The Handbook of Biomarkers

The Handbook of Biomarkers

Kewal K. Jain MD, FRACS, FFPM

Jain PharmaBiotech, Basel, Switzerland

Kewal K. Jain Jain PharmaBiotech Blaesiring 7 4057 Basel Switzerland jain@pharmabiotech.ch

ISBN 978-1-60761-684-9 e-ISBN 978-1-60761-685-6 DOI 10.1007/978-1-60761-685-6 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010920089

© Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Humana Press is part of Springer Science+Business Media (www.springer.com)

Preface

This book is an overview of the state of the art of biomarkers. A biomarker is a characteristic that can be objectively measured and evaluated as an indicator of a physiological as well as a pathological process or response to a therapeutic intervention. Although there is nothing new about biomarkers such as glucose for diabetes and blood pressure for hypertension, the current focus is on molecular biomarkers, which have taken the center stage in the development of molecular medicine. Molecular diagnostic technologies have enabled the discovery of molecular biomarkers and are helping in the definition of their role in the pathomechanism of disease. Biomarkers form the basis of development of diagnostic assays as well as targets for drug discovery. Effect of drugs, in clinical trials as well as in practice, can be monitored by biomarker assays.

There is a tremendous amount of literature on biomarkers, but there is no comprehensive source of information on the topic. Of the thousands of biomarkers that are being discovered, relatively few are being validated for further applications, and it is difficult to evaluate the potential of a biomarker. This book describes different types of biomarkers and their discovery using various "-omics" technologies such as proteomics and metabolomics along with the background information for evaluations of biomarkers as well as the procedures for their validation and use in clinical trials. Biomarkers are first described according to technologies and then according to various diseases. An important feature is the correlation between diseases and classifications of biomarkers, which provides the reader with a guide to sort out current and future biomarkers.

This book would be an important source of information on biomarkers for scientists as well as physicians and those involved in drug discovery and development. Many of the regulatory issues concerning biomarkers are related to proteomics, molecular diagnostics, and pharmacogenomics/pharmacogenetics. By facilitating the combination of therapeutics with diagnostics, biomarkers will play an important role in the development of personalized medicine, which is an important emerging trend in health care.

> Kewal K. Jain, MD Basel, Switzerland

Contents

1	Introduction
	Definitions
	Historical Aspects of Biomarkers
	Classification of Biomarkers
	Biological Marker as Response to Therapeutic Intervention 3
	Pharmacokinetic/Pharmacodynamics Biomarkers
	Predictive Biomarkers
	Valid Biomarkers
	Types of Biomarkers
	Genes as Biomarkers
	Proteins as Biomarkers
	Proteomics
	DNA Biomarkers
	Mitochondrial DNA
	Mitochondrial Mutations
	RNA Biomarkers
	Transcriptomics
	MicroRNAs
	Metabolomics
	Glycomics
	Single-Nucleotide Polymorphisms
	Haplotyping
	Cell Biomarkers of Disease
	Stem Cell Biomarkers
	Cancer Stem Cell Biomarkers
	Endoglin as a Functional Biomarker of Stem Cells
	p75NTR as a Biomarker to Isolate Adipose Tissue-Derived
	Stem Cells
	Protein Expression Profile as Biomarker of Stem Cells 15
	STEMPRO [®] EZChek TM for Analysis of Biomarkers of hESCs 15
	SSEA-4 as Biomarker of MSCs
	Autoantibodies as Biomarkers of Autoimmune Diseases 16

	The Ideal Biomarker	•	17
	Biomarkers and Systems Biology		18
	Systems Biology Approach to Biomarker Identification		19
	Relation of Biomarkers to Other Technologies and Health care		20
	Biomarkers and Translational Medicine		20
	Limitations of Use of Biomarkers in Health Care	•	20
2	Technologies for Discovery of Biomarkers	•	23
	Introduction	•	23
	Detection of Biomarkers in Tissues and Body Fluids	•	23
	Disease Biomarkers in Breath	•	23
	Portable Breath Test for Volatile Organic Compounds		24
	Detection of Breath Biomarkers by Sensation Technology	•	24
	Detection of Breath Biomarkers Optical Frequency		
	Comb Spectroscopy		25
	Genomic Technologies		25
	Gene Expression		25
	Tissue Microarrays for Study of Biomarkers		28
	Epigenomic Technologies		28
	Discovery of Methylation Biomarkers		29
	Proteomic Technologies	•	30
	2D GE	•	31
	Isotope-Coded Affinity Tags	•	32
	Mass Spectrometry	•	33
	Liquid Chromatography–MS Combination	•	37
	Protein Tomography	•	37
	Protein Biochips/Microarrays and Biomarkers	•	38
	Real-Time PCR for Quantification of Protein Biomarkers	•	39
	Magnetic Beads for Protein Biomarker Discovery	•	40
	CellCarta [®] Proteomics Platform	•	40
	MASStermind ^{1M}	•	41
	Search for Biomarkers in Body Fluids	•	41
	Challenges and Strategies for Discovery of Protein		
	Biomarkers in Plasma	•	41
	Biomarkers in the Urinary Proteome	•	47
	Peptides in Body Fluids and Tissues as Biomarkers of Disease .	•	47
	Verification for Interlaboratory Reproducibility of Protein		
	Biomarkers	•	49
	Significance of Similar Protein Biomarkers in Different Tissues	•	50
	Glycomic Technologies	•	51
	Metabolomic Technologies	•	51
	Mass Spectrometry-Based Kits for Discovery of Metabolic		
	Biomarkers in Plasma	•	52
	Urinary Profiling by Capillary Electrophoresis	•	52
	Lipid Profiling	•	53

