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For the past 50 years, the International Congress of
Acarology has been the foremost forum for worldwide com-
munication on the knowledge of mites and ticks. This group
of very small arthropods exhibits a bewildering diversity of
species that live in many different habitats, in association
with the land, freshwater and marine organisms with which
they interact. Many mites and ticks have economic conse-
quences as they are pests of agricultural, veterinary and
medical importance, and several species have become
model organisms for studies in modern biology. While
acarologists pur sang focus on evolution and phylogeny of
the Acari, they may learn from insights emerging from fun-
damental and applied biological experiments in which
selected species of Acari are the focal object of study.
Experimental and applied biologists, on the other hand, may
learn from insight in how their pet organism is positioned
amidst the diversity of Acari. In this sense the International
Congress of Acarology may stimulate biologists to look
beyond the borders of their disciplines.

The 12th International Congress of Acarology, held from
21-26 August 2006 in Amsterdam, The Netherlands, suc-
ceeded in bringing together scientists that share an innate
fondness for mites and ticks, yet differ widely in scientific
specialisation. The congress was truly international and well
attended, with 386 participants from 59 countries: Australia,
Austria, Benin, Belgium, Brazil, Bulgaria, Cameroon, Canada,
China, Colombia, Costa Rica, Croatia, Cuba, Czech Republic,
Denmark, Egypt, Finland, France, Georgia, Germany, Ghana,
Greece, India, Iran, Ireland, Israel, Italy, Japan, Kenya, Latvia,
Mexico, Netherlands, New Zealand, Nigeria, Norway,
Pakistan, Philippines, Poland, Portugal, Russian Federation,
Serbia and Montenegro, Slovak Republic, South Korea,
Spain, Sri Lanka, St. Vincent and the Grenadines, South
Africa, Sudan, Switzerland, Taiwan, Thailand, Tasmania,
Trinidad, Tunesia, Turkey, UK, Ukraine, USA, and Venezuela.
Moreover, a wide variety of disciplines were represented,
such as molecular biology, biochemistry, physiology, microbi-
ology, pathology, ecology, evolutionary biology, systematic
biology, soil biology, plant protection, pest control and epi-
demiology. As shown in Table 1, there were 14 symposia
with invited speakers, 8 regular sessions with submitted

papers, and 8 workshops for small groups of specialists. In
total, there were 469 presentations/posters with accompa-
nying abstracts, published in an abstract volume edited by
Jan Bruin. The keynote address on Molecular Acarology was
given by Dr Hans Klompen (Ohio State University, Columbus,
OH, USA) and a special invited lecture on Tick Genomics was
presented by Dr Catherine Hill (Purdue University, West
Lafayette, IN, USA).

Several of the papers presented and some of the ses-
sions held during the congress have been published else-
where. Most notably are two special issues of the journal
Experimental and Applied Acarology, resulting from sessions
on the Control of Poultry Mites (volume 48, issues 1-2, 2009;
editor: Dr. O.A.E. Sparagano ) and on Forensic Acarology (vol-
ume 49, issues 1-2, 2009; editor: Dr. M.A. Perotti). In total,
114 papers were submitted for publication in the Congress
Proceedings, 18 of which had to be rejected for various rea-
sons. The remaining 96 contributions have all been reviewed
and carefully edited. The editors are confident that the
Proceedings of the 12th International Congress of Acarology
reflect current trends in acarology as a field of science. We
sincerely hope that the volume will promote communication
throughout the scientific community and may stimulate
research for many years to come.

Maurice W. Sabelis & Jan Bruin
December, 2009, Amsterdam, The Netherlands
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First of all, I would like to thank Maurice Sabelis and the
organizing committee of the International Congress for

the honor of being invited to present this address. When
Maurice invited me to give this address he suggested I stick
with the general theme of this congress, ecology and
genomics. I had a brief moment of doubt, I do not actually
work on either genomics or ecology, and so I decided to
broaden the topic to the impact of molecular biology on
acarology. More specifically, to use this occasion to empha-
size and celebrate some areas where molecular biology has
allowed us to make significant advances. Acarology is clearly
following in the footsteps of other disciplines in rapidly inte-
grating molecular data and methods in all aspects of
research. Anybody doubting this should check the listing of
presentations at this congress. In presenting these com-
ments I should stress that in selecting developments to high-
light, I have tried to cover a range, but I lay no claim to being
comprehensive. These are my choices, reflecting my biases.

I will deal with three main areas, each with a different
focus (and different tools). First, population or species level
issues. This includes issues of species delimitations, dispersal
patterns, and population structure – basic scientific issues
which also have considerable relevance in agriculture and
medicine. This area relates most directly to the bread and
butter research that makes knowledge of mites so impor-
tant. In terms of techniques this used to be an area for
allozymes and RAPD’s, techniques partially replaced by
sequencing of rapidly evolving markers and analysis of
microsatellites. Second, my personal interest: higher-order
systematics. This area goes beyond straightforward analyses
of relationships. Hypotheses in systematics are often (and
correctly) considered indispensable for testing broad evolu-
tionary hypotheses, and in setting the parameters within
which any such hypotheses have to operate. Sequencing of
slowly evolving markers, such as nuclear rRNA and nuclear
protein coding genes, is the main tool, but there are addi-
tional options, such as mitochondrial gene order. Finally, in
genomics the focus is on the structure of the genome and
the function and regulation of the various genes. This will be
the area where eventually we might approach the holy grail
of complete vertical integration from DNA to phenotype. 

POPULATIONS AND SPECIES

Dispersal
How well are mites really getting around? What are average
distances for dispersal, and what factors may influence this?
Eight years ago Evert Lindquist in a similar keynote speech
for the Canberra congress listed these types of questions as
a possible priority area for research. A range of molecular
techniques is allowing us to get a better handle on these
questions. Previously employed molecular methods, such as

RAPD’s and sequencing of relatively fast evolving loci can be
used in this area, but they have clear limits. Analysis of
microsatellites, often combined with sequencing or PCR-
RFLP, appears to be more powerful. Microsatellites have
been used to establish dispersal patterns and gene flow in a
wide range of mite taxa, including the mesostigmatic mite
Varroa destructor Anderson & Trueman (Solignac et al.,
2003), the eriophyoid Colomerus vitis (Pagenstecher) (Carew
et al., 2004), the spider mite Tetranychus turkestani Ugarov
& Nikolski (Bailly et al., 2004), and the tick Ixodes uriae
White (McCoy et al., 2003). One would hope that in the near
future these techniques would be applied to an even wider
range of taxa. For example, they might help provide insights
in dispersal patterns of taxa such as Bdelloidea and
Raphignathoidea, taxa of potential use in biocontrol, but
whose dispersal abilities are quite poorly known. Moving
into the soil ecosystem, these techniques may help elucidate
dispersal patterns and population structure in oribatid
mites. 

But there is certainly no need to wait for future develop-
ments. Molecular techniques are already proving to be very
powerful in current issues such as tracking invasive species.
Recent work on Aceria guerreronis Keifer, a worldwide pest
of coconuts (Navia et al., 2005), demonstrated a New World,
probably Neotropical, origin of this mite. The direct impor-
tance of that research is that it allows a much more focused
search for potential predators. Similarly tracking V. destruc-
tor invasions of North America and dispersal of Raoiella indi-
ca Hirst around the world may lead to improved manage-
ment strategies. As an aside, it is interesting to note the cur-
rent prominence of research on Tenuipalpidae. Often
regarded as a minor player compared to the family
Tetranychidae, the group has come into prominence in sev-
eral areas in the last decade. Brevipalpus phoenicis (Geijskes)
populations feature some very odd reproductive systems,
including all-haploid populations (Weeks et al., 2001), R.
indica has become yet another major pest of coconuts
(http://www.doacs.state.fl.us/pi/enpp/ento/r.indica.html),
and tenuipalpids in general have emerged as vectors of
major plant diseases (e.g., citrus leprosis) (Childers et al.,
2003). We clearly have not exhausted the potential for scien-
tifically and/or economically important discoveries, even in
relatively well-known groups of mites.

