




Pattern-Oriented Software

Architecture For

Dummies®

Visit

www.dummies.com/cheatsheet/patternorient

edsoftwarearchitecture to view this book's

cheat sheet.

Table of Contents

Introduction

About This Book

Conventions Used in This Book

What You’re Not to Read

Foolish Assumptions

How This Book Is Organized

Part I: Introducing Software Architecture and

Patterns

Part II: Putting Patterns to Work

Part III: Creating Your Application Architecture

Part IV: Designing with Other POSA Patterns

Part V: The Part of Tens

Icons Used in This Book

Where to Go from Here

http://www.dummies.com/cheatsheet/patternorientedsoftwarearchitecture


Part I: Introducing Software Architecture and Patterns

Chapter 1: Software Architecture Basics

Understanding Software Architecture

Components of software architecture

Architecture document

Architecture models (views)

Software development methods and

processes

Identifying the Problem to Be Solved

Breaking the problem into the four

attributes

Developing a problem statement

Defining the important use cases

Identifying the Requirements

Defining functional requirements

Defining nonfunctional requirements

Reviewing the requirements

Choosing a Software System Style

Architectural styles

Programming style

Chapter 2: Where Do Architectures Come From?

Understanding Architectural Styles



Elements of styles

Patterns and architectural styles

Creating Software Architecture

Deciding when to create an architecture

Identifying problem categories

Defining layers and abstractions

Employing enabling techniques

Designing your architecture

Documenting your work

Chapter 3: What Do Software Architectures Look

Like?

