−∞
G(t − t′)γ̇ (t′)dt′

G(t − t ′) =
∑

j

(ηj/τj ) exp [−(t − t ′)/τj ],

η′(ω) =
∑

j

ηj

[
1 + (τjω)2

]−1
, η′′(ω) =

∑

j

ηj τjω
[
1 + (τjω)2

]−1
,

G′(ω) =
∑

j

ηj τjω
2
[
1 + (τjω)2

]−1
, G′′(ω) =

∑

j

ηjω
[
1 + (τjω)2

]−1
,

1 Non-equilibrium Thermodynamics and Rheology
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Still another non-linear effect is viscoplasticity, which is shown by fluids (such as 
paints and pastes) which do not flow unless they are acted on by a shear higher than 
a threshold value.

A well known and rather general non-linear model is the so-called eight- 
constants Oldroyd model (Ferry 1980; Coleman et al. 1966; Tanner 1988; Bird et al. 
1987a), defined by the following constitutive equation

�

(1.24)

where U is the unit tensor and V(1) is the convected time derivative of V, the sym-
metric part of the velocity gradient, and Pv

(1)  is the convected time derivative of Pv. 
For a steady shear flow, its explicit form is

� (1.25)

It follows from (1.24) and (1.25), after a cumbersome but straightforward calcula-
tion, that in steady-state shear flow the viscometric functions are

� (1.26)

with σi = λi(λ3 + λ5) + λi+2(λ1 − λ3 − λ5) + λi+5(λ1 − λ3 − 3
5λ5) , and

� (1.27)

�
(1.28)

The 8-constants Oldroyd model is very general, and we recover from it several 
especially interesting and widely used models. Indeed, the linear model (1.9) is ob-
tained from (1.24) when 2 = … = 7 = 0. Furthermore, other well known non-linear 
models which are special cases of (1.24) are:

•	 the second-order Rivlin–Ericksen fluid ( 1
 = 3 = 5 = 6 = 7 = 0), for which the 

viscometric functions are  = 0, Ψ1 = −202, Ψ2 = 04;
•	 the co-rotational Jeffreys model, for which 3

 = 1, 4
 = 2, 5

 = 6
 = 7

 = 0, for 
which the viscometric functions are η(γ̇ ), ψ1(γ̇ )  and �2 = − 1

2�1 ;
•	 the convected Jeffreys model ( 3

 = 4 = 5 = 6 = 7 = 0), and, therefore, the vis-
cometric functions are  = 0, Ψ1 = 20( 1 − 2) and Ψ2 = 0.

Pv + λ1Pv
(1) +

1

2
λ3(V · Pv + Pv · V) +

1

2
λ5(TrPv)V +

1

2
λ6(Pv : V)U

= −η0

[
V + λ2V(1) + λ4V · V +

1

2
λ7V : VU

]

V(1) =




0 1 0
1 0 0
0 0 0



 dγ̇

dt
− 2




1 0 0
0 0 0
0 0 0



 γ̇ 2.

η

η0
=

1 + σ2γ̇
2

1 + σ1γ̇ 2
,

ψ1

2η0λ1
=

η(γ̇ )

η0
−

λ2

λ1
,

ψ2

η0λ1
= −

ψ1

2η0λ1
+

λ1 − λ3

λ1

η

η0
−

λ2 − λ4

λ1
.

1.1 A Short Review of Rheological Concepts
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In fact, the Oldroyd model is not truly universal, because the variation in viscosity 
predicted by (1.26) is too low to describe some real materials, in which the viscosity 
changes a hundred-fold in a finite range of shear rate. In (1.24), the coefficients i 
are assumed not to depend on the shear rate. In more general situations, they could 
be functions of the scalar invariants of the velocity gradient. In some situations 
described below we will mention some of these non-linear models, but, in general, 
our analysis will be restricted to linear situations.