Development of host races and species limits
The literature is filled with claims and counterclaims of host
specificity and host races. Testing such claims is often diffi-
cult and very laborious using standard methods. Molecular
techniques allow quicker and often more accurate assess-
ments of separation between ‘host races’ by measuring
actual gene flow. Such approaches have shown cryptic
species in the genus Varroa (Anderson & Trueman, 2000)
and significant indicators of host race formation in the

From sequence to phoresy – molecular biology in acarology

Hans Klompen
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Sarcoptes scabiei complex (Walton et al., 2004) and in the
tick I. uriae (McCoy et al., 2005). Meanwhile other molecu-
lar-based studies showed a lack of host specificity in
Psoroptes (Ramey et al., 2000; Zahler et al., 2000; Pegler et
al., 2005) and some Tetranychus species (Tsagkarakou et al.,
1999; Bailly et al., 2004). A mtDNA-based study of genetic
variability in Myialges spp. on the Galapagos Islands reject-
ed the conventional wisdom that a single species, Myialges
caulotoon Speiser, was associated with both Galapagos
hawks and cormorants (Whiteman et al., 2006, 2007). In
fact, the mites associated with the two bird hosts [and with
members of two genera of louseflies (Hippobiscidae)] were
genetically distinct. A re-examination of morphology showed
small, but consistent, morphological differences between
members of the two host races, reinforcing the molecular-
based conclusions. This is a good example of how morphol-
ogy and molecular data can be synergistic. 

A broader issue is identification of species by molecular
methods. In this context it is worthwhile to note the ongoing
efforts in DNA barcoding. The idea here is to sequence a
small piece of DNA that is species specific, thus providing the
equivalent of a ‘barcode’. To make this system work, some
issues need to be worked out, including assessments of with-
in species variability and the ability of the chosen sequence
to distinguish closely related species. Neither issue can be
assumed solved for mites until some experimentation has
been conducted for a wide range of taxa. Such tests take on
extra significance because of the dramatic range of evolu-
tionary rates among mite taxa (Murrell et al., 2005; Klompen
et al., 2007). Assuming these problems are solved, this
approach can be very useful in specific situations. One exam-
ple would be border inspections, where quick identifications
are needed and experts are not always available. The practi-
cal problems in this type of situation should be limited,
because such inspections often concentrate on a limited
number of target species. Assuming those target species can
be tested as needed, it should be possible to make molecu-
lar identification feasible soon. Eventually the same could be
done for ecological studies of soils, etc., but that would
require a much larger set of reference sequences. Of course
it is not always necessary to identify specimens to species in
ecological studies, but this merely shifts the problem to
developing reference sequences for genera, families, or
whatever grouping is needed. Some work is already being
done in this area, and it is certainly worth exploring. Still I do
not expect widespread application of these techniques in
this field for some years. I stress that using ‘molecular bar-
code’ identifications is not the same as DNA taxonomy, the
idea of defining new species based solely on (usually small)
bits of DNA sequence. That ‘shortcut’ to the backlog of
species descriptions has great potential for disrupting exist-
ing taxonomy, while the benefits are at best unclear.

Mite associates
Molecular techniques, combined with broader interest in
the matter, have also expanded knowledge on associates of
mites. We generally think of mites as small and being associ-
ates of other, larger organisms, but that view is incomplete.
Mites themselves are also habitats for even smaller orga-
nisms. This includes well-known associations with tape-
worms (Denegri, 1993), entomopathogenic nematodes
(Samish et al., 2000), and fungi (Hofstetter et al., 2006), but
investigations of associations with bacteria and protozoa
have largely been limited to medically or veterinary impor-

tant taxa vectored by ticks or chiggers. Only a few mite asso-
ciates outside of that setting have been studied in detail. The
most prominent example in that category is Wolbachia,
which in some (but not all) hosts can cause sex ratio distor-
tion and cytoplasmic incompatibility (e.g., Breeuwer &
Jacobs, 1996; Vala et al., 2000, 2002, 2003; Gotoh et al.,
2003, 2005). 

However, it is clear that the number of bacterial or fun-
gal associations of mites is much larger than that, and we are
seeing a growing interest in a wider range of microorgan-
isms, especially those that affect the mites themselves (see
Samish & Rehácek, 1999; van der Geest et al., 2000). The use
of a variety of molecular techniques (e.g., Jeyaprakash &
Hoy, 2004), including PCR assays (Hoy & Jeyaprakash, 2005;
Reeves et al., 2006), is allowing considerable progress in reli-
ably detecting even very small numbers of microorganisms.
This makes it feasible to quickly (and cost-effectively) search
for such organisms in a much wider range of mite taxa, and
to cover a wider range of microorganisms (not just patho-
gens). Many of the associations detected in this manner may
well be accidental and have little biological significance, but
others may provide some real insights. For example, reports
of Anaplasma nr. phagocytophilum, agent of human granu-
locytic anaplasmosis, in various dermanyssoid Mesostigmata
(Reeves et al., 2006) and in syringophilid quill mites (Skoracki
et al., 2006) suggest a fairly wide distribution of this
pathogen. The impact for epidemiology is not yet clear, but
the Dermanyssoidea are potential vectors or reservoir hosts.
As for the presence of A. phagocytophilum in permanent
parasites such as Syringophilidae, the authors found that
often the bird hosts did not register as positive, which brings
up the possibility that infected mites may provide evidence
of past infections (Skoracki et al., 2006). Another area of
potential interest is the interaction of various microorgan-
isms in the mite host, for example the potential for facilita-
tion or competition. This general area of microorganisms
associated with mites should see lots of exciting develop-
ments in coming years, some of which were already shown
at a symposium on ‘Symbionts of mites and ticks’ during this
congress. 

HIGHER-ORDER SYSTEMATICS
This area has not been exceptionally well developed in the
Acari because of the great difficulties in establishing homolo-
gies among members of distant lineages. It is simply quite
difficult to find characters that can be scored across all Acari,
or even across a single order (Acariformes or Parasitiformes).
With respect to homology issues, a summary of ongoing
efforts to homologize setal designations across all
Acariformes is included in the third edition of ‘A Manual of
Acarology’ (Krantz & Walter 2009). There are also some
excellent morphology-based studies, such as those by
OConnor (1984) and Norton (1998) for Sarcoptiformes,
Haumann (1991) for early-derivative oribatid mites, and
Lindquist (1986) for Heterostigmata, but equivalent analyses
are lacking for most other acarine lineages. The analysis by
Lindquist (1984) is still the only phylogenetic analysis of rela-
tionships across acarine orders, and even that analysis
includes only a relatively small character set. As with the
intra-specific issues noted above, molecular biology can
make, and is making, a major contribution in this area. It
does so mainly by allowing the generation of large new data
sets. The ultimate goal will be combined analyses of mor-
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phology and molecules, but such studies have so far been
limited to relatively small lineages (e.g., Klompen et al.,
2000; Dabert et al., 2001).