	Role of Metabolomics in Biomarker Identification	50
	and Pattern Recognition	53
	Validation of Biomarkers in Large-Scale Human	51
		54
	Elipidoinics	55
	Fluorescent indicators for bioinarkers	55
	Computer Tomography	56
	Magnetic Desenance Imaging	50
	Magnetic Resonance Imaging	51
	Adventures of Investiga Dispersion	51
	Advantages of Imaging Biomarkers	58
	Monitoring In Vivo Gene Expression by Molecular Imaging	58
	Molecular Imaging In Vivo as a Biomarker	59
	Challenges and Future Prospects of Molecular Imaging	59
	Molecular Imaging in Clinical Practice	60
	Nuclear Magnetic Resonance	61
	Chemical Derivatization to Enhance Biomarker Detection	
	by NMR	61
	Fluxomics by Using NMR	62
	Nanobiotechnology	62
	Nanomaterials for Biolabeling	63
	Nanoproteomics and Biomarkers	65
	Nanoparticles for Molecular Imaging	66
	Nanoparticles for Discovering Biomarkers	67
	Nucleoprotein Nanodevices for Detection of Cancer Biomarkers	67
	Future Prospects of Application of Nanobiotechnology	
	for Biomarkers	67
	Bioinformatics	68
	Biomarker Workflow Guide	68
	Analysis of Microarray Data for Selecting Useful Biomarkers	68
	Role of Bioinformatics in Discovery of Proteomic Biomarkers	69
	Role of Bioinformatics in Detection of Cancer Biomarkers	70
	Biomarker Databases	70
	Gene Networks as Biomarkers	71
	Pitfalls in the Discovery and Development of Biomarkers	71
3	Biomarkers and Molecular Diagnostics	73
	Introduction	73
	Molecular Diagnostic Technologies	73
	Polymerase Chain Reaction	73
	Combined PCR-ELISA	75
	Non-PCR Methods	76
	Transcription-Mediated Amplification	77
	Rapid Analysis of Gene Expression	77
	WAVE Nucleic Acid Fragment Analysis System	77

	DNA Probes with Conjugated Minor Groove Binder	78
	Rolling-Circle Amplification Technology	79
	Circle-to-Circle Amplification	81
	Biochips and Microarrays	81
	Detection and Expression Profiling of miRNA	83
	Real-Time PCR for Expression Profiling of miRNAs	83
	Use of LNA to Explore miRNA	84
	Microarrays for Analysis of miRNA Gene Expression	84
4	Biomarkers for Drug Discovery	
	and Development	87
	Introduction	87
	Biomarker Technologies for Drug Discovery	88
	Proteomics-Based Biomarkers for Drug Discovery	88
	Chemoproteomics	89
	Transcriptomics for Drug Discovery	89
	Metabolomics for Drug Discovery	90
	Biomarkers and Drug Safety	91
	Biomarkers of Adverse Drug Reactions	91
	Applications of Biomarkers in Drug Safety Studies	91
	Genomic Technologies for Toxicology Biomarkers	92
	Proteomic Technologies for Toxicology Biomarkers	93
	Metabonomic Technologies for Toxicology Biomarkers	93
	Integration of Genomic and Metabonomic Data to Develop	
	Toxicity Biomarkers	94
	Toxicology Studies Based on Biomarkers	94
	Applications of Biomarkers for Drug Development	99
	Application of Metabonomics/Metabolomics for Drug	
	Development	99
	Role of Pharmacokinetic/Pharmacodynamic Biomarkers in	
	Drug Development	100
	Molecular Imaging as a Biomarker in Drug Development	101
	Biomarkers in Clinical Trials	105
	Application of Biomarkers by the Pharmaceutical Companies	108
	Drug Development in Cardiovascular Disorders	109
	Drug Development in Neurological Disorders	109
	Future Prospects of Biomarker-Based Drug Development 1	10
5	Role of Biomarkers in Health Care	115
	Introduction	115
	Biomarkers of Inflammation	116
	Biomarkers of Oxidative Stress	116
	Oxidative DNA Damage	116
	Proteins as Biomarkers of Oxidative Stress in Diseases	117
	1.4-Dihydroxynonane Mercapturic Acid	117
	Biomarkers in Metabolic Disorders	117

Biomarkers of Acute Intermittent Porphyria	. 117
Liver X Receptors	. 118
Biomarkers of Diabetes Mellitus	. 118
Biomarkers of Metabolic Syndrome	. 122
Biomarkers in Immune Disorders	. 123
Biomarkers of Failure of Transplanted Organs	. 123
Systemic Lupus Erythematosus	. 126
Biomarkers of Musculoskeletal Disorders	. 129
Biomarkers of Rheumatoid Arthritis	. 129
Biomarkers of Spondylarthritis	. 130
Biomarkers of Osteoarthritis	. 131
Biomarkers of Osteoporosis	. 132
Dual X-Ray Absorptiometry	. 133
Bone Imaging with Quantitative CT and MRI	. 133
Assays for Detection of Biomarkers of Osteoporosis	. 134
Biomarkers of Infectious Diseases	. 134
Application of Proteomics for Discovering Biomarkers	
of Infections	. 137
Systemic Inflammatory Response Syndrome	. 138
Tuberculosis	. 138
Biomarkers of Viral Infections	. 141
Biomarkers in Parasitic Infections	. 145
Biomarkers of Liver Disease	. 147
Breath Biomarkers of Liver Disease	. 147
Biomarkers of Viral Hepatitis B and C	. 148
Biomarkers of Liver Injury	. 149
Biomarkers of Liver Cirrhosis	. 149
FibroMax	149
Biomarkers of Pancreatitis	150
Biomarkers of Renal Disease	150
Cystatin C as Riomarker of Glomerular Filtration Rate	. 150
Proteomic Biomarkers of Acute Kidney Injury	. 151
Biomarkers of Lupus Nephritis	. 151
Biomarkers of Diabetic Nephronathy	. 152
Biomarkers of Pulmonary Diseases	. 152
Biomarkers of Oxidative Stress in Lung Diseases	154
Biomarkers of Survival in Acute Respiratory Distress Syndrome	. 154
Pulmonary Surfactant Proteins as Biomarkers for Lung Diseases	155
Riomarkers of Chronic Obstructive Pulmonary Disease	. 155
Biomarkers of Asthma	. 150
Biomarkers for Cystic Eibrosis	. 150
Biomarkers of Dulmonary Embolism	. 101
Biomarkers in Obstatrics and Gunacology	. 102
Biomarkers for Dreeclampsia	. 105
Diomarkers of Dramature Dirth	. 103
Biomarkers of Premature Birth	. 100

