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Preface to the Second Edition

This book is a revision and extension of the book published by R. Timman, A.J. Her-
mans and G.C. Hsiao based on the lecture notes of courses presented by Timman at
the University of Delaware in 1971 and by Hermans at the Technical University of
Delft. The main topic of the original text is based on linearised free surface water
wave theory. For many years the first edition of the book is used by Aad Hermans as
material for a course in ship hydrodynamics presented to Master students in applied
mathematics and naval architecture at the Technical University of Delft. Influenced
by the progress in the research in water waves and especially in ship hydrodynamics
the contents of the course has changed gradually. For instance in offshore engineer-
ing the topic like the low-frequency motion of objects moored to a buoy has become
an important issue during this period. Therefore an introduction in this field has been
added. For didactic reasons the very simple rather abstract problem of the motion
of a vertical wall is added. The reason to do so is that most effects that play a role
can be treated analytically, while for a general three dimensional object some terms
can only be obtained numerically. The use of numerical programs is normal practice
in this field, therefor an introduction in the theory of integral equations is presented
and some specific problems which may arises, such how to avoid non-physical res-
onance at the so called irregular frequencies may be avoided. In the first edition a
derivation of the structure of the equations of motion in all six degrees of freedom is
presented. Because the functions derived there are not easily computed in a practical
case, we restrict ourselves to the derivation of the equation of motion in one degree
of freedom.

A.J. HermansDelft, The Netherlands
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Preface to the First Edition

In the spring of 1971, Reinier Timman visited the University of Delaware during
which time he gave a series of lectures on water waves from which these notes
grew. Those of us privileged to be present during that time will never forget the
experience. Rein Timman is not easily forgotten.

His seemingly inexhaustible energy completely overwhelmed us. Who could for-
get the numbing effect of a succession of long wine-filled evenings of lively con-
versation on literature, politics, education, you name it, followed early next day by
the appearance of the apparently totally refreshed red-haired giant eager to discuss
mathematical problems with keen insight and remarkable understanding, ready to
lecture on fluid dynamics and optimal control theory or a host of other subjects and
ready to work into the evening until the cycle repeated. He thought faster, knew
more, drank more and slept less than any of the mortals; he literally wore us out.
What a rare privilege indeed to have participated in this intellectual orgy. Timman’s
lively interest in almost everything coupled with his buoyant enthusiasm and infec-
tious optimism epitomised his approach to life, No delicate nibbling at the fringes,
he wanted every morsel of every course.

In these times of narrow specialisation, truly renaissance figures are, if not ex-
tinct, at least a highly endangered species. But Timman was one of that rare breed.
His knowledge in virtually all areas of classical applied mathematics was prodi-
gious. I still marvel that while I was his doctoral student in Delft in the late fifties
working on a problem in electromagnetic scattering he had at the same time students
working in water waves, cavitation, elasticity, aerodynamics and numerical analysis.
He was a boundless source of inspiration to his students in all of these varied fields.

His inattention to detail is legendary but this did not hamper his ability to fo-
cus on what was really important in a problem. With a wave of his large hand he
would dismiss unimportant errors while concentrating on central ideas, leaving to
us the task of setting things right mathematically. This nonchalant attitude toward
minus signs and numerical factors was probably deliberate. He wanted people to see
the forest, not the trees; to focus on the heart of the problem, not inconsequential
superficialities. He had little use for the all too prevalent penchant for examining
someone’s work looking for errors. He would read a paper looking for the gold, not
the dross; looking for what was right, not what was wrong.
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viii Preface to the First Edition

Of course this did not make life easy for those around him but it did make it
interesting. This will be attested to by George Hsiao and Richard Weinacht whose
revised version of the notes from Timman’s water wave lectures appeared as a Uni-
versity of Delaware report. Timman and Hsiao then planned to further revise and
expand these notes and publish them in book form, but the project came to an abrupt
halt with Reinier Timman’s untimely death in 1975. It might have remained unfin-
ished had not Aad Hermans’ visit of Delaware in 1980 breathed new life into it.
Together George Hsiao and Aad Hermans have completed the task of revising the
notes, reorganising the presentation, restoring the factors of 2 which Timman had
cavalierly omitted, and adding some new material. The first four chapters are based
substantially on the original notes, while the fifth chapter and appendices have been
added.