Examining UML Architectural Models

Choosing a diagram style

Showing different views

Working with UML Diagrams

Creating class diagrams

Showing the interactions

Deploying your system

Packaging up the software

Using use-case diagrams

Choosing Your Design Tools

Commercial software-development tools

Free UML tools

General drawing tools



Explaining Your Software in an Architecture

Document

Organizing the architecture document

Filling in the sections

Chapter 4: Software Pattern Basics

What Patterns Are

Reusable designs

Proven solutions

Educational tools

System guides

Architectural vocabularies

Repositories of expertise

What Patterns Are Not

Looking Inside Patterns

Title

Problem statement

Context

Forces

Solution

Other common sections

Understanding the Patterns Used in This Book

The Design Patterns pattern style

The Pattern-Oriented Software

Architecture pattern style



Chapter 5: Seeing How Patterns Are Made and

Used

Creating Patterns

Coming up with the idea

Confirming the Rule of Three

Extracting the general solution

Writing the pattern document

Naming the pattern

Getting expert reviews

Keeping patterns current

Documenting System Architecture with

Patterns

Part II: Putting Patterns to Work

Chapter 6: Making Sense of Patterns

Understanding Pattern Classifications

Styles

Depth

Other classifications

Grouping Patterns

Pattern collections

Pattern languages

Chapter 7: Building Your Own Pattern Catalog



Assembling Your Catalog

Choosing a medium

Identifying the problems you face

Finding patterns that solve your problems

Organizing the catalog in sections

Connecting the patterns

Keeping Your Catalog Current

Chapter 8: Choosing a Pattern

Examining Patterns Critically

Asking the right questions about patterns

Knowing what to look for in a pattern

Selecting a Particular Pattern

Step 1: Specify the problem

Step 2: Select the pattern category

Step 3: Select the problem category

Step 4: Compare the problem

descriptions

Step 5: Compare benefits and liabilities

Step 6: Select the best variant

Step 7: Select an alternative problem

category

Designing Solution Architecture with Patterns

Part III: Creating Your Application Architecture



Chapter 9: Building Functionality in Layers

Using Layered Architecture

Keeping communications open

Creating web applications

Adapting to new hardware

Problem: Designing at Differing Levels

Building a monolith

Breaking up your monolith

Making this problem harder

Solution: Layering Your System

Exploring the effects of layers

Layering your architecture

Implementing a layered architecture

Chapter 10: Piping Your Data through Filters

Problem: Analyzing an Image Stream

Solution: Piping through Filters

Exploring the effects of Pipes and Filters

Implementing Pipes and Filters

Chapter 11: Sharing Knowledge and Results on a

Blackboard

Problem: Building an Attack Computer

Meet the components



Ponder your approach

Enter the blackboard

Put your blackboard into software

Solution: Building the Blackboard Architecture

Exploring the effects of the blackboard

Knowing the parts of a blackboard system

Implementing a blackboard architecture

Chapter 12: Coordinating Communication through

a Broker

Problem: Making Servers Cooperate

Thinking about the problem

Adding a middleman

Connecting clients and servers

Solution: Use a Broker

Looking inside a broker system

Exploring the effects of broker

architecture

Following the flow of broker messages

Implementing a broker architecture

Chapter 13: Structuring Your Interactive

Application with Model-View-Controller

Problem: Looking at Data in Many Ways

Pondering what you need



Viewing the system flexibly

Keeping the views current

Changing the user interface

Solution: Building a Model-View-Controller

System

Exploring the effects of MVC

Inspecting MVC’s moving parts

Implementing MVC

Seeing Other Ways to Manage Displays

Combining controller and view

Comparing Presentation-Abstraction-

Control

Chapter 14: Layering Interactive Agents with

Presentation-Abstraction-Control

Understanding PAC

Problem: Coordinating Interactive Agents

Combining the programs

Ruling out MVC

Comparing PAC and MVC

Using separate agents

Solution: Creating a Hierarchy of PAC Agents

Exploring the effects of PAC

Knowing when — and when not — to use

PAC



Looking inside PAC architecture

Implementing PAC

Chapter 15: Putting Key Functions in a

Microkernel

Problem: Hosting Multiple Applications

Considering an existing OS

Designing a custom OS

Separating policy from mechanisms

Building the system

Solution: Building Essential Functionality in a

Microkernel

Examining Microkernel Architecture

Viewing the architecture’s parts

Exploring the effects of the Microkernel

pattern

Implementing a microkernel architecture

Chapter 16: Reflecting and Adapting

Understanding Reflection

Looking for Reflection

Externalization

Code analysis tools

Aspect-oriented programming

System configuration files

Designing Architectural Reflection



Making applications adaptable

Structuring the classes

Understanding the consequences of

Reflection

Implementing Reflection

Programming Reflection Today

Reflection in C++

Reflection in Java

Reflection in C#

Reflection in Ruby

Part IV: Designing with Other POSA Patterns

Chapter 17: Decomposing the System’s Structure

Understanding Whole-Part Systems

Seeing how the pieces fit

Recognizing the benefits and liabilities

Implementing the Whole-Part Pattern

Step 1: Define the whole’s public

interface

Step 2: Divide the whole into parts

Step 3: Define the services of the whole

and the services offered by the parts

Step 4: Build the parts

Step 5: Implement the whole

Chapter 18: Making a Component the Master



Introducing the Master-Slave Pattern

Benefits of Master-Slave

Liabilities of Master-Slave

Implementing Master-Slave

Step 1: Divide the work

Step 2: Combine the subtasks

Step 3: Define how master and slaves will

cooperate

Step 4: Implement the slave components

Step 5: Build the master component

Chapter 19: Controlling Access

Understanding Proxies

The Proxy pattern versus the Broker

pattern

Parts of a proxy

Getting Acquainted with Proxy Variants

Remote

Protection

Cache

Synchronization

Counting

Virtual

Firewall

Reverse



Implementing a Proxy

Step 1: Identify access control

responsibilities

Step 2: Introduce an abstract base class

Step 3: Implement the proxy’s functions

Step 4: Remove responsibilities from the

server

Step 5: Give the proxy theaddress of the

server

Step 6: Remove the relationships

between the clients and servers

Chapter 20: Managing the System