	Biomarkers of Oxidative Stress in Complicated Pregnancies	167
	Biomarkers of Premenstrual Dysphoric Disorder	167
	Biomarkers of Endometriosis	168
	Fetal Biomarkers in Maternal Blood	168
	Biomarkers for Genetic Disorders	169
	Biomarkers for Down's Syndrome	169
	Biomarkers for Muscular Dystrophy	170
	Biomarkers of Phenylketonuria	170
	Biomarkers of Lysosomal Storage Disorders	171
	Biomarkers of Aging	173
	Study of Biomarkers of Aging in a Genetically	
	Homogeneous Population	174
	Genes as Biomarkers of Aging	174
	Role of Bioinformatics in Search for Biomarkers of Aging	176
	Effect of Calorie Restriction on Biomarkers of Longevity	176
	Biomarkers of Miscellaneous Disorders	176
	Biomarkers of Inflammatory Bowel Disease	176
	Biomarkers of Erectile Dysfunction	177
	Biomarkers of Heat Stroke	178
	Biomarkers of Pain	179
	Nasal Nitric Oxide as a Biomarker of Response to	
	Rhinosinusitis Therapy	180
	Biomarkers Common to Multiple Diseases	181
	Biomarkers and Nutrition	182
	Biomarkers in Nutritional Epidemiology	182
	Biomarkers of Nutritional Status	182
	Biomarkers of Branched-Chain Amino Acid Status	183
	Biomarkers of Caloric Restriction	183
	Biomarkers of Malnutrition	184
	Proteomic Biomarkers and Nutrition	184
	Biomarkers of Gene-Environmental Interactions in Human Disease .	184
	Future Role of Biomarkers in Health Care	185
	Applications of Biomarkers Beyond Health Care	186
	Combating Bioterrorism	186
	Biomarkers for Monitoring Human Exposure to	
	Environmental Toxins	186
	Application of Biomarkers in Animal Health	187
6	Biomarkers of Cancer	189
Ŭ	Introduction	189
	The Ideal Biomarker for Cancer	189
	Single Versus Multiple Biomarkers of Cancer	190
	Types of Cancer Biomarkers	191
	miRNAs as Biomarkers in Cancer	192
	Biomarkers of Epigenetic Gene Silencing in Cancer	195

Immunologic Biomarkers of Cancer	196
Molecular Diagnostic Techniques for Cancer	196
Technologies for Detection of Cancer Biomarkers	197
Genomic Technologies for Cancer Biomarkers	197
Tissue Microarrays for Study of Cancer Biomarkers	202
Molecular Fingerprinting of Cancer	203
Biomarkers of Inflammation in Cancer	204
Proteomic Technologies for Detecting Biomarkers of Cancer	205
Metabolomic Biomarkers of Cancer	215
Epitomics for the Early Detection of Cancer	217
Detection of Biomarkers of DNA Methylation	217
Nanobiotechnology for Early Detection of Cancer	217
to Improve Treatment	222
Selective Expression of Biomarkers by Cancer Compared	
with Normal Tissues	223
Illtrasound Radiation to Enhance Release of a Tumor Biomarker	223
In Vivo Imaging of Cancer Biomarkers	223
Kallikrain Gana Family and Cancer Biomarkers	224
Circulating Concer Calls in Blood as Biomarkers of Concer	220
Amplications of Concer Piemerkers	220
Applications of Calcel Biomarkers	227
Use of Diomarkers for Cancer Classification	220
Agaliantian of Diamarkan for Cancer Diamaria	220
Application of Diomarkers for Cancer Diagnosis	229
Applications of Biomarkers for Cancer Diagnosis Plus Therapy	231
Biomarkers for Assessment of Efficacy of Cancer Therapy	232
Antionais and Theorem	224
Anuangiogenic Therapy	234
Biomarkers of Drug Resistance in Cancer	237
Biomarkers of Radiation Exposure	238
Role of Biomarkers in Drug Development in Oncology	239
Molecular Imaging of Tumor as a Guide to Drug Development	239
Biomarkers in Plucked Hair for Assessing Cancer Therapy	241
Molecular Targets of Anticancer Drugs as Biomarkers	241
Safety Biomarkers in Oncology Studies	242
Role of Biomarkers in Phase I Clinical Trials of Anticancer Drugs.	242
Biomarkers According to Location/Type of Cancer	243
Bladder Cancer Biomarkers	243
Brain Cancer Biomarkers	244
Breast Cancer Biomarkers	250
Cervical Cancer Biomarkers	268
Gastrointestinal Cancer Biomarkers	269
Head and Neck Cancer	275
Leukemia Biomarkers	276
Liver Cancer Biomarkers	281
Lung Cancer Biomarkers	282

	Malignant Pleural Mesothelioma	291
	Melanoma Biomarkers	292
	Nasopharyngeal Carcinoma Biomarkers	294
	Oral Cancer Biomarkers	296
	Ovarian Cancer Biomarkers	297
	Pancreatic Cancer Biomarkers	302
	Prostate Cancer	306
	Renal Cancer Biomarkers	317
	Thyroid Cancer Biomarkers	320
	Role of the NCI in Biomarkers of Cancer	322
	Cancer Genetic Markers of Susceptibility Project	322
	Oncology Biomarker Qualification Initiative	322
	Role of NCI in Cancer Biomarker Development and Validation	323
	Future Prospects for Cancer Biomarkers	324
	Cancer Biomarker Research at Academic Institutions	324
	Future Prospects and Challenges in the Discovery of	
	Cancer Biomarkers	325
7	Biomarkers of Disorders of the Nervous System	327
'	Introduction	327
	Discovery of Biomarkers of Neurological Disorders	327
	Biomarker Identification in the CSF Using Proteomics	328
	Biomarker Identification in the CSF Using Lipidomics	329
	Cerebral Microdialysis for the Study of Biomarkers of	0_0
	Cerebral Metabolism	329
	Detection of Protein Biomarkers of CNS Disorders in the Blood	330
	Brain Imaging for Detection of Biomarkers	330
	Data Mining for Biomarkers of Neurological Disorders	331
	Antibodies as Biomarkers in Disorders of the Nervous System	331
	Biomarkers of Neural Regeneration	331
	Biomarkers of Disruption of Blood–Brain Barrier	332
	Biomarkers of Neurotoxicity	333
	Glial Fibrillary Acidic Protein as Biomarker of Neurotoxicity	333
	Single-Stranded DNA as a Biomarker of Neuronal Apoptosis	334
	Biomarkers of Neurodegenerative Disorders	334
	Biomarkers of Alzheimer Disease	335
	Biomarkers of Parkinson Disease	354
	Biomarkers of Huntington Disease	358
	Biomarkers of Wilson Disease	360
	Biomarkers of Amyotrophic Lateral Sclerosis	360
	Biomarkers of Dementia in HIV-1-Infected Patients	364
	Biomarkers of Prion Diseases	364
	Biomarkers of Multiple Sclerosis	365
	Antibodies in Multiple Sclerosis	366
	T Cells as Biomarkers of Multiple Sclerosis	368