It is gratifying to see the completion of these notes. It is not unreasonable to hope
that they will provide a useful introduction to water waves for a new generation
of mathematicians and engineers. This area was perhaps first among equals in the
broad spectrum of Timman’s interests. If these notes succeed in stimulating a new
generation to concentrate on the challenging problems remaining in this field, they
will serve a fitting memorial to a remarkable man whose like will not be soon seen
again.

R.E. KleinmanNewark, Delaware
March, 1985
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Chapter 1
Theory of Water Waves

This chapter contains the formulation of boundary and initial boundary value prob-
lems in water waves. The basic equations here are the Euler equations and the
equation of continuity for a non-viscous incompressible fluid moving under gravity.
Throughout the book, in most considerations the motion is assumed to be irrota-
tional and hence the existence of a velocity potential function is ensured in simply
connected regions. In this case the equation of continuity for the velocity of the fluid
is then reduced to the familiar Laplace equation for the velocity potential function.

Water waves are created normally by the presence of a free surface along which
the pressure is constant. For the irrotational motion, on the free surface one than
obtains the non-linear Bernoulli equation for the velocity potential function from
the Euler equation. Based on small amplitude waves, linearised problems for the
velocity potential function and for the free surface elevation are formulated.

At first we follow the derivation as can be found in [17, 19] to obtain equations
for the wave potential in still water and as a superposition on a constant parallel
flow potential. The coefficients in the free surface equations are constant. Then we
derive linear equation for the superposition of small amplitude waves on a flow
disturbed by some three dimensional object. If we consider the magnitude of the
steady velocity vector to be small, we obtain for the time-dependent wave potential
function a linear equation with non-constant coefficients.

1.1 Basic Linear Equations

The theory of water waves, to be presented here, is based on a model of non-viscous
incompressible fluid moving under gravity. The equations of motion will be ex-
pressed in a right-handed system of rectangular coordinates x, y, z. In the Euler
representation they read

ut + uux + vuy +wuz = − 1

ρ
px,

A.J. Hermans, Water Waves and Ship Hydrodynamics,
DOI 10.1007/978-94-007-0096-3_1, © Springer Science+Business Media B.V. 2011
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2 1 Theory of Water Waves

vt + uvx + vvy +wvz = − 1

ρ
py − g, (1.1)

wt + uwx + vwy +wwz = − 1

ρ
pz.

Here u = u(x, y, z, t), v = v(x, y, z, t),w = w(x,y, z, t) are velocity components
in the corresponding x, y, z direction; p = p(x, y, z, t) is the pressure; ρ is the den-
sity of the fluid, a constant, and g is the gravitational acceleration. The continuity
equation is

ux + vy +wz = 0. (1.2)

In most of the considerations the fluid motion is considered to be irrotational. This
gives the additional set of equations

uy − vx = 0,

vz −wy = 0,

wx − uz = 0,

(1.3)

which guarantees in a simply connected region the existence of a velocity potential
ϕ with

u= ϕx,
v = ϕy,
w = ϕz.

(1.4)

From (1.2) we see that ϕ satisfies Laplace’s equation,

ϕxx + ϕyy + ϕzz = 0. (1.5)

This greatly facilitates the theory.
In general, however, solutions of Laplace’s equation will not show wave charac-

ter, since the equation is elliptic. Waves are created by the presence of a free surface
and are intimately related to the free surface condition.