1.2  �Extended Irreversible Thermodynamics

After having reviewed the most usual constitutive equations for viscoelastic fluids, 
we start the analysis of the thermodynamic aspects. First of all, we recall the basic 
ideas of the classical formulation of irreversible thermodynamics (Prigogine 1961; 
De Groot and Mazur 1962; Gyarmati 1970), which is based on the local equilibrium 
hypothesis. It states that, despite the inhomogeneous nature of the system, i.e. the 
values of its physical quantities differ from place to place, the fundamental thermo-
dynamic relations are still valid locally. In particular, the Gibbs equation express-
ing the differential form of the entropy in terms of its classical variables (internal 
energy, volume and number of moles of the chemical components of the system) is 
locally valid.

By combining the Gibbs equation and the evolution equations for mass, mo-
mentum and energy, one obtains an expression for the evolution equation for the 
entropy, with explicit forms for the entropy flux and the entropy production in terms 
of the fluxes (heat flux, diffusion flux, viscous pressure tensor, reaction rates) and 
of the conjugated thermodynamic forces, which are expressed as functions of the 
gradients of temperature, chemical potential, velocity, and of the chemical affinities 
of the reactions.

Finally, one relates the fluxes to the forces by means of constitutive equations 
which are required to obey the positive character of the entropy production. In 
the simplest but most usual versions, one assumes linear constitutive equations in 
which the fluxes are linear combinations of the thermodynamic forces. In this case 
it may be shown that the matrix of the transport coefficients relating the fluxes to 
the forces must obey the reciprocity relations established by Onsager and Casimir.

In this book, we want to focus our attention on the characteristic new aspects 
that the flow implies on the thermodynamics. As has been said, the classical theory 
retains the classical Gibbs equation, and therefore the thermodynamic relations are 
not changed by the presence of a flow. Therefore, instead of presenting all the de-
tails of the classical theories, we will directly write the main ideas and concepts of 
extended irreversible thermodynamics (EIT), which will be the basis of the analyses 
in this monograph, and we will explain how they reduce to the corresponding local-
equilibrium expressions.

EIT, which has been widely discussed in the companion volume (Jou et al. 2010), 
assumes that the entropy may depend, in addition to the classical variables, on the 

1 Non-equilibrium Thermodynamics and Rheology
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dissipative fluxes. In Sect. 1.2.1, we discuss a one-component fluid, in which we ne-
glect thermal conduction and consider that the only non-equilibrium quantity in the 
space of independent thermodynamic variables is the viscous pressure tensor (Jou 
et al. 2010; Lebon et al. 1986, 1988). In Sect. 1.2.2, we consider a two-component 
mixture and incorporate the effects of the diffusion flux, which will play an impor-
tant role in Chaps. 7–10.

1.2.1  �Viscous Pressure

According to EIT, the generalised Gibbs equation for a simple unicomponent fluid 
in the presence of a non-vanishing viscous pressure tensor is, up to the second order 
in Pv

� (1.29)

with u and v the specific internal energy and the specific volume, T and p the ab-
solute temperature and the thermodynamic pressure,  the shear viscosity and   
the relaxation time of Pv as defined in (1.6) or (1.9). To avoid unnecessary formal 
complications we use as a variable the whole tensor Pv, instead of splitting it into 
the trace and the corresponding traceless part. In Sect. 1.2.2, a derivation of (1.29) 
will be presented. The first two terms on the right-hand side on (1.29) correspond 
to the classical Gibbs equation, whereas the third term is characteristic of EIT. It 
is related to the non-vanishing character of the relaxation time . When  tends to 
zero, both the relaxational terms in the constitutive Eqs. (1.6) and (1.9) and the non-
equilibrium contribution to the entropy in (1.29) tend to zero, in such a way that the 
constitutive equations tend to the usual Newton–Stokes law for the viscous pressure 
tensor and (1.29) reduces to the classical Gibbs equation. Thus, we stress that the 
presence of relaxational terms in the constitutive Eqs. (1.6) or (1.9) implies the pres-
ence of a non-equilibrium contribution to the Gibbs Eq. (1.29).