Matrix Metalloproteinases as Biomarkers in Multiple Sclerosis	369
Gelsolin as a Biomarker of Multiple Sclerosis	369
Gene Expression Profiling of Biomarkers in Multiple Sclerosis	369
Serum Proteomic Pattern Analysis in Multiple Sclerosis	370
Biomarkers of Remyelination and Repair	370
Biomarkers of Response to Therapy of Multiple Sclerosis	371
Concluding Remarks and Future Perspective of Biomarkers	
of Multiple Sclerosis	371
Biomarkers of Stroke	372
Biomarkers of Intracerebral Hemorrhage	374
Biomarkers of Hypoxic Brain Damage	374
Brain Natriuretic Peptide as a Biomarker of Cardioembolic Stroke.	375
Brain Lactate and N-Acetylaspartate as Biomarkers of Stroke	375
Intercellular Adhesion Molecule 1 as Biomarker	
of Ischemic Stroke	375
Lp-PLA2 and CRP as Biomarkers of Stroke	376
Neuroserpin Polymorphisms as a Biomarker of Stroke	376
NMDA Receptors as Biomarkers of Excitotoxicity in Stroke	376
Nucleosomes as Biomarkers of Stroke	377
PARK7 and Nucleoside Diphosphate Kinase A as	511
Biomarkers of Stroke	377
Visinen-Like Protein 1	378
Gene Expression in Blood Following Ischemic Stroke	378
Future Prospects of Biomarkers of Stroke	379
Riomarkers of Traumatic Brain Injury	380
Technologies for Identification of Biomarkers of TBI	381
Biomarkers of TBI	383
Biomarkers of Inflicted TBI in Infants	384
Clinical Applications of Biomarkers of TBI	385
Biomarkers of CNS Infections	385
Biomarkers of CNS HIV Infection	386
Biomarkers of Bacterial Meningitis	386
Biomarkers of Enilepsy	387
Genetic Enilensies	387
Biochemical Markers of Fnilensy	387
Imaging Biomarkers of Enilensy	388
Biomarkers of Normal Pressure Hydrocenhalus	388
Biomarkers of Retinal Disorders	380
Biomarkers of Age Related Macular Degeneration	380
Biomarkers of Autism	300
Biomarkers of Slean Disorders	301
Biomarker of Excessive Destine Sleepiness	301
Biomarkers of Obstructive Sleen Annea	307
Biomarkara of Dastlass Lags Surdroma	302
Diomarkara of Davahistria Disordara	202
Diomarkers of Psychiatric Disorders	393

	Biomarkers of Depression	393
	Biomarkers of Psychosis	394
	Biomarkers of Schizophrenia	394
8	Biomarkers of Cardiovascular Disorders	397
	Introduction	397
	Epidemiology of Cardiovascular Disease	397
	Biomarkers of Cardiovascular Diseases	398
	Genetic Biomarkers of Cardiovascular Disorders	399
	Methods for Identification of Cardiovascular Biomarkers	401
	Application of Proteomics for Biomarkers of Cardiovascular	
	Disease	401
	Detection of Biomarkers of Myocardial Infarction in Saliva	
	by a Nanobiochip	402
	Metabolomic Technologies for Biomarkers of Myocardial	
	Ischemia	402
	Imaging Biomarkers of Cardiovascular Disease	403
	Applications of Biomarkers of Cardiovascular Disease	404
	Biomarkers for Ischemic Heart Disease and Myocardial Infarction	404
	Biomarkers of Congestive Heart Eailure	409
	Biomarkers for Atherosclerosis	413
	Biomarkers of Risk Factors for Coronary Heart Disease	416
	Biomarkers for Pulmonary Arterial Hypertension	419
	Genetic Biomarkers for Cardiovascular Disease	420
	Multiple Biomarkers for Prediction of Death	120
	from Cardiovascular Disease	425
	Role of Biomarkers in the Management of Cardiovascular Disease	426
	Role of Biomarkers in the Diagnosis of Myocardial Infarction	426
	Role of Biomarkers in the Prevention of Cardiovascular Disease	426
	Molecular Signature Analysis in Management	120
	of Cardiovascular Diseases	427
	C-Reactive Protein as Biomarker of Response to Statin Therapy	427
	Role of Circulating Biomarkers and Mediators	
	of Cardiovascular Dysfunction	428
	Use of Biomarkers in the Management of Peripheral Arterial	120
	Disease	429
	Use of Riomarkers in the Management of Hypertension	429
	Use of Protein Riomarkers for Monitoring Acute	127
	Coronary Syndromes	429
	Use of Multiple Biomarkers for Monitoring of Cardiovascular	127
	Disease	430
	Future Prospects for Cardiovascular Biomarkers	431
	Cardiovascular Biomarker Consortium	431
	Systems Approach to Biomarker Research in Cardiovascular	101
	Disease	432
	2.15em/e · · · · · · · · · · · · · · · · · · ·	152