1.2 Boundary Conditions

At the moving boundary the condition for a non-viscous fluid is very simple. The
fluid velocity normal to the surface has to be equal to the normal component of the
velocity of the surface itself. If the equation of the surface is given by

y = F(x, z, t), (1.6)



1.2 Boundary Conditions 3

we denote the velocity of a point on the surface by (U,V,W). A normal to the
surface has the direction cosines(

Fx√
F 2
x + F 2

z + 1
,

−1√
F 2
x + F 2

z + 1
,

Fz√
F 2
x + F 2

z + 1

)
(1.7)

and the surface (or boundary) condition reads

uFx − v+wFz√
F 2
x + F 2

z + 1
= UFx − V +WFz√

F 2
x + F 2

z + 1
= −Ft√

F 2
x + F 2

z + 1
, (1.8)

because

FxU − V + FzW + Ft = 0

for a point on the moving surface. Hence from (1.8) we have

v = Ft + uFx +wFz = dF(x, z, t)

dt
, (1.9)

which expresses the fact that, once a fluid particle is on the surface, it remains on
the surface.

We will usually denote the bottom surface by y =H(x, z, t), so that (1.9) reads

v =Ht + uHx +wHz. (1.10)

Mostly in our considerations the bottom is fixed, that is H is independent of t , so
that the term Ht in (1.10) vanishes.

The waves are created at the free surface, which is characterised by the condition
that along this surface the pressure is a constant. Hence in addition to the kinematic
equation

v = ηt + uηx +wηz, (1.11)

for the free surface y = η(x, z, t), we have the condition

p = constant, (1.12)

along y = η(x, z, t). There are two ways of formulating these conditions:

a. From the equations of motion (1.2), we find by inspection, in the case of irrota-
tional motion, the Bernoulli equation

ϕt + 1

2
(u2 + v2 +w2)+ gy + p

ρ
= f (t) (1.13)

in which, because of the constant pressure, one can normalise ϕ to result in the
dynamical free surface condition

ϕt + 1

2
(ϕ2
x + ϕ2

y + ϕ2
z )+ gη= constant. (1.14)
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b. The second way expresses that

∂p

∂sx
= 0,

∂p

∂sz
= 0, (1.15)

where sx and sz are coordinates on the free surface, which have their projections
in the x and z directions, respectively. This gives1

∂p

∂sx
= ∂p

∂x
cos (x, sx)+ ∂p

∂y
cos (y, sx)= 0,

∂p

∂sz
= ∂p

∂z
cos (z, sz)+ ∂p

∂y
cos (y, sz)= 0

(1.16)

or

px + pyηx = 0,

pz + pyηz = 0.
(1.17)

Substituting (1.17) into (1.2), we have the relation

ut + uux + vuy +wuz + ηx(vt + uvx + vvy +wvz)= 0,

wt + uwx + vwy +wwz + ηz(vt + uvx + vvy +wvz)= 0,
(1.18)

which are also valid for rotational flow.

In this way the basic equations are derived. The further development of the theory
is based on small parameter expansions of these equations. To do so an appropriate
small dimensionless parameter has to be specified. Depending on the case consid-
ered, different formulations arise. In the next section we consider the case of a fixed
bottom and where the water region is horizontally extended to infinity while no
floating objects are present. This simplifies the theory considerably. Later we take
other effects into account as well.

1.3 Linearised Theory

In this section we discuss two different cases, where we may obtain linearised equa-
tions for different situations. In the first one we assume that the waves are superim-
posed on a steady constant parallel flow field (current), while the second one deals
with a wave field superimposed on a steady flow field, which obeys a simplified free
surface condition. This steady flow may be generated by a slowly moving vessel.
For fast moving objects one may need a more general non-linear theory for steady
and unsteady boundary conditions. We will deal with some of these problems in
future chapters.

1Note that cos (x, sz)= cos (z, sx)= 0.



1.3 Linearised Theory 5

1.3.1 Small Amplitude Waves in a Steady Current

The simplest approximation is the case where the deviation η of the free surface
above a certain standard level, which is taken as y = 0, is small. We assume that

η(x, z, t)= εη̄(x, z, t), (1.19)

where ε is a small dimensionless parameter. In addition we assume the bottom slope
to be small of the same order of magnitude in ε and put

y = −h+ εh1, (1.20)

which will lead to the boundary condition

v = ε(h1t + uh1x +wh1z) (1.21)

from (1.10). For the free surface we obtain from (1.11) and (1.14)

v = ε(η̄t + uη̄x +wη̄z) (1.22)

together with

ϕt + 1

2
(ϕ2
x + ϕ2

y + ϕ2
z )+ εgη̄= constant. (1.23)

