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Introduction

Wouldn’t it be great to never rewrite code? To always face new

challenges rather than solve the same problems over and over?

To always solve new and interesting problems instead of

rehashing old ones? If you remember how you solved a problem

before, reuse that solution. Don’t reinvent the wheel!

Software patterns help you avoid reinventing the wheel, in that

they help you avoid reinventing the solution to a software

problem that someone else has already solved.

Patterns have been around in the software community since at

least the early 1990s. Software pattern authors have been

writing patterns that document their proven solutions in the

hope that you — the reader — will benefit from their

experience.

In particular, many people are collecting and publishing

patterns that structure software architecture — the underlying

structure of the software. The goal of architectural patterns is

to speed your development; allow you to move forward,

knowing that a particular architecture will help rather than

hinder you; and ultimately give you the time you need to solve

new and interesting problems.

Pattern-Oriented Software Architecture For Dummies is written to

help you understand the basics of software architecture. It also

helps you understand software patterns. The book brings these

two concepts together and presents eight software

architectures that you can use in your next software design

project. It also gives you some design patterns, tips, and

resources where you can find out more about software patterns.



About This Book

This book provides proven architectures and designs expressed

as patterns. These patterns aren’t the only ways you can

structure your software architecture, though, and this book

doesn’t replace the other references you use for software design

patterns.

As you read this book, keep in mind that you can’t just plug-and-

play these patterns. Your intelligence and taste are required to

adapt these patterns to your design problem. This is the norm

with software patterns: No respectable pattern author will tell

you that you can use his or her patterns without adapting them

to your situation.

In the early days, software patterns provided valuable

assistance to people who were trying to get a handle on object-

oriented design. The discussions of these patterns seemed to

me, however, to focus on getting the structure of the object-

oriented program’s header files and class definitions correct at

the expense of the real application. In this book, I give you an

understanding of the solutions to the problems, not the detailed

header files. I want you to understand the principles involved

rather than get caught up in the implementation details. As a

result, this book isn’t language-specific or programming

paradigm-specific; instead, it explains the underlying principles

involved in the solutions that you will apply using your prior

experience and expertise.

Finally, you don’t have to read the whole book from front cover

to back. Instead, use the table of contents and index to locate

the information you need when you need it.



Conventions Used in This

Book

Here are the conventions I use throughout this book:

 I capitalize the names of patterns. In some chapters, the

name of the pattern is the same as the name of a key

component of the architecture. In general, the pattern

name is capitalized, and the name of the component is not

capitalized.

 I abbreviate the names of many of the patterns discussed

in Parts III and IV because they’re quite long. Model-View-

Controller, for example, becomes MVC. On the first use in a

chapter, the whole name is spelled out, and the

abbreviation is used thereafter.

 When I introduce a new term, I put it in italics and define it

shortly thereafter (often in parentheses).

 I put web addresses in monofont so they stand out from the

surrounding text. Note: When this book was printed, some

web addresses may have needed to break across two lines

of text. If that happened, rest assured that we haven’t

added extra characters (such as hyphens) to indicate the

break. So, when using one of these web addresses, just

type in exactly what you see in this book, pretending as

though the line break doesn’t exist.

What You’re Not to Read

I’ve sprinkled a few sidebars around in the text. They show up

as gray boxes. You can safely skip them. They contain

information that I think you may find useful but that isn’t

required to understand the patterns or software architecture.



You also can skip anything marked with a Technical Stuff icon

(see “Icons Used in This Book,” later in this Introduction, for

more information).

Foolish Assumptions

I make some assumptions about who would read and benefit

from this book. I don’t expect that you’re an expert in software

architecture; in fact, I assume that you’re pretty new to it. I do

assume that you know something about writing software,

however, and that you’ve already written some software. In

particular, I assume that you’ve written software in some sort of

team setting on a project bigger than a school project. From this

experience, you’ll have learned about designing with modules

and components.

Because more software is changed, evolved, and maintained

than written from scratch, I assume that you’ve experienced

some software maintenance. Maintenance of someone else’s (or

even your own) code will have given you an understanding of

the importance of modularity and good structure.

I don’t assume that you’re an expert in object-oriented design

or any other particular design methods. The architectures in

this book can be adapted to any paradigm you work in and are

familiar with. Some familiarity with at least the basic

terminology of objects, classes, and methods is assumed.

How This Book Is

Organized

This book has five parts. Parts I and II introduce software

architecture and software patterns. The next two parts present

real live patterns that you can use in your software. Finally, Part



V shows you where to turn next to explore the exciting world of

software patterns.

Part I: Introducing Software

Architecture and Patterns

To build a foundation for the rest of the book and to explain the

basic concepts, Part I focuses on software architecture: what it

is, how to create it, and how to document it. Architecture builds

on the needs of the customer or client, so Part I also talks about

the requirements that shape your architecture.

Architecture needs to be explained to those who will build the

application. Even if you’re the sole builder, an explanation will

help you remember later what you did today. Part I introduces

various ways of documenting your architecture, including

simple Class-Responsibility-Collaboration cards, the basics of

the Unified Modeling Language, and an outline of an

architecture description document.

Part I ends with a chapter that describes the basics of software

patterns. This chapter provides a foundation for the

discussions in Part II of making the most of software patterns.

Part II: Putting Patterns to

Work

You need to find patterns that address the problems you need

to solve. Part II describes how patterns are organized and

catalogued. It also presents a process you can use to find the

patterns that can help you.

As you start using patterns, you’ll find that you use the same

patterns over and over. Part II has instructions for collecting the