9 Diomarkers and Personanzed Medicine	33
Introduction	33
Pharmacogenetics	34
Biomarkers and Pharmacogenetics	34
Pharmacogenomics	36
Pharmacoproteomics	36
Single-Cell Proteomics for Personalized Medicine	37
Role of Biomarkers in Development of Personalized Drugs 43	38
Use of Biomarkers for Developing MAb Therapy in Oncology 43	38
Biobanking, Biomarkers, and Personalized Medicine in EU 43	38
Expression Signatures as Diagnostic/Prognostic Tools	40
Biomarkers for Monitoring Response to Therapy	40
Drug Rescue by Biomarker-Based Personalized Medicine 44	41
Future Role of Biomarkers in Personalized Medicine	12
10 Regulatory Issues	43
Introduction	43
Biomarker Validation	43
FDA Criteria for a Valid Biomarker	14
Role of NIST in Validation of Cancer Biomarkers	45
Quality Specifications for BNP and NT-proBNP as Cardiac	
Biomarker Assays	46
FDA Perspective of Biomarkers in Clinical Trials	17
FDA and Predictive Medicine	19
Biomarkers and FDA's Voluntary Genomic Data Submission 44	19
Role of Imaging Biomarkers in Approval of Drugs	50
FDA Critical Path Initiative and Biomarker R&D	51
FDA Consortium Linking Genetic Biomarkers to Serious	
Adverse Events	51
Oncology Biomarker Qualification Initiative	52
Critical Path Initiative	53
From Validated Biomarker Assay to a Clinical Laboratory	
Diagnostic	56
Fast Path Programs	56
Need for a Single Federal Agency to Oversee Biomarker Field 45	57
References	59
Subject Index	37

List of Abbreviations

2D GE	2-dimensional gel electrophoresis
AD	Alzheimer disease
BNP	B-type natriuretic peptide
CHF	congestive heart failure
CNS	central nervous system
CRADA	cooperative research and development agreement (between a US
	federal laboratory and one or more non-federal parties)
CRP	C-reactive protein
CSF	cerebrospinal fluid
СТ	computer tomography
EGFR	epithelial growth factor receptor
ELISA	enzyme-linked immunosorbent assay
EST	expressed sequence tags
FDA	Food and Drug Administration, USA
FISH	fluorescent in situ hybridization
FMRI	functional magnetic resonance imaging
GC	gas chromatography
GFAP	glial fibrillary acidic protein
GWAS	genome-wide association study
Hs-CRP	high-sensitivity C-reactive protein
IHC	immunohistochemistry
IL	interleukin
LC	liquid chromatography
LCM	laser capture microdissection
LDH	lactic dehydrogenase
Lp-PLA2	lipoprotein-associated phospholipase A2
MALDI	matrix-assisted laser desorption/ionization
MALDI-MS	matrix-assisted laser desorption mass spectrometry
MCP-1	monocyte chemoattractant protein-1
miRNA	microRNA
MRI	magnetic resonance imaging
MS	mass spectrometry
mtDNA	mitochondrial DNA

NCI	National Cancer Institute		
NIH	National Institutes of Health, USA		
NMR	nuclear magnetic resonance		
NO	nitric oxide		
PCR	polymerase chain reaction		
PET	positron emission tomography		
РКС	protein kinase C		
POC	point of care		
PPAR	peroxisome proliferator-activator receptor		
PSA	prostate-specific antigen		
PSMA	prostate-specific membrane antigen		
RCAT	Rolling circle amplification technology		
RNAi	RNA interference		
RT-PCR	real-time PCR		
SELDI-TOF	surface-enhanced laser desorption and ionization-time of flight		
sICAM-1	soluble intercellular adhesion molecule-1		
SNP	single nucleotide polymorphisms		
SPR	surface plasma resonance		
USPTO	United States Patent & Trademark Office		

Chapter 1 Introduction

Definitions

There are several definitions of biomarkers. A biomarker is a characteristic that can be objectively measured and evaluated as an indicator of a physiological as well as a pathological process or pharmacological response to a therapeutic intervention. Classical biomarkers are measurable alterations in blood pressure, blood lactate levels following exercise, and blood glucose in diabetes mellitus. Any specific molecular alteration of a cell on DNA, RNA, metabolite, or protein level can be referred to as a molecular biomarker. In the era of molecular biology, biomarkers usually mean molecular biomarkers and can be divided into three broad categories:

- 1. Those that track disease progression over time and correlate with known clinical measures.
- 2. Those that detect the effect of a drug.
- 3. Those that serve as surrogate end points in clinical trials.

While researchers are studying all three categories, biotechnology and pharmaceutical companies favor using biomarkers as drug discovery tools – not only to detect biological responses to experimental drugs but also to aid in the discovery of new targets for therapeutic intervention. A biomarker can be as simple as a laboratory test or as complex as a pattern of genes or proteins. From a practical point of view, the biomarker would specifically and sensitively reflect a disease state and could be used for diagnosis as well as for disease monitoring during and following therapy. The term "negative biomarker" is used for a marker that is deficient or absent in a disease.

Surrogate end point is a biomarker that is intended to serve as a substitute for a clinically meaningful end point and is expected to predict the effect of a therapeutic intervention. A clinical end point is a clinically meaningful measure of how a patient feels, functions, or survives. Clinical end points may be further classified as intermediate end points, which are clinical end points that are not the ultimate outcome, but are nonetheless of real clinical usefulness, e.g., exacerbation rate, and ultimate clinical outcomes, which are clinical end points reflective of the accumulation of irreversible morbidity and survival. These definitions indicate a clear hierarchical distinction between biomarkers and surrogate end points. While numerous laboratory biomarkers may be associated with a particular disease state, the term "surrogate" indicates the ability of a biomarker to provide information about the clinical prognosis or efficacy of a therapy. The word "surrogate" implies a strong correlation with a clinical end point, but in order to be clinically useful a surrogate must provide information about prognosis or therapeutic efficacy in a significantly shorter time than would be needed by following the clinical end point.

Historically, successful surrogates have linked effects on biomarkers for single effects in large populations but this framework needs to be expanded because it does not recognize multidimensional quality of clinical response and thus conflicts with current goals for individualized therapy. There is also the need to include possibility that multiple biomarkers may provide useful information in aggregate. A biomarker is valid if:

- 1. It can be measured in a test system with well-established performance characteristics.
- 2. Evidence for its clinical significance has been established.

Historical Aspects of Biomarkers

Historical landmarks in discovery and development of biomarkers are shown in Table 1.1.