Separating Requests from Execution with

Command Processor

Looking inside the pattern structure

Implementing Command Processor

Managing Your Views with View Handler

Looking inside View Handler

Implementing View Handler

Chapter 21: Enhancing Interprocess

Communication

Forwarding Messages to a Receiver

Using specialized components

Implementing Forwarder-Receiver



Connecting Client and Server through a

Dispatcher

Issuing directions from a dispatcher

Implementing Client-Dispatcher-Server

Publishing State Changes to Subscribers

Step 1: Define the publication policies

Step 2: Define the publisher’s interface

Step 3: Design the subscriber interface

Chapter 22: Counting the Number of References

Problem: Using the Last of Something

First try: Passing objects with pointers

Second try: Passing objects by copying

Third try: Using the Counted Pointer idiom

Solution: Releasing Resources with the

Counted Pointer Idiom

Implementing Counted Pointer

Seeing some Counted Pointer variations

Part V: The Part of Tens

Chapter 23: Ten Patterns You Should Know

Special Case

Do Food

Leaky Bucket Counter



Release Line

Light on Two Sides of Every Room

Streamline Repetition

Observer

Sign-In Continuity

Architect Also Implement

The CHECKS Pattern Language of Information

Integrity

Chapter 24: Ten Places to Look for Patterns

A Pattern Language

Pattern-Oriented Software Architecture

Design Patterns

Domain-Driven Design

Pattern Languages of Program Design

Patterns for Time-Triggered Embedded

Systems

Software Configuration Management Patterns

Patterns of Enterprise Application

Architecture

Welie.com

Apprenticeship Patterns

Chapter 25: Ten Ways to Get Involved with the

Pattern Community

Advocate Using Patterns

Write About Your Experiences Using Patterns

Compile a Catalog of Your Work

Mentor Someone

Help Index Patterns



Join a Mailing List

Join a Reading Group

Write Your Own Patterns

Attend a Pattern Conference

Start a Writers’ Workshop

Cheat Sheet



Pattern-Oriented Software

Architecture For Dummies®

by Robert Hanmer

Pattern-Oriented Software Architecture For Dummies®

Published by

John Wiley & Sons, Ltd

The Atrium

Southern Gate

Chichester

West Sussex

PO19 8SQ

England

Email (for orders and customer service enquires): cs-

books@wiley.co.uk

Visit our home page on www.wiley.com

Copyright © 2013 by Alcatel-Lucent. All rights reserved.

Published by John Wiley & Sons Ltd, Chichester, West Sussex

All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system or transmitted in any

form or by any means, electronic, mechanical, photocopying,

recording, scanning or otherwise, except under the terms of the

mailto:cs-books@wiley.co.uk
http://www.wiley.com/


Copyright, Designs and Patents Act 1988 or under the terms of a

licence issued by the Copyright Licensing Agency Ltd., Saffron

House, 6-10 Kirby Street, London EC1N 8TS, UK, without the

permission in writing of the Publisher. Requests to the

Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Ltd, The Atrium,

Southern Gate, Chichester, West Sussex, PO19 8SQ, England, or

emailed to permreq@wiley.co.uk, or faxed to (44) 1243 770620.

Limit of Liability/Disclaimer of Warranty: The publisher, the

author, and anyone else in preparing this work make no

representations or warranties with respect to the accuracy or

completeness of the contents of this work and specifically

disclaim all warranties, including without limitation warranties

of fitness for a particular purpose. No warranty may be created

or extended by sales or promotional materials. The advice and

strategies contained herein may not be suitable for every

situation. This work is sold with the understanding that the

publisher is not engaged in rendering legal, accounting, or

other professional services. If professional assistance is

required, the services of a competent professional person

should be sought. Neither the publisher nor the author shall be

liable for damages arising herefrom. The fact that an

organization or Website is referred to in this work as a citation

and/or a potential source of further information does not mean

that the author or the publisher endorses the information the

organization or Website may provide or recommendations it

may make. Further, readers should be aware that Internet

Websites listed in this work may have changed or disappeared

between when this work was written and when it is read.

For general information on our other products and services,

please contact our Customer Care Department within the U.S. at

877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-

4002.

mailto:permreq@wiley.co.uk


For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats

and by print-on-demand. Some content that appears in standard

print versions of this book may not be available in other

formats. For more information about Wiley products, visit us at

www.wiley.com.

British Library Cataloguing in Publication Data: A catalogue

record for this book is available from the British Library.

ISBN 978-1-119-96399-8 (pbk); ISBN 978-1-119-96631-9 (ebk); ISBN

978-1-119-96632-6 (ebk); ISBN 978-1-119-96630-2 (ebk)

Printed and bound in the United States by Bind-Rite

10 9 8 7 6 5 4 3 2 1

About the Author

Robert Hanmer is a director of The Hillside Group, an

organization whose mission is to improve quality of life for

everyone who uses, builds, and encounters software systems.

The Hillside Group also sponsors Pattern Languages of

Programming (PLoP) software pattern conferences. Bob is

active in the software pattern community and has been program

chair at pattern conferences in the United States and overseas.

He is a consulting member of technical staff with Alcatel-Lucent

near Chicago. Within Alcatel-Lucent, Lucent Technologies, and

Bell Laboratories (same office, new company names), he is

involved in development and architecture of embedded

systems, focusing especially on the areas of reliability and

file:///Volumes/CompServices/Working/Tech/9781119963998/9781119963998%20inserts/www.wiley.com/techsupport
file:///Volumes/CompServices/Working/Tech/9781119963998/9781119963998%20inserts/www.wiley.com


performance. Previously, he designed interactive graphics

systems used by medical researchers.

Bob is the author of Patterns for Fault Tolerant Software (Wiley)

and has written or co-written 14 journal articles and several

book chapters. He is a senior member of the Association for

Computing Machinery, a member of the Alcatel-Lucent

Technical Academy, and a member of the IEEE Computer

Society. He received his BS and MS degrees in Computer Science

from Northwestern University in Evanston, Illinois.