A critical consideration in deep phylogeny analyses of
mites is the choice of marker. Cruickshank (2002) noted that
nuclear rRNA’s (both 18S and 28S) appear among the best
candidates for deep phylogeny in the Acari, whereas nuclear
protein coding genes might be most useful at an intermedi-
ate level, e.g., from family to subordinal levels. So far, most
molecular-based studies looking at higher-order relation-
ships in groups of Acari have indeed been based on nuclear
rRNA, mostly 18S small subunit rRNA, but increasingly sec-
tions of, or whole, 28S, or on the nuclear protein-coding
gene Elongation Factor-1 alpha (EF-1 α ) (Cruickshank &
Thomas, 1999; Klompen, 2000; Lekveishvili & Klompen,
2004; Murrell et al., 2005; Schaefer et al., 2006; Klompen et
al., 2007). Again, rate variation among lineages can be sub-
stantial, so relatively variable loci, such as the D3 variable
region of 28S rRNA, may be relatively informative at higher
levels in oribatid mites (Maraun et al., 2004), whereas the
very conserved 18S is informative at the genus level in basal
Mesostigmata (Lekveishvili & Klompen, 2004). As evidenced
in this congress, multiple research groups are working in this
area and it is likely that we will see substantial progress on
higher-order systematics of Acari in the coming years.
Additional molecular markers would be very welcome, and
that area is also being addressed (e.g., Xu et al., 2003, 2004;
Schaefer et al., 2006). Thus, we can expect not only more
data for established markers, but also a considerable
increase in diversity of markers over the next few years.

The ultimate goal for much of systematic research is to
use acquired insights in relationships among groups to test
evolutionary hypotheses on those groups. Such hypotheses
cover diverse areas, from parthenogenesis to feeding
modes, coloration, and host associations. 

Parthenogenesis
Parthenogenesis is common among Acari, but particularly
within basal lineages of oribatid mites (‘Macropylina’)
(Norton & Palmer, 1991; Palmer & Norton, 1991). This
despite the wide-held notion that all-female parthenogene-
sis (thelytoky) is an evolutionary dead-end. The long-term
existence of thelytoky in bdelloid rotifers (Welch &
Meselson, 2000) and darwinulid ostracods (Martens et al.,
2003) has attracted a lot of attention, but thelytokous radia-
tion in oribatid mites may be more common, and even more
ancient (Heethoff et al., 2002). More astonishingly, we are
seeing evidence of repeated reversal to sexuality, both with-
in smaller oribatid lineages (this congress), and perhaps even
the entire infraorder Astigmata (Norton, 1994, 1998). 

Feeding modes
Most mites are fluid feeding, a feeding mode assumed to be
ancestral in the Arachnida. There are exceptions, including
Opilioacarida and a few genera of Mesostigmata (e.g.,
Asternolaelaps) among Parasitiformes, and the majority of
Sarcoptiform Acariformes. But are they true exceptions, or is
ingesting solid food the primitive condition for Acari? To
determine this, we need more data on relationships in
Chelicerata. Interestingly, molecular data so far have not
been able to resolve order-level relationships in Chelicerata
with any confidence (Giribet et al., 2001, 2002). Meanwhile,
detailed studies of morphology continue to support a close

association of the fluid-feeding Ricinulei with Acari, but per-
haps as sistergroup to Parasitiformes (that is within Acari),
rather than as sistergroup to Acari (Shultz, 2007). 

Coloration in water mites
Did the spectacular colors of water mites evolve as UV pro-
tectant, aposomatic warning colors, or other? Many Trombi-
diformes are red in color due to an accumulation of
carotenoids in the cuticle, quite possibly as a UV protectant.
However it is unclear whether the function of coloration has
changed in water mites relative to their terrestrial relatives.
Feeding experiments show that fish often reject water mites
as prey, suggesting an aposomatic function of color (Proctor
& Garga, 2004). Unfortunately observations comparing
ponds with fish vs. ponds without generally show more
bright-colored water mites in the fish-less ponds. One way to
study this is to plot coloration and habitat data on a phyloge-
ny of water mites / Parasitengona. Efforts are underway to
generate a molecular phylogeny for Parasitengona, and the
first results of these efforts were presented by Heather
Proctor et al., during this congress. 

Host-parasite associations
Acari are clearly one of the best, if not the best, groups to
study host associations. Host associations have evolved
numerous times, they include a wide range of association
types (from phoresy to permanent parasitism), and involve a
stunning diversity of hosts. Although most studies of host
association patterns involve slightly smaller lineages than
discussed above, molecular-based phylogenies are improv-
ing our understanding of mite and host phylogenies, thereby
allowing more sophisticated hypotheses of evolution of the
associations. Examples of host-parasite systems examined in
just this congress include Cheyletoidea (Bochkov), Derman-
yssoidea (Dowling, OConnor), and Astigmata (Klimov,
OConnor). In most of these cases results have not yet been
published, but we can expect whole series of publications
quite soon (e.g. Bochkov et al., 2008; Klimov & OConnor,
2008). And it is not only co-evolution scenarios that can be
tested, there are additional questions such as the origin (and
possible reversal) of parasitism and the notion that phoresy
might be a facilitating condition for the evolution of para-
sitism (Athias-Binche & Morand, 1993; Houck & Cohen,
1995). 

GENOMICS
How many coding regions are present in a given organism,
what do these genes code for, how are they regulated, what
is their distribution? These are just some of the questions
asked in genomics research. This is a young field, and it may
take some time before we can answer them for mites, but
considerable progress is being made in some areas. Worth
noting here is research on the sialome of ticks, the set of
proteins in tick saliva involved in preventing blood clotting
and in interfering with the host immune systems
(Valenzuela, 2004). Other areas where similar but smaller-
scale studies have been done include dust mite allergens,
and Sarcoptiform alarm pheromones. 

As for entire genomes, it is worth to briefly look at a rel-
atively simple system, the mitochondrion. The mitochondr-
ial genome of arthropods is relatively small (14-19.000 bp)
and considered quite variable in nucleotide sequence, but
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conserved in organization, that is in genes present and gene
order (Boore, 1999). As with many areas, most early work in
the Acari has been done for ticks (Campbell & Barker, 1998;
Black & Roehrdanz, 1999). These studies found that the
‘hypothetical ancestral pattern’ for arthropods is retained in
Limulus, derived Ixodes, and all Argasidae examined so far
(Shao et al., 2004). However, although ticks are a morpho-
logically conservative group, mitochondrial rearrangements
have been demonstrated for several lineages of Ixodidae,
including the addition of a second control region in some
Australian Ixodes (Shao et al., 2005b), and re-arrangements
of a considerable part of the genome in all Metastriata
(Black & Roehrdanz, 1999). The only other Parasitiform for
which the entire mitochondrial genome is known, V.
destructor, again shows considerable changes (Evans &
Lopez, 2002; Navajas et al., 2002), specifically a different
position of several tRNA’s and of the small subunit rRNA
(12S rRNA). Recently the first Acariform mitochondrial
genome was published, suggesting that observed deviations
from the hypothetical ancestral pattern in Parasitiformes
may be relatively minor. The genome of the chigger
Leptotrombidium pallidum Nagayo et al. features several re-
arrangements of tRNA’s, four control regions, plus an appar-
ent doubling of a major section that includes a complete
copy of the large subunit rRNA (16S), and a partial one for
12S rRNA (Shao et al., 2005a). Of course it is currently
unclear whether this result is just an aberration, or whether
it is representative of mitochondrial genome structure in
Acariformes as a whole. Clearly we will need complete mito-
chondrial genomes for more Acariformes to evaluate that
question.

The main area of excitement in mite genomics is certain-
ly represented by projects focusing on the nuclear genome.
Overall this type of research in Chelicerata is well behind
similar efforts in insects, but acarology is doing quite well.
We are already seeing the first results of the Ixodes scapu-
laris Say genome project (http://www.entm.purdue.edu/
igp/), and we can now add another, the Tetranychus urticae
Koch project (approval announced during this congress). This
means that complete genomes will soon be available for rep-
resentatives of both Parasitiformes and Acariformes. Again,
it will take some time before results of these projects will fil-
ter down to a wider range of projects, but it will happen, and
it will be a major boost for our field, even if I do not dare
speculate where the main impact will be.