Year	Landmark	
1847	The first laboratory test for a protein cancer biomarker, the Bence Jones protein in urine	
1954	Test for the measurement of transaminases in myocardial infarction (Karmen et al. 1954)	
1960s	The term "biomarker" started to appear in the literature in connection with metabolites and biochemical abnormalities associated with several diseases	
1967	An improved test for myocardial infarction based on a biomarker – serum creatine phosphokinase (Rosalki 1967)	
1971	Report of carcinoembryonic antigen (CEA) as biomarker of cancer (Moore et al. 1971)	
1987	Troponin I as a biomarker for myocardial infarction (Cummins et al. 1987)	
Early 1990s	Accelerator mass spectrometry used for analysis of biological samples for biomarkers	
1995	Applications of proteomics for discovery of biomarkers and use in molecular diagnostics	
1999	Emergence of metabolomics for study of biomarkers	
2000	Sequencing of the human genome completed opening the way for discovery of gene biomarkers	
2005	Discovery and application of biomarkers becomes a major activity in biotechnology and biopharmaceutical industries	

Table 1.1 Historical landmarks in discovery and development of biomarkers

© Jain PharmaBiotech

Classification of Biomarkers

A classification of biomarkers is shown in Table 1.2.

Table 1.2 Classification of biomarker

Disease biomarkers: type 0 biomarkers
Clues to pathomechanism of a disease
Diagnostic biomarkers: early detection of disease
Tracking disease progression over time
Prognostic biomarker for prognosis or outcome of disease
Diagnostic biomarkers
Molecular diagnostics, e.g., CA-125 for ovarian cancer
Biomarkers as links between diagnostics and therapeutics
Pattern diagnosis, e.g., serum protein biomarker pattern diagnosis of ovarian cancer
Biomarkers for drug discovery
Target biomarker: reports interaction of the drug with its target
Disease biomarkers as targets for drug discovery
Predictive biomarkers
Biomarker associated with a risk for disease as a candidate for a screening test
To predict disease at presymptomatic stage: autoantibodies
To predict the effect of a drug on disease
To predict the toxicity of a drug
Biomarkers to detect drug effects: type I biomarkers
Efficacy biomarker: indicator of beneficial effect of a drug
Mechanism biomarker: reports a downstream effect of a drug
Toxicity biomarker: reports toxicological effect of a drug in an in vitro or an in vivo system
Translation biomarker
A biomarker that can be applied in both a preclinical and a clinical setting
Biomarkers as surrogate end points in clinical trials: type II biomarkers
As a substitute measure for clinical outcome, e.g., cholesterol levels in statin therapy
In vivo imaging as end point: MRI of multiple sclerosis lesions in interferon therapy
Valid biomarkers: validated in clinical trials

© Jain PharmaBiotech

Biological Marker as Response to Therapeutic Intervention

A biological marker can be a pharmacologic response to therapeutic intervention (Biomarkers Definitions Working Group 2001). A pharmacogenetic test is an assay intended to study interindividual variations in DNA sequence related to drug absorption and disposition (pharmacokinetics) or drug action (pharmacodynamics), including polymorphic variation in the genes that encode the functions of transporters, metabolizing enzymes, receptors, and other proteins.

A pharmacogenomic test is an assay intended to study interindividual variations in whole-genome or candidate gene, SNPs, haplotype markers, or alterations in gene expression or inactivation that may be correlated with pharmacological function and therapeutic response. In some cases, the pattern or profile of change is the relevant biomarker, rather than changes in individual markers.

Pharmacokinetic/Pharmacodynamics Biomarkers

Mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) models differ from empirical descriptive models in that they contain specific expressions to characterize processes on the causal path between drug administration and effect. Mechanism-based PK/PD models have much improved properties for extrapolation and prediction. As such, they constitute a scientific basis for rational drug discovery and development. Within the context of mechanism-based PK/PD modeling, a biomarker is defined as a measure that characterizes, in a strictly quantitative manner, a process, which is on the causal path between drug administration and effect. The new classification system of biomarkers distinguishes seven types of biomarkers (Danhof et al. 2005):

- 1. Genotype/phenotype determining drug response.
- 2. Concentration of drug or drug metabolite.
- 3. Molecular target occupancy.
- 4. Molecular target activation.
- 5. Physiological measures.
- 6. Pathophysiological measures.
- 7. Clinical ratings.

Predictive Biomarkers

Biomarkers may be used to predict the efficacy or toxicity of a drug. Finding reliable biomarkers that are indicators of a certain response is difficult. So when looking for biomarkers that can predict a certain clinical outcome the task becomes even more challenging. Biomarkers for predicting toxicity, which is often dose related, are difficult. These effects are usually studied by increasing the dose of a compound until toxicity is observed. However, the predictive value of such an approach in patients is very limited. What is needed is a biomarker that will predict toxicity in a certain patient population.

In the chemoinformatics approach, chemistry-related toxicity can be predicted with the help of databases of known drugs that links phenotypic toxicity to a specific characteristic of a compound. However, other approaches are required for determining genomic-based toxicity.

Biomarkers are used in toxicogenomics as well. Toxicogenomics is based on the idea that if the environment inside a cell is altered by an external stimulus, some of the cell's genes will likely express themselves in an atypical way. The more toxic the external stimulus, the greater the number of genes that will be altered. Conversely, if the stimulus is benign, then very few genes will change. Predictive toxicogenomics, i.e., the acquisition of advanced knowledge of the safety profile of a compound using genomic biomarkers, is a technology that provides much optimism for improving early drug discovery decisions. Toxicogenomics creates an opportunity to shift attrition to earlier stages in drug development to a point

where course-corrective action can be taken with relatively lower financial costs, thus improving the efficiency of the drug development process. Toxicogenomics can be used for predicting toxicity, both in vivo and in vitro, by using classification algorithms and toxicogenomic databases for biomarker discovery and validation (Fielden and Kolaja 2006).

Valid Biomarkers

A valid biomarker is defined as a biomarker that is measured in an analytical test system with well-established performance characteristics and for which there is an established scientific framework or body of evidence that elucidates the physiologic, toxicologic, pharmacologic, or clinical significance of test results. Validation of a biomarker is context specific and the criteria for validation will vary with the intended use of the biomarker. The clinical utility (e.g., predict toxicity, effectiveness, or dosing) and use of epidemiology/population data (e.g., strength of genotype – phenotype associations) are examples of approaches that can be used to determine the necessary criteria for validation. Table 1.3 lists the terms used for disease biomarkers in clinical development, which is an expansion of type 0 biomarkers listed in Table 1.2. Regulatory aspects of biomarker validation will be discussed in Chapter 10.