Dedication

For Karen

Author’s

Acknowledgments

First, and most important, I want to acknowledge the authors of

Pattern-Oriented Software Architecture: A System of Patterns

(Wiley): Frank Buschmann, Regine Meunier, Hans Rohnert, Peter

Sommerlad, and Michael Stal. Peter also has been helpful with

questions about modern C++ and the software architecture

classroom.

Many other people answered questions, reviewed sections, or

generally consulted with me while I was writing this book.

Thanks to Ademar Aguiar, Omar Aldawud, Dan Bergen, Filipe

Correia, Chuck Corwin, Jerry Dzeidzic, Christoph Fehling, Becky

Fletcher, Brian Foote, Karen Hanmer, Kenji Hiranabe, Lise

Hvatum, Satomi Joba, Dr. Ralph Johnson, Capt. U.S. Navy (Ret.)

Will H. Jordan, Steven P. Karas, Allan Kelley, Christian Kohls,

Christian Koppe, John Krallman, John Letourneau, Steffen

Macke, Dennis Mancl, Jyothish Maniyath, Veena Mendiratta,



Pedro Monteiro, Karl Rehmer, Linda Rising, Hans Rudin, Eugene

Wallingford, Michael Weiss, and Joe Yoder.

Thanks to the members of my writers’ workshop group at PLoP

2011 who held a workshop on parts of this book: Dr. Tanya L.

Crenshaw, Andre Hauge, Jiwon Kim, Alexander Nowak, Rick

Rodin, YoungSu Son, and Hironori Washizaki.

The Real-World Example sidebars in the pattern chapters are

based on a workshop at the 1998 OOPSLA conference. It was

organized by Michael Duell, Linda Rising, Peter Sommerlad, and

Michael Stal. Russ Frame, Kandi Frasier, Rik Smoody, and

Jun’ichi Suzuki participated in the workshop and contributed to

the examples that I’ve adapted here.

Thanks also to the many people at John Wiley & Sons, including

Birgit Gruber, Chris Katsaropoulos, Elizabeth Kuball, Ellie Scott,

Jim Siddle, Kathy Simpson, Chris Webb, and the others whose

names you see on the Publisher’s Acknowledgments page.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at

http://dummies.custhelp.com. For other comments, please

contact our Customer Care Department within the U.S. at 877-

762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market

include the following:

Acquisitions and Editorial

Project Editor: Elizabeth Kuball

Executive Commissioning Editor: Birgit Gruber

Assistant Editor: Ellie Scott

http://dummies.custhelp.com/


Copy Editor: Elizabeth Kuball

Technical Editor: James Siddle

Editorial Manager: Jodi Jensen

Sr. Project Editor: Sara Shlaer

Editorial Assistant: Leslie Saxman

Cover Photo: © teekid / iStock

Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Senior Project Coordinator: Kristie Rees

Layout and Graphics: Joyce Haughey

Proofreaders: John Greenough, Tricia Liebig

Indexer: Sharon Shock

Marketing

Associate Marketing Director: Louise Breinholt

Marketing Manager: Lorna Mein

Senior Marketing Executive: Kate Parrett

Marketing Assistant: Tash Lee

UK Tech Publishing

Michelle Leete, Vice President Consumer and Technology

Publishing Director

http://www.the5thwave.com/


Martin Tribe, Associate Director–Book Content Management

Chris Webb, Associate Publisher

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group

Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Kathleen Nebenhaus, Vice President and Executive

Publisher

Composition Services

Debbie Stailey, Director of Composition Services



Introduction

Wouldn’t it be great to never rewrite code? To always face new

challenges rather than solve the same problems over and over?

To always solve new and interesting problems instead of

rehashing old ones? If you remember how you solved a problem

before, reuse that solution. Don’t reinvent the wheel!

Software patterns help you avoid reinventing the wheel, in that

they help you avoid reinventing the solution to a software

problem that someone else has already solved.

Patterns have been around in the software community since at

least the early 1990s. Software pattern authors have been

writing patterns that document their proven solutions in the

hope that you — the reader — will benefit from their

experience.

In particular, many people are collecting and publishing

patterns that structure software architecture — the underlying

structure of the software. The goal of architectural patterns is

to speed your development; allow you to move forward,

knowing that a particular architecture will help rather than

hinder you; and ultimately give you the time you need to solve

new and interesting problems.

Pattern-Oriented Software Architecture For Dummies is written to

help you understand the basics of software architecture. It also

helps you understand software patterns. The book brings these

two concepts together and presents eight software

architectures that you can use in your next software design

project. It also gives you some design patterns, tips, and

resources where you can find out more about software patterns.