CONCLUSION
In conclusion, molecular biology has a lot to offer for acarol-
ogy, whether by itself or integrated with existing morpholo-
gy- or ecology-based research. As a group, acarologists may
complain about the decline in our numbers, the lack of fund-
ing, the scarceness of positions in the field, etc., all of which
legitimate issues, but I am optimistic. The field attracted us
because there are so many truly remarkable things left to be
discovered, whether it is in systematics, physiology, ecology,
or genetics. Molecular biology will be no different. What lit-
tle we know so far has included a host of exiting and unan-
ticipated results, and there is no reason to expect that we
will not find many more. The ongoing genome projects will
just add more possibilities to discover something amazing.
So go out and dig.
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Lohmanniidae is a moderate-size family comprising 21
nominal genera and 179 species (Subias, 2004), most with

tropical or subtropical distributions (Hammer & Wallwork,
1979; Balogh & Balogh, 1992). Its present composition was
attained gradually, as several fundamentally different mites
(now in Epilohmanniidae, Eulohmanniidae, Perlohmanni-
idae, and the enarthronote Malacoangelia) were removed
from Berlese’s (1916) original tribe Lohmanniini.

Adults have a characteristic facies (Fig. 1A-C): elliptical to
ovate shape in dorsoventral view, convex dorsum, flat ven-
ter, and pedofossae that receive retracted legs when an indi-
vidual is disturbed. A large anterior notogastral tectum,
unique among dichoid mites, covers the sejugal articulation
dorsally. Their biology also seems rather uniform: they con-
sume decomposing leaves and often woody substrates,
within which they feed as endophages (Shereef, 1976; Haq,
1984; Ramani & Haq, 1991). Males are unknown (Grandjean,
1950) and parthenogenesis has been proven in the laborato-
ry (Shereef, 1976). They are one of several families of early
to middle derivative oribatid mites that show modest evolu-
tionary radiation in the absence of sexual reproduction
(Norton & Palmer, 1991; Maraun et al., 2004). 

In a foundational paper, Grandjean (1950) considered
Lohmanniidae an isolated family that exhibits interesting
contrasts. It is specialized, yet rich in primitive characters
and despite its homogeneous facies some traits show high
variation. The latter include a wide range of dorsal setations
(holotrichy to extreme neotrichy) and many combinations of
shapes, subdivisions and fusions in plates of the anogenital
region that, as Grandjean predicted, underlie the current
multitude of recognized genera. He first expressed this isola-
tion by listing Lohmanniidae as one of 11 distinct groups of
oribatid mites (Grandjean, 1954a), then merged it with sev-
eral others to form Mixonomata, one of six major groups in
a later classification (Grandjean, 1969) that continues to be

used (e.g., Subias, 2004). Mixonomata is probably a para-
phyletic group (Norton, 1998) that ancestrally has opistho-
notal glands (see below). Haumann (1991) had a similar
view: his cladogram included Lohmanniidae between Euloh-
manniidae and Perlohmanniidae (both mixonomatans) in a
pectinate part of Novoribatida – the sister-group of Enar-
thronota in his study.

Lee (1984, 1985) first closely linked Lohmanniidae with
taxa usually included in Enarthronota, although his unique
terminology partly masked this insight (see Norton, 2001).
He thought ancestral transverse scissures were lost from
Lohmanniidae (essentially his cohort Affisurina), but thought
its sister-group included all enarthronotes but Protoplo-
phoroidea. Instead, Norton (2001) and Alberti et al. (2001)
suggested that Lohmanniidae represents a derived family of
Hypochthonioidea. This enarthronote superfamily exhibits
much evolutionary plasticity, with both ptychoid (Mesoplo-
phoridae) and holonotic (Nothrolohmannia) clades. Woas
(2002) subsequently included Lohmanniidae within Hypoch-
thonioidea, a classification followed by Weigmann (2006).
However, the original suggestion was based on few traits,
and no overview of morphological support exists. A prelimi-
nary DNA analysis is consistent with this hypothesis (Maraun
et al., 2004), but lacks taxa important for testing it. 

My objective is to examine how traits of Lohmanniidae
fit the phylogeny proposed earlier for Hypochthonioidea
(Norton, 1984, 2001). Lohmanniidae is included as the sister
group of Nothrolohmanniinae (Fig. 2), where the weight of
evidence seems to place it, and various branches are num-
bered for discussion. This is a preliminary study, because few
new characters are considered and some alternative rela-
tionships are not yet examined. Still, traits of many taxa have
been examined, particularly those of mixonomatan families,
and no more plausible relationship was uncovered. 

Systematic relationships of Lohmanniidae (Acari: Oribatida)

Roy A. Norton
S.U.N.Y. College of Environmental Science and Forestry, Syracuse, NY 13210, USA. E-mail: ranorton@esf.edu
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Lohmanniidae is a moderately diverse family of macropyline oribatid mites that is usually grouped with taxa having
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MATERIALS AND METHODS
The overall approach is to climb the tree from bottom to top,
testing Lohmanniidae against characters that support rele-
vant clades, as linked by numbers to Figure 2. Except for the
first section (below) the apomorphic state is given, followed
by the plesiomorphic state (pl) in parentheses. Principal
sources are Grandjean (1950) for Lohmanniidae, Grandjean
(1935) for Malacoangelia, Norton (2003) for Nothroloh-

mannia, and Fernandez (1984) for Eohypochthonius; the lat-
ter also summarizes traits of Hypochthonius and Enioch-
thonius. Traits of Endeostigmata and Palaeosomata are from
Grandjean (1939, 1954b, respectively). Other sources are
indicated where relevant. Arborichthonius styosetosus, in
the monotypic Arborichthoniidae (Norton, 1982), was cho-
sen as the outgroup of Hypochthonioidea, for reasons noted
below. New developmental data for Malacoangelia
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Figure 1 Meristacarus sp. A. Lateral aspect (arrows on mineralized bands). B. Anterior aspect (arrows on porose areas). C. Ventral aspect
(arrows on pedofossae). Scales: 100 μm. (Australian specimen, images by Sue Lindsay).



remigera came from specimens and exuviae collected in
Quintana Roo, Mexico, by the author, and protonymphal
data for Nothrolohmannia calcarata came from a topotypic
specimen donated by the late János Balogh.

Are Lohmanniidae members of Enarthronota?
As Lohmanniidae are holonotic (have a one-piece notogaster),
the most diagnostic trait of Enarthronota – one or more trans-
verse notogastral scissures (Grandjean, 1947) – is absent, but
most other traits are consistent with this placement. Except
scissures, and the first two characters below, there are no rec-
ognized synapomorphies of Enarthronota. Other listed traits
are plesiomorphies that help exclude Lohmanniidae from
derived oribatid mite groups with apomorphic states. 

Subcapitular anarthry. The subcapitulum of known
Enarthronota is anarthric, i.e., it lacks a labiogenal articula-
tion (Grandjean, 1957). By contrast, species in more derived
macropyline groups (Parhyposomata, Mixonomata, Desmo-
nomata) are stenarthric, i.e., they have an oblique articula-
tion between mentum and genae. Lohmanniidae are all
anarthric. Some have a pair of oblique lines on the subcapit-
ular venter, but these are ridges or changes in cuticular
structure, not articulations. Weigmann (1996) considered
anarthry a synapomorphy of Enarthronota.

Immature instars with moderately sclerotized hysteroso-
mal cuticle. This is a common trait of Enarthronota (Grand-
jean, 1969) that is most easily seen in the rather rigid exuvi-
ae (see below). Except for some Brachypylina, glandulate
taxa have immatures with unsclerotized, weak hysterosomal
cuticle that easily crumples during molting.

Absence of opisthonotal gland. Of the six major groups
recognized by Grandjean (1969), members of Palaeosomata
and Enarthronota lack opisthonotal glands, like Lohmanni-
idae. Nearly all Parhyposomata, Mixonomata, Desmonom-
ata, and Brachypylina (Circumdehiscentiae) have them, and
are referred to below as ‘glandulate’ taxa (Norton, 1998).