Term	Application
Predisposition biomarker	To identify predisposition to a disease, e.g., genetic
Screening biomarkers	To identify those suffering from a disease
Staging biomarker	To determine the stage of progression of the disease
Prediction biomarker	To predict the course of the disease
Prognostic biomarker	To assess disease progression and outcome
Recurrence monitoring biomarkers	To identify recurrence of the disease

Table 1.3 Terminology of biomarkers of disease relevant to clinical development

© Jain PharmaBiotech

Types of Biomarkers

There are many ways of classifying biomarkers as reflected in the rest of this report. The biomarkers may be simple molecules such as metabolites, carbohydrates (e.g., glucose), steroids, and lipids. Less simple are peptides and proteins such as insulin, hemoglobin A and C, prostate-specific antigen, and C-reactive protein. More complex biomarkers are cells such as platelets or T cells and autoantibodies. Patients as clinical phenotypes are most complex but this topic will not be discussed in this report.

Genes as Biomarkers

A gene is a sequence of chromosomal DNA that is required for the production of a functional protein or a functional RNA molecule. Genes range in size from small (1.5 kb for globin gene) to large (approximately 2,000 kb for Duchenne muscular dystrophy gene). A gene includes not only the actual coding sequences but also adjacent nucleotide sequences required for the proper expression of genes, i.e., for the production of a normal mRNA molecule. Mature mRNA is about one-tenth the size of the gene from which it is transcribed. The same DNA strand of a gene is always translated into mRNA so that only one kind of mRNA is made for each gene. Transcription is gene in action. Genes are often described as blueprints of life and transmit inherited traits from one generation to another.

The activity of a gene, the so-called gene "expression" means that its DNA is used as a blueprint to produce a specific protein. Not all the genes are expressed in a typical human cell and those that are expressed vary from one cell to another. Patterns in which a gene is expressed provide clues to its biological role. Malfunctioning of genes is involved in most diseases, not only inherited ones. All functions of cells, tissues, and organs are controlled by differential gene expression. As an example, red blood cells contain large amounts of the hemoglobin protein that is responsible for carrying oxygen throughout the body. The abundance of hemoglobin in red blood cells reflects the fact that its encoding gene, the hemoglobin gene, is actively transcribed in the precursor cells that eventually produce red blood cells. In all other cells of the body, the hemoglobin gene is silent. Accordingly, hemoglobin is present only in red blood cells. It is now well established that differential gene expression results in the carefully controlled (or regulated) expression of functional proteins, such as hemoglobin and insulin.

Proteins as Biomarkers

Proteins are fairly large molecules, made up of strings of amino acids linked like a chain. There are 20 amino acids, and proteins range in length from a few to over a thousand amino acids. Different combinations of amino acids link to form tens of thousands of proteins. Proteins usually contain thousands of atoms precisely arranged in a 3D structure that is unique for each type.

As a protein is made, it "folds" itself into a complex, 3D shape, like a piece of ribbon that has been crumpled up. Each protein has one folded shape, and consistently folds into it, usually in less than a second. That complicated folded shape dictates how the protein works, and also how it interacts with other entities.

The specific sequence of amino acids that make up each protein is coded by a gene in the DNA of living cells. A protein cannot be synthesized without its mRNA being present, but a protein can persist in the cell when its mRNA is no longer present. However, mRNA may be present in abundance but the message is not translated into proteins. There is, thus, no good correlation between mRNA and protein in a cell at any given time. Protein synthesis is a very complicated process. Ribosomes

are the cell's protein factories. RNA bridges in the ribosomes are not just support structures but also a part of the protein forming machinery.

Peptides are small proteins that play a central role in almost all biological processes. They function as biochemical messengers (for example, insulin, calcitonin, and angiotensin) or occur as metabolites of proteins.

Proteomics

The term "proteomics" indicates PROTEins expressed by a genOME and is the systematic analysis of protein profiles of tissues. The term "proteome" refers to all proteins produced by a species, much as the genome is the entire set of genes. Unlike the genome, the proteome varies with time and is defined as "the proteins present in one sample (tissue, organism, cell culture) at a certain point in time." Proteomics parallels the related field of genomics. Now that the human genome has been sequenced, we face the greater challenge of making use of this information for improving health care and discovering new drugs. There is an increasing interest in proteomics technologies now because DNA sequence information provides only a static snapshot of the various ways in which the cell might use its proteins whereas the life of the cell is a dynamic process. In addition to proteins, peptides (low molecular weight proteins) are also biomarkers of disease in body tissues and can be detected by proteomic technologies.

DNA Biomarkers

Genetic information is contained in the cells in the form of DNA. DNA consists of two strands, which resemble a ladder coiled into a spiral shape – the double helix. It is a macromolecule composed of linear array of nucleotides, each of which comprises a base plus a pentose sugar and phosphate. Only four nucleotide bases are normally found in DNA: cytosine (C), thymine (T), adenine (A), and guanine (G). The information content of the DNA is embodied in the sequential arrangement of nucleotides. The assembly of higher order structures comprising multiple proteins bound at distinct DNA sites initiates readout of information encoded in the DNA. DNA contains the instructions for making proteins. There is a need to assess DNA damage because of the impact that different insults on genetic material may have on human health.

Mitochondrial DNA

While autosomal nuclear DNA genes are confined to the nucleus, limited to two copies per cell, the mitochondrial DNA (mtDNA) genes are distributed throughout the cytoplasm and are present in numerous copies per cell. The mtDNA molecule

is relatively small containing 16,569 nucleotide pairs. Mitochondria are descendent of a "bacterium-like" organism, which had a working relationship with our ancestral cells so that they could produce energy from glucose and oxygen and store this energy in the form of high-energy phosphate bonds of adenosine triphosphate (ATP). As a remnant of its past life, each mitochondrion contains a "private" set of genes that possess the genetic blueprint for the production of proteins and other molecules that are critical to the process of cellular energy production. mtDNA encodes for proteins that are components of the mitochondrial respiratory chain and oxidative phosphorylation system. Mitochondria have a degree of autonomy within the cell by virtue of having their own genome but it is limited because replication and transcription of mtDNA is dependent on nuclear factors such as mitochondrial transcription factor a. mtDNA differs from DNA in cell nucleus in the following important respects:

- It is strictly maternally inherited, does not recombine, and therefore accumulates mutations sequentially.
- It contains few non-coding sequences.
- It has a slightly different genetic code, for example, the uridine guanine adenine (UGA) codon is read as "tryptophan" rather than a "stop."