In general one could take, instead of a single relaxation time, several relaxation 
times and one could assume that Pv is the sum of several different contributions Pv

i
, 

each of them with its own relaxation time i and its own viscosity i, as in the gen-
eralised Maxwell models introduced in (1.21). In this case, one would have instead 
of (1.29)

� (1.30)

The total viscosity  is η =
∑

i

ηi. Consequently,  in (1.29) may be considered 
as an averaged relaxation time, defined as τ =

(∑
i τiηi

)(∑
i ηi

)−1 . Note that in 
terms of the steady-state compliance introduced after (1.21) ( J   =  /), one may 
write the generalised Gibbs Eq. (1.29) as

� (1.31)

ds = T −1du + T −1pdv −
τv

2ηT
Pv : dPv,

ds = T −1du + T −1pdv −
∑

i

(τiv/2ηiT ) Pv
i : dPv

i .

ds = T −1du + T −1pdv −
vJ

2T
Pv : dPv,

1.2 Extended Irreversible Thermodynamics
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which, after integration, becomes

� (1.32)

where subscript eq stands for the equilibrium value.
For shear flow, the generalised entropy (1.32) reduces to

� (1.33)

if one takes into account that for the model described by (1.13) P v
11 = −2J (P v

12)2. 
Notice that P v

12 is of the order of γ̇ , and for low values of γ̇  we may neglect the 
contribution of P v

12 of order higher than two and write

� (1.34)

Instead of the internal energy it is usual to take as an independent variable the tem-
perature, because it is more accessible to direct measurement. The thermodynamic 
potential which has as variables temperature and volume is the Helmholtz free en-
ergy f, defined as

� (1.35a)

where we are using values per unit mass. In view of its interest we comment also 
on the corresponding non-equilibrium contributions of a viscous pressure tensor. 
We are interested in the contribution ∆f of the flow to the free energy, for which we 
write, at constant T,

� (1.35b)

with

� (1.35c)

Note that for fixed temperature, the internal energy under flow u is in general not 
equal to the internal energy at equilibrium, because the flow may stretch or deform 
the molecules thus storing internal energy in them.

In order to evaluate the entropic contribution to the free energy, as given in 
(1.36), we expand seq( u, v) around the equilibrium value seq( ueq, v) as

� (1.36a)

which when inserted in (1.35b) leads to

�

(1.36b)
when use of (1.34) and (1.36a) is made.

s(u, v, Pv) = seq(u, v) −
vJ

4T
Pv : Pv,

s
(
u, v, Pv

12

)
= seq(u, v) −

vJ

4T

[
2
(
Pv

12

)2 + 2
(
Pv

12

)4
]

,

s
(
u, v, Pv

12

)
= seq(u, v) −

vJ

2T

(
Pv

12

)2
.

f = u − T s,

�f = �u − T �s,

�f = f − feq, �u = u − ueq, �s = s(u, v, Pv) − seq(ueq, v).

seq(u, v) = seq(ueq, v) +
(

∂seq

∂u

)

u=ueq

(u − ueq) + · · ·

�f = u − ueq − T
[
seq(u, v) − (vJ/2T )

(
Pv

12

)2 − seq(ueq, v)
]

=
1

2
vJ

(
Pv

12

)2
,

1 Non-equilibrium Thermodynamics and Rheology
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In a more general situation, when one is not restricted to second order in shear 
rate, one assumes that the energy contribution, proportional to (P v

12)2, is much high-
er than the entropic one. We will comment on this point later from a microscopic 
point of view. One should thus have

� (1.37)

This is consistent with the meaning of J (P v
12)2 as stored energy. An expression 

slightly more general than (1.29) has been derived by Daivis (2008) using the shear 
rate γ̇  instead of the viscous pressure as independent variable. His derivation is 
based on the analysis of the work stored in a viscoelastic fluid when it is brought 
from the equilibrium state to a shearing steady state. This author writes the general-
ized Helmholtz free energy as

� (1.38)

with  the corresponding conjugate parameter to γ̇ , from which it is obtained the 
Maxwell relation

� (1.39)

He carried out non-equilibrium molecular dynamics simulations of a simple shear-
ing fluid, but these Maxwell relations were not verified. Daivis saw as a possible 
source of disagreement the sensibility of these quantities with temperature, and the 
fact that out of equilibrium one may define several different temperatures. Indeed, 
he used for T the kinetic temperature instead of the thermodynamic non-equilibrium 
temperature depending on γ̇ , which should be used for the sake of internal consis-
tence. Analyses of Maxwell relations stemming from non-equilibrium potentials 
seem worth to be pursued.