Plesiomorphic rutellum. The rutellum of Lohmanniidae
clearly shows its setal origin (Grandjean, 1950, 1957).
Although it is broader distally than those of Enarthronota, its

narrow base does not overlap the lateral lips and is not incor-
porated with the gena in the manner of glandulate taxa.

Absence of lyrifissures iad and ian. Grandjean (1950)
considered their absence in Lohmanniidae a regression.
However, all Enarthronota and Palaeosomata lack these lyri-
fissures, as do Endeostigmata. They are present in glandu-
late taxa, except most Brachypylina lack ian.

Ten pairs of genital setae. The plesiomorphic number of
genital setae in oribatid mites seems to be 10 pairs. This is
the common number in Palaeosomata and Enarthronota,
and lesser setations seem attributable to losses (Grandjean,
1949, 1961b). Lohmanniidae have 10 pairs, but no glandu-
late group has more than nine.

Arborichthoniidae as an outgroup of Hypochthonioidea
Arborichthoniidae shares three apomorphies with Hypoch-
thonioidea and Lohmanniidae that are not known in other
Enarthronota. 

1. Adoral seta or2 medially with deep notch and tooth (pl
= without notch). In Lohmanniidae, this apomorphy is pres-
ent only in some genera (e.g., Meristacarus, Torpacarus).
Hypochthoniioidea have additional cilia distal to the tooth
that are not known in Lohmanniidae. 

2. Subcapitular genae with paired dorsal rasps (pl = rasp
absent). A patch of rasp-like teeth arranged in transverse
rows lies on the dorsal face of each gena, posterolateral to
the rutellum and close to the mouth opening (Fig. 3A). It is
not known from other oribatid mite taxa. 

3. Lyrifissure im on notaspis (pl = im on pleuraspis or soft
lateral cuticle). In Hypochthonioidea, im is anterior to setal
row e, but is behind it in Arborichthoniidae. In Lohmanniidae
im is above the suprapleural scissure, essentially aligned
with row e.

Are Lohmanniidae members of Hypochthonioidea (clade I)?
Several synapomorphies proposed earlier (Norton, 1984,
2001) to distinguish Hypochthonioidea from other Enarthro-
nota were based on the assumption that ancestors had the
plesiomorphic enarthronote body architecture in which setal
rows e and f are enlarged, erectile, and inserted on paired
intercalary sclerites in two respective transverse notogastral
scissures (type-S scissures of Grandjean, 1947). Arborichtho-
niidae has an autapomorphic arrangement in which setae f
are erectile, but insert in a pair of soft cuticular patches
rather than a single scissure. 

4. Loss of erectile function in setal rows e and f; i.e., full
or partial incorporation of intercalary sclerites bearing setal
row e and f into notogaster and size regression of setae (pl =
e and f setae enlarged, erectile, on independent sclerites).
Lohmanniidae have the apomorphic state but, unlike Noth-
rolohmannia, they have no vestige of ancestral scissures, so
the ‘loss’ is equivocal.

5. Sternal apodeme present (pl = sternal apodeme
absent). A distinct linear apodeme runs along the midline of
fused epimera III and IV; it may be long, short, or in two parts.
(lost in the ptychoid Mesoplophoridae). In Lohmanniidae it is
relatively short and approximately centered in the plate.

6. Aggenital plates fused with epimere IV (pl = aggenital
plates articulated with epimere IV). In Hypochthonioidea
aggenital plates form what appear to be triangular exten-
sions of the coxisternum that frame the genital plates ante-
riorly. Some Lohmanniidae have this state (e.g., Torpacarus
gramineus and Heptacarus graminosus), but in most species
the plates articulate with epimere IV. 
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Figure 2 Hypothesis of cladistic relationships in Hypochthonioidea
and Lohmanniidae, with Arborichthoniidae as outgroup. Roman
numerals indicate clades referred to in text; arabic numerals indi-
cate apomorphic traits for the clade as discussed in text. See Norton
(2001) for support of clades II, IV, and VI. See text for discussion of
indicated classification.



7. Trochanter II glabrous (pl = trochanter II with one
seta). Trochanters I and II have one seta each in Arborich-
thoniidae and in most glandulate taxa. But trochanter I is
glabrous in the majority of Enarthronota, perhaps in all
Palaeosomata, and in many Endeostigmata. In contrast,
trochanter II has one seta in most Endeostigmata, all
Palaeosomata, and most Enarthronota. Hypochthonioidea is
unusual, with trochanter II also glabrous: the typical setal
formula is 0-0-2-2 (I to IV). Trochanter II is also glabrous in
the distant enarthronote lineage Brachychthoniidae, and in a
paedomorphic clade of Protoplophoroidea (Norton et al.,
1983), but only Lohmanniidae share the 0-0-2-2 formula. 

8. Proximal part of chelicera inserted into body (pl = che-
licera not inserted). In Endeostigmata, Palaeosomata,
Parhyposomata, Mixonomata, and most Enarthronota the
entire chelicera projects from the body wall like other
appendages. In Desmonomata and Brachypylina (Norton,
1998), and independently in Hypochthonioidea, the wall
attachment encroaches such that part of the chelicera proj-

ects internally. The internal part comprises only about 5-6%
in Eniochthonius, but 20-30% in other hypochthonioid gen-
era, and in Lohmanniidae (Fig. 3B).

Are Lohmanniidae members of Hypochthoniidae (clade III)?
Apomorphies 9-15 characterize Hypochthoniidae, which cur-
rently includes Hypochthonius, Eohypochthonius, Malaco-
angelia, and Nothrolohmannia. In 2001 the loss of lyrifissure
ip was listed, but this character appears to be incorrect and
is deleted here. The lyrifissure exists along with the other
four typical lyrifissures at least in Hypochthonius and Enioch-
thonius (Fujikawa, 2003 and RA Norton, unpubl. observa-
tions) and dense spicules make finding lyrifissures in
Nothrolohmanniinae difficult. Members of Lohmanniidae
retain all five lyrifissures

9. Epicuticular chambers form as indentations over pore
canals and contain nonbirefringent calcium-potassium min-
eral, probably apatite (pl = chambers form as caverns within
epicuticle and contain birefringent calcium oxalate).
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Figure 3 A. Lohmannia carolinensis, rasp on gena of subcapitulum. B. L. carolinensis, chelicera (insert) and enlargement of body wall attach-
ment (arrows). C. Malacoangelia remigera larva, ventral proterosoma. D. Lohmannia banksi, molting deutonymph. E. Nothrolohmannia cal-
carata, protonymph (layered image: arrow on transverse scissure). Abbreviations: cl, Claparède’s organ (stalk out of focus); 1a, 1b, 1c,
epimere I setae. Scales: 10 μm (A-C), and 50 μm (D, E).



Lohmanniidae have chambers of the derived type (Alberti et
al., 2001) that form the transverse bands previously thought
to indicate primitive segmentation (Grandjean, 1950; Wall-
work, 1963). The suggested plesiomorphic state is found in
clade II, but not in Arborichthoniidae. This is problematic,
since similar chambers probably also occur in some Proto-
plophoroidea: Phyllozetes (Cosmochthoniidae) has large
chambers with birefringent contents, but the mineral is
unidentified; Prototritia (Protoplophoridae) has calcium
oxalate (Norton & Behan-Pelletier, 1991), but its epicuticle
has not been studied. Mineralized epicuticular chambers are
not known from other superfamilies. 

10. Aggenital setae absent (pl = at least one pair pres-
ent). Clade II ancestrally has aggenital setae, as does Arbo-
richthoniidae, but all Hypochthoniidae lack them. Lohman-
niidae also lack aggenital setae, but so do various families or
genera throughout oribatid mites (Grandjean, 1949), so the
character is homoplasious.