Mitochondrial Mutations

There is growing evidence that defects of mtDNA causes disease. Majority of these defects are due to point mutations or rearrangements of the mitochondrial genome, while others, such as mtDNA deletions, are autosomally linked. More than 100 mutations of mtDNA been associated with a striking variety of multisystemic as well as tissue-specific human diseases. Disorders due to mutations in genes affecting mitochondrial protein synthesis may erode the bioenergetic capacity of the tissues contributing to the senescence process in aging. In contrast to the remarkable progress in our understanding of etiology, pathogenesis is only partially explained by the rules of mitochondrial genetics and remains largely unclear.

RNA Biomarkers

Ribonucleic acid (RNA) is the other major nucleic acid besides DNA but unlike DNA, it is single stranded. It contains ribose instead of deoxyribose as its sugarphosphate backbone and that uracil (U) instead of thymine (T) in its pyrimidine bases. Like DNA, it can be assembled from nucleotides using DNA sequence as a template and RNA polymerase. The structure of an RNA molecule is also determined by its DNA-derived sequence. If proteins are the hardware, RNA is the software controlling how the genes are expressed to make proteins. RNA is unique in being able to store and transmit information as well as process that information. Classically RNAs can be classified into messenger RNAs (mRNAs), which are translated into proteins, and non-protein-coding RNAs (ncRNAs). mRNA is the short-lived intermediary in the transfer of genetic information from DNA to protein. mRNA is transported out of the nucleus and is translated into protein on the cytoplasmic ribosomes. Transcriptome is the complete set of mRNA molecules of a cell, tissue, or an organism. Transcription preserves the whole information content of the DNA sequence that it has been transcribed from, since the RNA has the same base-pairing characteristics.

ncRNA genes produce functional RNA molecules rather than encoding proteins and include transfer RNAs (tRNAs) and ribosomal RNAs (rRNA). rRNAs are highly structured and conserved molecules found in all living organisms and are well established as phylogenetic markers. During the last two decades several ncRNAs have emerged, having a diverse range of functions, from structural through regulatory to catalytic. A dominating category is that of small nucleolar (sno) RNAs, which act as guides to direct pseudouridylation and 2/-O-ribose methylation in rRNA. Other categories are microRNAs (miRNAs), antisense transcripts, and transcriptional units containing a high density of stop codons and lacking any extensive open reading frame.

Profiling of human mRNA in serum has been found to be useful for detection of oral squamous cell carcinoma (Li et al. 2006a). Human mRNAs are present in saliva and can be used as biomarkers of oral cancer. Saliva harbors both full-length and partially degraded forms of mRNA. RNA enters the oral cavity from different sources. and association with macromolecules may protect salivary RNA from degradation (Park et al. 2006). However, RNA is unstable and the degradation process is likely to start before the cells are shed from the tissue, limiting its value as a biomarker. The results of measurements of transcript levels in biopsies of oral tissue need to be interpreted with caution. To address the problem of RNA instability, RNA is immediately stabilized after the blood draw by PAXgene (PreAnalytiX). Total RNA is then extracted from PAXgene-stabilized blood and subjected to microarray analysis (Debey-Pascher et al. 2009). Combining RNA stabilization of peripheral blood with bead-based oligonucleotide microarray technology is not only applicable to small single-center studies with optimized infrastructure but also applicable to large-scale multicenter trials that are mandatory for the development of predictive biomarkers for disease and treatment outcome.

Transcriptomics

The focus of decoding genomic information for drug discovery has been mostly on proteomics and mRNA (cDNA) analysis. A limitation of this approach is that the information contained within the genome is first expressed in the form of "primary transcripts" before it is processed into mRNA and proteins. The primary transcripts may not lead to the formation of mRNA and proteins but perform crucial cellular functions directly. Transcriptomics is the study of the entire set of RNA transcripts of an organism.

A shared goal in transcript and proteomic profiling is the development of biomarkers and signatures of chemical toxicity. Toxicity profiling with DNA microarrays to measure all mRNA transcripts, or by global separation and identification of proteins, has led to the discovery of better descriptors of toxicity, toxicant classification, and exposure monitoring than current indicators. Biomarkers and signature profiles are described for specific chemical toxicants that affect target organs such as liver, kidney, neural tissues, gastrointestinal tract, and skeletal muscle, for specific disease models such as cancer and inflammation, and for unique chemical-protein adducts underlying cell injury (Merrick and Bruno 2004). The recent introduction of toxicogenomics databases support researchers in sharing, analyzing, visualizing, and mining expression data, assist the integration of transcriptomics, proteomics, and toxicology data sets, and eventually will permit *in silico* biomarker and signature pattern discovery.

MicroRNAs

MicroRNAs (miRNAs), small mostly non-coding RNA gene products, are molecules derived from larger segments of "precursor" RNA that are found in all diverse multicellular organisms. miRNAs are 21–25-nucleotide transcripts that repress gene function through interactions with target mRNAs (Moss 2002). miRNAs target the control of gene activity at multiple levels, specifically transcription, translation, and protein degradation, i.e., miRNAs act as meta-regulators of expression control. miRNA-mediated gene regulation is guided by the base-pairing rules of Watson and Crick (Chen 2005).

Each miRNA is thought to regulate multiple genes, and since approximately 1,000 miRNA genes have been identified in humans, the potential regulatory circuitry afforded by miRNA is enormous. Recent studies of miRNA expression implicate miRNAs in viral disease, neurodevelopment, and cancer. In higher eukaryotes, the role of miRNAs in regulating gene expression could be as important as that of transcription factors.

Metabolomics

The human metabolome is best understood by analogy to the human genome, i.e., where the human genome is the set of all genes in a human, the human metabolome is the set of all metabolites in a human. In a systems biology approach, metabolomics provides a functional readout of changes determined by genetic blueprint, regulation, protein abundance and modification, and environmental influence. Metabolomics is the study of the small molecules, or metabolites, contained in a human cell, tissue, or organ (including fluids) and involved in primary and intermediary metabolism. By definition, the metabolome should exclude enzymes, genetic material, and structural molecules such as glycosaminoglycans, and other polymeric