In our formalism, and in the steady state, (1.29) could be rewritten as

� (1.40a)

where we have written Pv = −2V and the symbol of entropy, energy and volume as 
capital letters in order to stress that (1.29) is not restricted to values per unit mass 
s, u and v, but for total volume V, entropy S and internal energy U. Thus, T−1V 
may be considered as the intensive variable conjugate to the extensive quantity 
VPv whose preferable use as variable rather than Pv will be commented in Chaps. 2 
and 6. Consequently, we may go from the extensive variable VPv to the intensive 
variable V through a Legendre transform. In particular, we may rewrite (1.40a) in 
terms of U as

� (1.40b)

�f = �u = vJ (P v
12)2.

df = −sdT − pdv + ζdγ̇ ,

(
∂ζ

∂v

)

T ,γ̇

= −
(

∂p

∂γ̇

)

T ,v

=
∂2f

∂v∂γ̇
.

dS = T −1dU + T −1pdV + T −1τV : d(V Pv),

dU = T dS − pdV − τV : d(V Pv),

1.2 Extended Irreversible Thermodynamics
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and write the corresponding Legendre transforms for F1( T, V, VPv) or F2( T, V, V)
as

� (1.41a)

and

� (1.41b)

The latter expression would be the generalization of Daivis expression (1.38). These 
Legendre transforms show that it is possible to go from the viscous pressure tensor 
to the velocity gradient as independent variables. Analogously, in Chap. 5 it will 
be considered another Legendre transform going from the viscous pressure tensor 
to the macromolecular configuration tensor, which will be introduced in Chap. 4. 
However, these Legendre transforms may be carried out in steady states, where Pv 
and V are univocally related, but in general they are not expected to be valid in fast 
varying states, where Pv and V behave in a completely independent way.

Note that an analogous analysis could be carried out for the Gibbs free energy, 
which has as basic variables the temperature and pressure instead of temperature 
and volume, and which plays a central role in physico-chemical thermodynamics, in 
the analysis of phenomena at constant temperature and constant pressure.

1.2.2  �Viscous Pressure and Diffusion Flux

In this subsection we consider a binary mixture and introduce the diffusion flux as a 
further independent variable, because it will play an important role in several of the 
phenomena studied in this monograph (Nettleton 1988; Jou et al. 1991, 2010; Gold-
stein and García-Colín 1993, 1994; Pérez-Guerrero and García-Colín 1991; Pérez-
Guerrero 1997; Nettleton 1993, 1996a, b). Furthermore, we carry out a detailed 
justification of the generalised form of the entropy, which was presented in (1.29) 
without derivation. Our aim is to analyse the couplings between the diffusion flux 
and the viscous pressure tensor. For the sake of simplicity, the latter will be consid-
ered here as a single independent variable with a single relaxation time instead of 
the addition of several independent contributions, each with its own relaxation time. 
The extension to the latter situation is straightforward but cumbersome. We will use 
the coupled evolution equations for the diffusion flux J and Pv in Chaps. 6–8.

Instead of (1.29), we write now the extended Gibbs equation in the form

� (1.42)

with c1 the concentration (mass fraction) of the solute, µ̃ ≡ µ1 − µ2  the difference 
between the specific chemical potentials of the solute and the solvent, and 1 and 2 
coefficients whose form will be identified below. We neglect here the effects of the 
bulk viscous pressure, for the sake of simplicity. Note the third and fourth terms on 

dF1 = −SdT − pdV − τV : d(V Pv),

dF2 = −SdT − pdV + V Pv : d(τV).

ds = T −1du + T −1pdv − T −1µ̃dc1 − vα1J · dJ − vα2Pv : dPv,

1 Non-equilibrium Thermodynamics and Rheology
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the right-hand side of (1.41), related to changes in composition and to the diffusion 
flux, which were absent from (1.29).

We assume for the entropy flux the expression

� (1.43)

The first two terms are classical; the latter one is characteristic of EIT, and it is of 
second order in the fluxes: β is a phenomenological coefficient characterizing the 
coupling of Pv and J.