11. Ontogeny of genital setae accelerated; deutonymph
with five pairs of setae (pl = deutonymph with four pairs). All
adult Hypochthoniidae have the ancestral complement of 10
pairs, but the specific ontogeny of this setation is shared only
by Lohmanniidae: 1-5-8-10 (protonymph to adult). All orib-
atid mites have a single protonymphal seta, and 10 adult
pairs is common, but the unusual deutonymphal (5) and
tritonymphal (8) setations presented problems for Grand-
jean’s (1949, 1961b) interpretation of evolution in genital
setation. Since deutonymphs of other enarthronotes and
Palaeosomata have a maximum of four pairs, the fifth pair
probably results from accelerated development. Having
eight tritonymphal setae may be correlated with the deu-
tonymphal acceleration, but not necessarily. Palaeacarus
and the enarthronote Gozmanyina (Marshall & Reeves,
1970) have eight pairs in the tritonymph, but no other
known oribatid mite has more than seven.

12. Tarsus I famulus simple (pl = famulus with lateral
bract-like branch). Like Hypochthoniidae, Lohmanniidae has
a simple famulus, but it has become short and peg-like. Sim-
plification seems highly homoplasious (Haumann, 1991) and
of little value.

13. Iteral setae lost from tarsi II-IV (pl = iteral setae
retained on at least some of tarsi II-IV). Grandjean (1961a,
1964a) reported many patterns for iteral setae on leg tarsi,

and among the rarest is to have a pair on adult tarsus I, but
none on tarsi II-IV. All four hypochthoniid genera have this
pattern. The single pair first forms in the protonymph; under
Grandjean’s model, they have strongly ‘resisted’ regression,
whereas those of other tarsi were gradually delayed to the
point of loss. Studied Lohmanniidae either lack iterals alto-
gether or only it’ forms on tarsus I. Total loss of iterals is con-
vergent in many lineages; however, when it’ is present in
Lohmanniidae it forms unusually early, in the deutonymph,
which suggests that past resistance to regression was greater
on tarsus I than on II-IV. In this sense, the iteral ontogeny is
considered a derivative of the hypochthoniid type.

14. Ventral setae absent from all leg genua (pl = at least
some ventral setae present). In contrast to the ancestral
state in clade II, Hypochthoniidae have only fundamental
genual setae (larval on I-III, deutonymphal on IV; Grandjean,
1942). The resulting formula (I-IV) is 3-3-2-2 in all known
species (d, l’ and l’ on genua I and II; d and l’ on III and IV).
Ventral setae have been lost in parallel in Mesoplophoridae
and several other groups of Enarthronota, but with formulas
other than 3-3-2-2. Lohmanniidae share the rare genual
setation of Hypochthoniidae (Table 1), which otherwise is
known only for some Brachychthoniidae.

15. Palp tarsus with distal setiform organ trifid (pl = distal
setiform organ bifid). All hypochthonioid mites have the ulti-
mal pair of palp setae fused basally. This is common in
Enarthronota, and found in some species of Palaeosomata,
Parhyposomata, and Brachypylina. Clade II retains this form,
but in Hypochthoniidae the unpaired subultimal seta joins
the ultimals to form a trifid structure, and this is true of
Lohmanniidae. Since the trifid state is also found in both close
(Arborichthoniidae) and distant (Gozmanyina, Nipponiella)
enarthronote outgroups, the character is homoplasious.

Are Lohmanniidae and Nothrolohmanniinae sister-groups
(clade V)?
Of the many apomorphies proposed earlier for Nothroloh-
manniinae (Norton, 2001, 2003), the following five (16-20)
are shared by Lohmanniidae. Papillacarus possibly has
another one, spicules developed from epicuticular cham-
bers, but the ultrastructure of its spicules is unknown and
they are distributed in areas other than the mineral-contain-
ing transverse bands. 
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Table 1 Setation of adult legs (I to IV) of Hypochthonioidea (Mesoplophoridae excluded), Arborichthoniidae and representative Lohmanni-
idae.a

Trochanter Femurb Genu Tibia Tarsusc

Arborichthoniidae
Arborichthonius styosetosus Nortond 1-1-2-2 5-6-3-3 5-5-4-4 5-4-4-4 18-16-13-13

Eniochthoniidae
Eniochthonius minutissimus (Berl.)e 0-0-2-2 3-5-3-3 5-3-3-3 5-4-3-3 18-16-13-13

Hypochthoniidae
Hypochthonius rufulus C. Koch 0-0-2-2 5-5-3-3 3-3-2-2 5-5-3-3 19-15-13-13
Eohypochthonius spp. 0-0-2-2 5-5-3-3 3-3-2-2 5-5-3-3 19-15-13-13
Malacoangelia remigera Berlese 0-0-2-2 5-5-3-3 3-3-2-2 5-5-3-3 19-13-11-12
Nothrolohmannia baloghi Norton 0-0-2-2 5-5-3-3 3-3-2-2 5-5-3-3 19-13-11-12

Lohmanniidae
Lohmannia lanceolata Grandjean 0-0-2-2 5-6-3-3 3-3-2-2 5-5-3-2 17-13-12-12
Torpacarus omittens Grandjean 0-0-2-2 4-5-4-3 3-3-2-2 4-4-2-2 15-13-11-10
Annectacarus mucronatus Grandjean 0-0-2-2 5-6-4-3 3-3-2-2 5-5-2-2 17-13-10-10
Cryptacarus promecus Grandjean 0-0-2-2 5-6-3-3 3-3-2-2 5-5-1-1 17-11-9-9

aData from Grandjean (1950), Fernandez (1984), Norton (1982, 2003), and new observations. bCounts in boldface exceed those of Hypoch-
thonioidea. cFamulus included in count. dAncestral seta m” (monotrope) is absent (regressed) from tarsus I of A. styosetosus but retained in
other listed taxa; bv” was inadvertently omitted from Figure 7 of Norton (1982). eSeta it” is absent (regressed) from tarsus I, present in
Arborichthoniidae and Hypochthoniidae.



16. With pedofossae for accommodation of folded legs
(pl = pedofossae absent). Many Brachypylina have defensive
reactions in which legs are folded into concave niches in the
body wall. In macropyline taxa this behavior and the associ-
ated niches, or pedofossae, are known only from clade VI
and Lohmanniidae.

17. Seta p” absent from tarsus IV (pl = p” present). Proral
setae are rarely lost from tarsus IV in oribatid mites, but only
in clade VI and Lohmanniidae is one lost unilaterally; p” is
absent from all studied species. This loss is most obvious on
the highly regressed protonymphal leg IV, where the normal
count of seven tarsal setae is reduced to six. All studied
Lohmanniidae have the rare protonymphal leg IV setation of
0-0-0-0-6 (Grandjean, 1946a, 1950), and the same is true of
Malacoangelia and Nothrolohmannia.

18. Coxisternal seta 1c setiform in larva, independent of
Claparède’s organ (pl = seta 1c scaliform, covers retracted
Claparède’s organ). Ancestrally in acariform mites coxister-
nal seta 1c is modified to form a protective cap over
Claparède’s organ when the latter is retracted (Grandjean,
1933, 1939, 1954b). Concomitant with the disappearance of
that organ in the protonymph, 1c transforms to a normal
seta. Rarely 1c is setiform in the larva of oribatid mites: pre-
viously known examples were Epilohmanniidae and
Lohmanniidae (Grandjean, 1946b, 1950), but Malacoangelia
shares the trait (Fig. 3C; the larva of Nothrolohmannia is
unknown). Grandjean (1955) considered the setiform larval
state primitive and strongly believed that reversion from
scaliform to setiform was impossible, but since 1c is consis-
tently scaliform in basal acariform groups (Endeostigmata
and Palaeosomata) it must be the plesiomorphic larval form
within Enarthronota. The genetic-epigenetic mechanism
producing the scale form is probably disabled in these rare
cases, and I interpret setiform 1c as an acceleration of the
protonymphal transformation, rather than a reversion. The
acceleration in Epilohmannia is convergent. 