Now, for the solution of (1.5), we assume an expansion

ϕ(x, y, z, t)= ϕ0 + εϕ1 + ε2ϕ2 + · · · , (1.24)

and substitute it in (1.5) and boundary condition (1.21). Equating to zero the coeffi-
cients of like powers of ε, we get first that all ϕk’s are harmonic functions. Moreover,
we have from (1.20) and (1.21)

v0 = ϕ0y = 0,

v1 = h1t + u0h1x +w0h1z,
at y = −h. (1.25)

Similarly, we expand η̄ in (1.19) in the form

η̄= η1 + εη2 + ε2η2 + · · · , (1.26)

and find from (1.22) the free surface condition at y = εη̄,

v0 = 0 and

v1 = η1t + u0η1x +w0η1z
(1.27)

together with

ϕ0t + 1

2
(ϕ2

0x + ϕ2
0y + ϕ2

0z)= constant,

ϕ1t + u0u1 + v0v1 +w0w1 + gη1 = 0
(1.28)

from (1.23).
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The first approximation ϕ0, u0 = ϕ0x, v0 = ϕ0y,w0 = ϕ0z, corresponds to a per-
manent flow. If we take the special case

u0 = constant,

v0 = 0,

w0 = constant,

we can transform to a coordinate system with the x-axis in the direction of this con-
stant flow and denote the velocity by U . In this case we have ϕ0 =Ux and the con-
stant in (1.23) is equal to 1

2U
2. Then we have the boundary condition from (1.25),

v1 =Uh1x at y = −h, (1.29)

and at the free surface y = εη̄, the coefficient of ε for (1.27) and (1.28) gives

ϕ1y = η1t +Uη1x,

ϕ1t +Uϕ1x + gη1 = 0.
(1.30)

Instead of putting this condition (1.30) at y = εη̄, we put it at y = 0. Assuming that
ϕ1 admits an expansion in powers of εη̄, we then have

ϕ1x(x, εη̄, z) = ϕ1x(x,0, z)+ εη̄ϕ1xy(x,0, z)+ · · ·
= ϕ1x(x,0, z)+ εη1ϕ1xy(x,0, z)+ O(ε2),

which leads to a modification of the terms of second order or higher. Hence the first
approximation gives the following set of linear equations for ϕ1 and η1:

ϕ1xx + ϕ1yy + ϕ1zz = 0,

ϕ1y = h1t +Uh1x at y = −h,
ϕ1y = η1t +Uη1x

ϕ1t +Uϕ1x + gη1 = 0

}
at y = 0.

(1.31)

For a fixed flat bottom, h1 is constant so that h1x = h1t = 0. For smooth functions,
one can easily eliminate η1 in the surface condition and obtain the formulation for
the first-order approximation (dropping subscript 1):

ϕxx + ϕyy + ϕzz = 0,

ϕy = 0 at y = −h,
U2ϕxx + 2Uϕxt + ϕtt + gϕy = 0 at y = 0.

(1.32)

Here the surface elevation η can be computed by

η= −1

g
(ϕt +Uϕx) . (1.33)
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Now given initial conditions, problems defined by (1.32) can be solved by means
of the Laplace or Fourier transform method. As for illustration, we shall consider a
few simple examples in Chap. 2.

1.3.2 Small Amplitude Waves in a Small Velocity Flow Field

Here we derive a free surface for unsteady waves superimposed on the steady free
surface generated by a steady velocity field. This steady field may be generated
by an object positioned in a constant parallel flow field. In general this leads to a
very complicated condition, however if the magnitude of the velocity is small it can
be simplified significantly. If no waves are present the magnitude of the velocity
is characterised by a small non-dimensional Froude number F = U√

gL
, where L

is some length scale that plays a role in the problem, for instance the length of
the disturbing object. It is assumed that this Froude number is small. In Sect. 5.2
we consider the diffraction of short waves if the steady flow field is generated by a
parallel flow and is disturbed by a blunt object such as a sphere or a circular cylinder.
In these cases we take for L the radius of the sphere or cylinder. Here we derive the
free surface condition for such a case.