About This Book

This book provides proven architectures and designs expressed

as patterns. These patterns aren’t the only ways you can

structure your software architecture, though, and this book

doesn’t replace the other references you use for software design

patterns.

As you read this book, keep in mind that you can’t just plug-and-

play these patterns. Your intelligence and taste are required to

adapt these patterns to your design problem. This is the norm

with software patterns: No respectable pattern author will tell

you that you can use his or her patterns without adapting them

to your situation.

In the early days, software patterns provided valuable

assistance to people who were trying to get a handle on object-

oriented design. The discussions of these patterns seemed to

me, however, to focus on getting the structure of the object-

oriented program’s header files and class definitions correct at

the expense of the real application. In this book, I give you an

understanding of the solutions to the problems, not the detailed

header files. I want you to understand the principles involved

rather than get caught up in the implementation details. As a

result, this book isn’t language-specific or programming

paradigm-specific; instead, it explains the underlying principles

involved in the solutions that you will apply using your prior

experience and expertise.

Finally, you don’t have to read the whole book from front cover

to back. Instead, use the table of contents and index to locate

the information you need when you need it.



Conventions Used in This

Book

Here are the conventions I use throughout this book:

 I capitalize the names of patterns. In some chapters, the

name of the pattern is the same as the name of a key

component of the architecture. In general, the pattern

name is capitalized, and the name of the component is not

capitalized.

 I abbreviate the names of many of the patterns discussed

in Parts III and IV because they’re quite long. Model-View-

Controller, for example, becomes MVC. On the first use in a

chapter, the whole name is spelled out, and the

abbreviation is used thereafter.

 When I introduce a new term, I put it in italics and define it

shortly thereafter (often in parentheses).

 I put web addresses in monofont so they stand out from the

surrounding text. Note: When this book was printed, some

web addresses may have needed to break across two lines

of text. If that happened, rest assured that we haven’t

added extra characters (such as hyphens) to indicate the

break. So, when using one of these web addresses, just

type in exactly what you see in this book, pretending as

though the line break doesn’t exist.

What You’re Not to Read

I’ve sprinkled a few sidebars around in the text. They show up

as gray boxes. You can safely skip them. They contain

information that I think you may find useful but that isn’t

required to understand the patterns or software architecture.



You also can skip anything marked with a Technical Stuff icon

(see “Icons Used in This Book,” later in this Introduction, for

more information).

Foolish Assumptions

I make some assumptions about who would read and benefit

from this book. I don’t expect that you’re an expert in software

architecture; in fact, I assume that you’re pretty new to it. I do

assume that you know something about writing software,

however, and that you’ve already written some software. In

particular, I assume that you’ve written software in some sort of

team setting on a project bigger than a school project. From this

experience, you’ll have learned about designing with modules

and components.

Because more software is changed, evolved, and maintained

than written from scratch, I assume that you’ve experienced

some software maintenance. Maintenance of someone else’s (or

even your own) code will have given you an understanding of

the importance of modularity and good structure.

I don’t assume that you’re an expert in object-oriented design

or any other particular design methods. The architectures in

this book can be adapted to any paradigm you work in and are

familiar with. Some familiarity with at least the basic

terminology of objects, classes, and methods is assumed.

How This Book Is

Organized

This book has five parts. Parts I and II introduce software

architecture and software patterns. The next two parts present

real live patterns that you can use in your software. Finally, Part



V shows you where to turn next to explore the exciting world of

software patterns.

Part I: Introducing Software

Architecture and Patterns

To build a foundation for the rest of the book and to explain the

basic concepts, Part I focuses on software architecture: what it

is, how to create it, and how to document it. Architecture builds

on the needs of the customer or client, so Part I also talks about

the requirements that shape your architecture.

Architecture needs to be explained to those who will build the

application. Even if you’re the sole builder, an explanation will

help you remember later what you did today. Part I introduces

various ways of documenting your architecture, including

simple Class-Responsibility-Collaboration cards, the basics of

the Unified Modeling Language, and an outline of an

architecture description document.

Part I ends with a chapter that describes the basics of software

patterns. This chapter provides a foundation for the

discussions in Part II of making the most of software patterns.

Part II: Putting Patterns to

Work

You need to find patterns that address the problems you need

to solve. Part II describes how patterns are organized and

catalogued. It also presents a process you can use to find the

patterns that can help you.

As you start using patterns, you’ll find that you use the same

patterns over and over. Part II has instructions for collecting the