19. Anal plate regressed, strap-like (pl = anal plate well
formed, independent of adanal plate). In clade V adanal
plates comprise most of the adult paraproctal valves, with
the anal plate reduced to a narrow band at their medial
edge. Malacoangelia has complete paraproctal atrichosy
(At3 of Grandjean, 1954a), and the anal plate is not delineat-
ed from the adanal until the adult. Lohmanniidae have no
such setal delays, but anal setae can lack altogether. A con-
vergent internal lineage of Eohypochthonius also has the
apomorphy (Fernandez, 1984).

20. Porose organs present on notogaster (pl = porose
organs absent). Discrete porose organs are rare on the noto-
gaster of macropyline mites, but they occur in clade VI and
in some Lohmanniidae. Their ultrastructure and distribution
differ between the two groups (Alberti et al., 1997, 2001), so
this apomorphy is equivocal.

Characters states incongruent with Figure 2
If Figure 2 is correct, four traits listed above (1, 6, 13, and 20)
are variable within Lohmanniidae and represent autapomor-
phies or homoplasies. Eight other problematic trait distribu-
tions (a-h) are not known to be variable: (a), (b), and (g)
seem to be autapomorphic, the others are homoplasious. 

a. Molting. In studied Hypochthonioidea molting is
prodehiscent (Norton & Kethley, 1994): exuviae of imma-
tures split anteriorly above the appendages in a U-shape and
the animal emerges forward (new observations show M.
remigera is also prodehiscent). The cuticle of immature
Lohmanniidae splits posteriorly in a U-shape, and the animal

emerges backward (Fig. 3D), as in Brachypylina. A transition
from prodehiscence is difficult to explain.

b. Rutellum expanded distally into hyaline, thin, apparently
flexible lobe (pl = rutellum without distal expansion). The distal
projection of Lohmanniidae is thumb-like, not a hyaline lobe. 

c. Notogastral fusion. If Figure 2 is correct, the holonotic
state of Nothrolohmannia and Lohmanniidae would be con-
vergent, or the scissure in Malacoangelia would represent a
reversal. Based on a single known protonymph, immatures
of Nothrolohmannia have a functional transverse scissure
(Fig. 3E) that bears small setae of row e, so the fusion occurs
only in the adult instar. Immatures of Lohmanniidae show no
evidence of a scissure.

d. Proterosomal structure. In Malacoangelia, Nothroloh-
mannia, and Eohypochthonius the prodorsal aspis is isolated
from fused epimera I-II by articulating soft cuticle (a plesio-
morphy). Hypochthonius and Lohmanniidae share the derived
fusion of aspis and epimera I-II into a single proterosomal unit.

e. Setation of femora. The femoral chaetome of Lohman-
niidae (Table 1) seems too rich to be consistent with the
hypothesis in Fig. 2. Hypochthoniidae all have a setation (I to
IV) of 5-5-3-3. But some lohmanniids have six setae on femur
II, greater than any member of Hypochthonioidea, and some
have four setae on femur III, greater than any known mem-
ber of Enarthronota. If the hypothesis is correct, and if the
rich femoral setations of Palaeosomata are ancestral in orib-
atid mites, then setae previously lost by regression have
reappeared in Lohmanniidae. In contrast, the tibial and
tarsal setations of Lohmanniidae are never richer that those
of Hypochthoniidae, and all could have been derived by sim-
ple regressive losses. 

f. Solenidial complements (Grandjean, 1964b). Lohman-
niidae have solenidial formulae for tibiae and tarsi that are
similar to those of Hypochthoniidae: 1-1-1-0 and 2-[1,2]-0-0,
respectively [brackets indicate interspecific variation].
Lohmanniidae have a second genu I solenidion (2-1-1-1) that
is absent from Hypochthoniidae (1-1-1-1), but not from
Eniochthoniidae or Arborichthoniidae (each with 2-1-1-1).
Figure 2 requires independent losses of the second solenid-
ion in clades IV and VI, or its reappearance in Lohmanniidae.

g. Coupling of solenidia with seta d on genua. Overall,
the distribution of seta/solenidion coupling within Enarthro-
nota is complex, but it is rather uniform within Hypochtho-
nioidea. Hypochthoniidae, Eniochthoniidae, and early deriv-
ative Mesoplophoridae (Archoplophora) have seta d inde-
pendent of solenidia on all genua. Arborichthoniidae shares
the pattern on genua I-III, but coupling occurs on genu IV. In
Lohmanniidae d couples to a solenidion on all genua. 

h. Pretarsal claw structure. Malacoangelia, Nothroloh-
mannia, and Eohypochthonius have a tooth along the dorsal
marginal of the claw, but none on the ventral edge.
Hypochthonius has a proximoventral claw, but none on the
dorsal margin. Claws in Lohmanniidae are often smooth, but
if a tooth is present it is proximoventral.

Conclusions
The weight of evidence suggests that Figure 2 is correct, and
that Lohmanniidae should be included in Hypochthonioidea.
Particularly convincing are progressive apomorphies 2, 3, 5,
9, 11, 16, and 18, and rare regressive apomorphies 14 and
17. Incongruencies exist, yet none is exceptional, and similar
levels and types of homoplasy are found in other mite taxa. 

Feeding biology is perhaps the most striking incongru-
ence with Figure 2. Enarthronotes are primarily fungivores
or scavenger/necrophages (Schneider et al., 2005). Loh-
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manniidae are unique among them in being saprophages of
higher plant structural material (see above). Their strong,
broad rutella and robust chelicerae are quite similar to
those of more derived groups with the same feeding biolo-
gy (e.g., Mixonomata, Desmonomata), but the primitive
rutellar base and anarthric subcapitulum reveal an enar-
thronote origin.

If Figure 2 is correct, a classification problem arises of a
type discussed previously (Norton, 2001). Cladistically,
Lohmanniidae form a clade within Hypochthoniidae and
would fit well at the subfamily rank (Lohmanniinae) in a
sequenced classification. But its divergent morphology and
species diversity argues for retaining family rank, restricting
Hypochthoniidae to the genera Hypochthonius and
Eohypochthonius, and once again recognizing Nothroloh-
manniidae for the sister-genera Malacoangelia and
Nothrolohmannia. No classification change is recommended
at this time, pending the results of an ongoing molecular
study (with K. Domes, M. Maraun and S. Scheu)
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Occasionally, specimens of oribatid mites have asymmet-
ric characters, e.g. regarding notogastral setation or the

porose areas of the octotaxic system. Often, the character
expression of the aberrant side is strongly suggestive of the
normal character expression in other more or less related
taxa. Are such anomalies negligible mutations or develop-
mental defects? Can we interprete them as an atavistic rem-
iniscence of ancestors or should we maintain the view that
they are reversal mutations? Grandjean (1948a,b, 1952) dis-
cussed anomalies (‘écarts’) within clones of Platynothrus
peltifer, mostly concerning losses of setae, whether asym-
metric or not, as well as their frequency of occurrence in
populations. He concluded that these types of anomalies are
not small mutations (Grandjean, 1948b, p.882: ‘…les écarts
ne sont pas de petite mutations’), but phenotypical expres-
sions in the context of evolution in the number of organs.

Some simple notogastral characters, as loss of cen-
trodorsal setae (da, dm, dp), loss of setae c1 or c3, or realiza-
tion of the octotaxic system either as areae porosae or as
sacculi, seem to be widely distributed within the families of
poronotic oribatid mites. The mosaic-like distribution of
these characters in the systematic branches makes a cladis-
tic analysis nearly impossible without assuming several con-
vergent disappearances; patterns of above mentioned, pre-
sumably ‘homologous’ character expressions contradict
other characters which are assumed to be of systematic rel-
evance. 