The easiest way is to follow the derivation, presented in Sect. 1.3.1, to determine
a useful formulation for the steady potential. In this case of constant water depth
the only small parameter is the Froude number F = U√

gL
. Again we assume that the

deviation of the free surface around y = 0 will be small. However we can not say
that the free surface elevation is of O(F ). The order of magnitude of the elevation
follows from the derivation and will turn out to be O(F 2). For the steady case the
kinematic free surface condition (1.11) becomes

v = uηx +wηz. (1.34)

We assume that u,v and w are of the same order of magnitude O(F ). Hence for
small values of η the kinematic condition reduces to

v = 0 at y = 0. (1.35)

The dynamic free surface condition now determines the order of magnitude of the
corresponding free surface elevation. If we assume that in the far field the potential
equals the unperturbed parallel flow Ux we obtain

η= −1

2g
(u2 + v2 +w2 −U2). (1.36)

Because of the specific form of the free surface condition (1.35) the steady potential
described here is called the double body potential. For this potential we use the
notation ϕr , the velocity components are written as (ur , vr ,wr)= ∇ϕr and the free
surface elevation as ηr . If one is interested in the total steady potential one must
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derive an appropriate free surface condition also describing the wavy pattern. This
will be done in Sect. 2.4. Our goal here is to derive a linearised free surface condition
for the unsteady wave potential.

We assume that the potential ϕ can be decomposed as follows:

ϕ(x, y, z, t)= ϕr(x, y, z)+ ϕ0(x, y, z)+ ϕw(x, y, z, t). (1.37)

The potential ϕ0 describes the steady wave pattern if waves are not present. Later
we will show that this potential ϕ0 = o(ϕr), while as we have seen ϕr = O(F ). For
this reason we neglect this term in the low Froude number small wave expansion
and write

ϕ(x, y, z, t)= ϕr(x, y, z)+ ϕw(x, y, z, t). (1.38)

The free surface elevation η(x, z, t) is assumed to be of the form

η(x, z, t)= ηr(x, z)+ η0(x, z)+ ηw(x, z, t). (1.39)

The function η0 = o(ηr ), while ηr = O(F 2), so we neglect η0 and write

η(x, z, t)= ηr(x, z)+ ηw(x, z, t). (1.40)

We assume that the elevation of the free surface above the level y = ηr(x, z) is
small O(ε). The condition for the wave potential at the bottom remains the same as
before, however the free surface condition changes significantly. In principle the two
small parameters are independent of each other. If the small Froude number is large
compared with ε, we may introduce a new coordinate system (x′, y′ −ηr(x′, z′), z′).
The additional terms in the Laplace equation are small and may be neglected. The
additional terms in the free surface condition may be neglected as well. If the two
parameters are of the same order of magnitude we may linearise with respect to
y = 0 directly, else it is defined at y = ηr . The kinematic condition as in (1.27),
becomes

vw = ηwt + urηwx +wrηwz, (1.41)

and if we use the surface condition the dynamic condition becomes

ϕwt + urϕwx +wrϕwz + gηw = 0. (1.42)

We eliminate ηw by means of differentiation of (1.42) with respect to t, x and z
respectively. The additional terms due to differentiation along the double body free
surface ηr are O(F 3) and may be neglected. For the wave potential we obtain the
following formulation (we omit the primes):

ϕwxx + ϕwyy + ϕwzz = 0,

ϕwy = 0 at y = −h,
(
∂

∂t
+ ur ∂

∂x
+wr ∂

∂z

)2

ϕw + g ∂ϕw
∂y

= 0 at y = 0.

(1.43)
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The coefficients in the free surface condition depend on the local velocity. Although
the formulation for the wave potential is linear, no simple solutions for a wave pat-
tern can be given. In the case of the diffraction of short wave by a smooth object
we will use an asymptotic wave theory. This method is developed in acoustic and
electromagnetic theory, it is generally called the ray method. In Chap. 5 we present
this asymptotic method.