The energy and the mass balance equations are, respectively,

� (1.44)

� (1.45)

Combination of (1.42), (1.44) and (1.45) yields for the time derivative of the 
entropy

� (1.46)

It is convenient to rewrite the two first terms of the right-hand side of (1.46) as

�
(1.47)

�
(1.48)

Then, taking into account (1.43), one obtains for the entropy production

�
(1.49)

where use has been made of the general form of the balance equation of entropy

� (1.50)

From now on, we consider an isothermal situation and neglect the heat flux. This 
does not mean, of course, that thermal effects are not important, but that we will 
focus our analysis on situations in which they are negligible, only for the sake of 
simplicity. Under this simplification, the simplest evolution equations for J and Pv 
compatible with the positive character of (1.49) are

� (1.51)

� (1.52)

J s = T −1q − T −1µ̃J + βPv · J .

ρu̇ = −∇ · q − p(∇ · v) − Pv : V,

ρċ = −∇ · J .

ρṡ = −T −1∇ · q + T −1µ̃∇ · J − T 1Pv : V − α1J · J̇ − α2Pv : Ṗv.

T −1∇ · q = ∇ · (T −1q) − q · ∇T −1,

T −1µ̃∇ · J = ∇ · (T −1µ̃J ) − J · ∇(T −1µ̃).

σ = q · ∇T −1 + J · [−∇(T −1µ̃) − α1J̇ + ∇ · (βPv)]

+ Pv : (−T −1V − α2Ṗv + β∇J),

ρṡ + ∇ · J S = σ.

−∇(T −1µ̃) − α1J̇ + ∇ · (βPv) = β1J ,

−T −1V − α2Ṗv + β(∇J )s = β2Pv,

1.2 Extended Irreversible Thermodynamics
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where (∇J )s stands for the symmetric part of ∇J. The positive phenomenological 
coefficients β1 and β2 may be identified in physical terms by comparing (1.51) and 
(1.52) in the isothermal steady state and without couplings with the well known 
Navier–Stokes and Fick’s equations, namely

� (1.53)

where D̃  is a coefficient related to the usual diffusion coefficient D by means of 
D = D̃(∂µ̃/∂c1).  Such comparison yields β1 = (D̃T )−1, β2 = (2ηT )−1. Furthermore, 
one may identify the respective relaxation times of J and Pv as τ1 = α1/β1 = α1(D̃T ) , 
τ2 = α2/β2 = α2(2ηT ) . This allows one to identify in physical terms the coefficients 
1 and 2 appearing in the extended Gibbs Eq. (1.42) and yields for it the explicit form

� (1.54)

Note that the latter term has the form given in the last term of (1.29), which appears 
now explicitly justified, as well as its deep and direct relation with the relaxational 
terms in the constitutive Eq. (1.51).

It is also worthwhile to note that in the absence of viscous pressure and in a 
steady state, where J = −D∇c1, (1.54) may be integrated to give

� (1.55)

with l a correlation length defined by l = vD̃τ1/T . The contribution of the density 
gradients to the entropy, or to the free energy, is usually known as a Ginzburg–
Landau contribution, and will be discussed in Chap. 7.

The evolution equations for J and Pv may be rewritten as

�
(1.56)

and

� (1.57)

Equations  (1.56) and (1.57) clearly exhibit the couplings between diffusion and 
viscous stresses. For instance, in diffusion of small molecules in a polymer matrix, 
these couplings are due to the swelling due to the solvent, which produces a relative 
motion between neighbouring polymer chains, whose mutual friction may cause a 
viscous stress.

The material time derivatives of J and Pv in (1.56) and (1.57) should be replaced, 
in general, by frame-invariant time derivatives, as mentioned in Sect.  1.1. Their 
form for tensors has already been discussed in (1.7–1.8). The corresponding form 
for the frame-indifferent derivative of J is

� (1.58)

Pv = −2ηV, J = −D̃∇µ̃,

ds = T −1du + T −1pdv − T −1µ̃dc1 −
vτ1

D̃T
J · dJ −

vτ2

2ηT
Pv : dPv.

s = seq(u, v, c1) − l2∇c1 · ∇c1,

τ1J̇ = −(J + D∇c1) + βD̃T ∇ · Pv

τ2(Pv)· = −(Pv + 2ηV) + 2βTη(∇J)s.

DJ

Dt
= J̇ + W · J .
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