In the following, I discuss some examples of notogastral
anomalies in the light of phylogeny, ontogeny and I intro-
duce a model of regulatory gene complexes influencing mor-
phogenesis and gene expression in the instars of oribatid
mites to explain these anomalies. The results may help to
critically revise taxonomy and systematics of oribatid mites,
based on knowledge of modern molecular genetic processes
underlying phenotypical character expression. A similar

approach regarding enzymatic patterns in Platynothrus
peltifer has been proposed earlier as a ‘new concept of evo-
lution’ by Ziegler & Wauthy (1987). 

Abnormal patterns of notogastral setation and areae
porosae in Phenopelopidae
Eupelops acromios

Within the genus Eupelops there are two well-known groups
of species with different notogastral setation pattern: (A) the
setae h3 are very close to the areae porosae A1 and the asso-
ciated setae lp; (B) the setae h3 are in normal lateral position
and distant from setae lp, which are associated with areae
porosae A1.

Eupelops acromios (Hermann) belongs to the species
group B; its diagnostic characters are: short club-like sensil-
lus, notogastral setae of median length and distally broad-
ened, setae h3 in normal lateral position. It is the most com-
mon arboreal bark-dwelling Eupelops species in Europe.
Surprisingly, I recognized three single specimens with asym-
metric setation pattern, two of them within populations of
normal specimens and one specimen in a microscopical slide
in the Willmann-Collection. The abnormality in all three
specimens is the setation type A on the right side (with jux-
taposed setae h3 and lp; Fig. 1a) and the ‘normal’ setation
type B on the left side. Using a determination key (Willmann,
1931; Weigmann, 2006) we must decide to follow either the
right or the left side pattern. The left side morphology leads
without any doubt to E. acromios. 

Willmann (1931) ignored the asymmetry of his speci-
men, he regarded the right side as relevant and described his
single specimen as ‘Pelops geminus Berlese’. Examining the
mounted specimen (collected by C. Willmann on 25 July
1919 from Stoteler Forest, near Bremen, Germany), I
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(Oribatida: Poronota) interpreted as cryptic ancestral characters
modulated by regulatory genes
Gerd Weigmann
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assumed the specimen as probably belonging to Eupelops
claviger (Berlese) (see Weigmann, 2006, p. 344). But now,
compared with the other two abnormal E. acromios, the
Willmann-specimen is most probably conspecific.

The second specimen with this asymmetry (drawing in
Fig. 1a) has been collected by Stephanie Sobek in 2001 from
a canopy branch of an oak tree, near Basel in Switzerland
(Weigmann et al., 2004), together with several normal and
symmetric specimens of E. acromios. The third specimen has
been found in a dune area on the Isle of Sylt, Northern
Germany (in 2005; G Weigmann, unpubl.), together with
some normal E. acromios. These three independent findings
from three distinct populations give rise to the assumption
of a common cause for the misdevelopment, possibly a uni-
lateral defect in the morphogenesis of the adult. The first
idea was that the right side with the juxtaposed setae h3 and
lp should be a special apomorphy. In that case, the disjunct
position of h3 (as represented in nearly all other families of
poronotic Oribatida) should be plesiomorphous: this seems
to be a misinterpretation as will be discussed below.

Eupelops occultus

Eupelops occultus (CL Koch) is quite common in meadows. It
belongs to the species group A as characterized in the previ-
ous section; the setae h3 and lp are juxtaposed and form a
complex together with A1. In 2005, I got some specimens
collected by Andreas Toschki (Aachen, Germany) to verify
the species identity. There was one specimen with abnormal
notogastral setation (together with a normal specimen)
which shows imperfect juxtaposition on the right side and
far distant position of h3 on the left (Fig. 1b). This observa-
tion seems to support the idea of a plesiomorphous charac-
ter expression, representing an abnormal atavistic regres-
sion towards disjunct setae, yet with asymmetric configura-
tion.

The described anomalies in E. acromios on the one hand
and in E. occultus on the other seem to be incompatible and
antagonistic: in E. acromios the setae h3 and lp are juxta-
posed abnormally, whereas in E. occultus the setae h3 and lp
are separated abnormally! Is a common explanatory model
conceivable? This phenomenon begs for detailed phyloge-
netical discussion.

Abnormal patterns of notogastral setation in
Scheloribatidae
In Scheloribates species and in most other genera of the
family the notogastral setation is ‘multideficient’, following
the terminology of Grandjean (1954), i.e., there are 10 pairs
of notogastral setae in the adults. Some taxa, as Topobates,
which is related to Scheloribates, have 12-14 pairs of noto-
gastral setae in the adults, representing an intermediate sta-
tus between ‘unideficient’ (15 pairs) and ‘multideficient’ (10
pairs). Some species with intermediate setation have been
described as further genera, which seems to be punctilious
splitting, based only on a character of minor taxonomic value
(discussed in Weigmann & Miko, 1998). In this context, it is
of highest importance that the third nymphs of all
Scheloribatidae and related families (as far as I know) repre-
sent the unideficient status, i.e., with all 15 pairs of notogas-
tral setae (the 16th seta f1 in basic Oribatida is lost in all
poronotic Oribatida).

Looking through the literature I discovered a lot of indi-
vidual abnormalities in the notogastral setation of
Scheloribates and Topobates species. In the following only
some examples will be presented, constricted to both taxa,
but the same phenomenon can be observed in some other
genera and families as well; for instance, cf. Seniczak et al.
(1990) on the ceratozetid Fuscozetes fuscipes. The first
described Topobates was T. granifer Grandjean. It has 14
pairs of notogastral setae in the adult; compared with
Scheloribates we find the mediodorsal setae c1, da, dm, and
dp in addition. Yet, even the first author marked a unilateral
vestigial seta c3, which represents the 15th seta of the unid-
eficient pattern (Grandjean, 1958). Adult Topobates holsati-
cus Weigmann have 13 pairs of notogastral setae (without c1

and c3), but in one individual out of ca. 200, the unilateral
seta c3 was present and stronger than all other setae (as nor-
mally observed in some Oribatula species). In a Spanish T.
holsaticus population, Subias & Arillo (2000) found a unilat-
eral seta c1 in a single specimen. Csiszar & Jeleva (1962) pub-
lished a new species, Scheloribates labyrinthicus Jeleva,
which differs from the widespread S. laevigatus (CL Koch)
only by bilateral expression of hypertrophied c3-setae: S.
labyrinthicus is assumed a junior synonym of S. laevigatus
(Weigmann & Miko, 1998). Ingrid Wunderle has found a
specimen of the arboreal Scheloribates ascendens
Weigmann et Wunderle, with additional alveoles of notogas-
tral setae c3 and the centrodorsal da, dm, dp, partly unilater-
al, though all other studied adults have 10 pairs as usual
(Weigmann & Wunderle, 1990). Topobates carpathicus
Weigmann et Miko has 12 pairs of notogastral setae in the
adults (dm and dp present), but some individuals show an
additional vestigial pair of da-setae.

All these examples of abnormal additional notogastral
setae in adult Scheloribatidae beg for a unifying explanation.
The existence of 15 pairs of notogastral setae in the juveniles
indicate that genes for these setae are present. It seems
most probable that the additional setae of the unideficient
pattern of the nymphs are repressed morphogenetically in
the adult phenotype, yet there is a latent potential to devel-
op these setae in the adult instar! One consequence of this
hypothesis is that additional notogastral setae of the adults
are atavistic reminicences of ancestral characters, in abnor-
mal (often asymmetric) cases as well as in Topobates and
other genera of the Scheloribates complex. There are no
convincing apomorphies to define distinct genera in a suffi-
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Figure 1 Abnormal Eupelops specimens. (a) E. acromios: left side
with normal notogastral setation pattern, right side abnormal. (b) E.
occultus: left side abnormal. Abbreviations: in, interlamellar seta;
Aa, A1, A2, Areae porosae; lm, lp, h2, h3,notogastral setae.


