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Foreword

Digital Soil Mapping is by now a well-established branch of soil science, with
regular meetings and a very active working group of the International Union of
Soil Sciences (IUSS). Meetings of the group bring together scientists dealing with
digital soil mapping in the broadest sense. These meetings allow for exchange of
information among scientists on their research topics and are excellent opportunities
for assessing the status of this relatively young area of research in soil science.

The chapters in this book were selected from papers presented at the 3rd Global
Workshop on Digital Soil Mapping (DSM 2008) that was held in Logan (Utah,
USA). The theme of the workshop was Digital Soil Mapping: Bridging Research,
Production, and Environmental Application.

There is great interest in transferring the scientific achievements of the past years
of digital soil mapping into operational data and information systems responding
to the increasing demands for high quality soil data and information. The past col-
lection of soil data was largely driven by a mono-functional view of soil as the
basis for agricultural production. Under the leadership of the Food and Agriculture
Organization of the United Nations (FAO) substantial progress has been made in
collecting soils data and information in all continents, particularly in developing
countries. Standardized systems for soil classification and soil profile description
have facilitated the interoperability of information systems across national borders,
paving the way for the creation of digital soil databases at global and continental
scales based on advanced GIS technologies. Good examples of such systems are
SOTER (SOil and TERrain Digital Database) coordinated by FAO and the European
Soil Information System (EUSIS) of the European Union (EU).

The relatively recent recognition of the multi-functionality of soils, including
important ecosystem services and socio-economic benefits, has emphasized the
inadequacy of existing soil information systems worldwide. Traditional soil survey,
based on soil profile descriptions, soil classification and extrapolation of data on
a soil-landscape model developed by expert judgment, cannot respond to the new
requirements coming from user communities other than agriculturalists.

New soil data and information are needed to address the emerging concerns about
the functioning of soils systems in the delivery of services required by modern
societies. Data on soil contamination, soil biota and their diversity, soil stability
(landslides), soil hydraulic functions, soil carbon pools, soil erosion, salinization,
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vi Foreword

etc. are needed by policymakers dealing with the urgent priorities related to climate
change, natural and man-made hazard prevention, food and feed health as well as
food security, and bio-energy production.

The emergence of new legal frameworks for soil protection at national, regional,
and global levels has made traditional soil survey techniques incapable of respond-
ing to stringent legal requirements. The delineation of areas with different soil prop-
erties needs to have a solid scientific and geostatistical basis so that it can be used by
legislators. Priority areas for soil protection cannot solely be delineated on the basis
of expert judgements, but must be based on quantitative data that can withstand
legal challenges in court. For example, the EU Soil Thematic Strategy requires the
delineation of priority areas for the various threats to soil functions. These delin-
eations have legal and financial implications that affect landowners. Therefore, the
definition of these areas requires the highest quality of soil data as well as solid
scientific methods for producing soil data. Digital soil mapping will thus play a key
role in implementing this legislation in the European Union. Similarly at the global
scale, soils play a critical role in the implementation processes of Multilateral Envi-
ronmental Agreements (MEAs). The United Nations Framework Convention on
Climate Change (UNFCCC), the Convention on Biodiversity (CBD), and the United
Nations Convention to Combat Desertification (UNCCD) increasingly recognise the
crucial role of soils. Updated and accurate global soil data and information are
urgently required for these emerging needs, such as information on soil organic
carbon pools and their dynamics over time. Also, the specific initiative within the
Group of Earth Observation (GEO) to establish a Global Soil Information System
(GLOSIS) as part of the Global Earth Observation System of Systems (GEOSS) is
a response to these new requirements from policymakers.

The digital soil mapping community has taken up the challenge to foster the
development of a new generation of digital soil information at local, national and
global scales. The establishment of the GlobalSoilMap.net consortium, pooling
together the major players in digital soil mapping in the world, has initiated a pro-
cess that will deliver a new digital soil map of the world at fine resolution. The first
node getting active in the GlobalSoilMap.net project is the Africa Soil Information
Service (AfSIS), coordinated by the Tropical Soil Biology and Fertility Institute of
CIAT (CIAT-TSBF) and financed by the Bill and Melinda Gates Foundation. The
experience of transferring digital soil mapping technologies into practice on such a
scale is useful in making digital soil mapping operational at continental and global
scales.

The chapters in this book provide a very useful and comprehensive overview of
the status of digital soil mapping and are a further step in developing this branch of
soil science. I strongly recommend their consultation and reading.

European Commission, Ispra, Italy Luca Montanarella



Preface

This book contains papers presented at the 3rd Global Workshop on Digital Soil
Mapping held in Logan, Utah, USA, 30 September–3 October 2008. The workshop
was organized under the auspices of the International Union of Soil Sciences Work-
ing Group on Digital Soil Mapping, and was hosted by Utah State University. The
organizing committee was chaired by Dr. Janis Boettinger, professor of Pedology
in Utah State University’s Plants, Soils, and Climate Department. Financial and in-
kind support for this workshop was provided by Utah State University and the US
Department of Agriculture Natural Resources Conservation Service. Approximately
100 participants from 20 countries presented and discussed nearly 70 papers during
the four-day session, demonstrating the global engagement in digital soil mapping.

The theme of this workshop was Digital Soil Mapping: Bridging Research, Pro-
duction, and Environmental Application. Advances in digital soil mapping technol-
ogy and methods occur at a rapid pace, facilitating the development of digital soil
information with increasing precision for many areas around the world. In many
cases we are fortunate to have a wealth of legacy soil data to work with. Legacy
soil data can be used to improve digital soil mapping models and, in turn, digital
soil mapping models can be used to help modernize and harmonize legacy soil data.
Digital soil mapping has evolved to the point where it is has entered the operational
realm, as a tool for improving accuracy, consistency, and efficiency of production
soil mapping. At the same time, there is still a need for innovative soil information
products to support environmental applications. Credible and innovative research is
the basis for the development of digital soil mapping and soil assessment protocols.
Development of practical soil mapping and environmental applications drives the
need for continued progress in the field of digital soil mapping. With this workshop,
we hoped to recognize these distinct foci within the realm of digital soil mapping.

We have selected 33 papers from the Logan workshop that focus on digital soil
mapping research, environmental application, and operation. Part I is an introduc-
tory chapter which provides context for the whole book. The remaining papers
are organized into the following parts: (II) Research; (III) Environmental Appli-
cation and Assessment; and (IV) Making Digital Soil Mapping Operational. Within
the research section, papers are grouped by three key topics: (A) Environmental
Covariates and Soil Sampling; (B) Soil Sensors and Remote Sensing; (C) and Soil
Inference Systems. Mapping and modeling of organic carbon is the primary focus
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viii Preface

of the section on environmental application and assessment and of major interest to
the global soil science community as well as policy makers. Digital soil mapping in
a production setting is presented with case studies from New Zealand, the European
Union, Canada, the United States, and the GlobalSoilMap.net project.

This book complements and extends the ideas presented in Digital Soil
Mapping – An Introductory Perspective, edited by Lagacherie, McBratney, and
Voltz, (2007) and Digital Soil Mapping with Limited Data, edited by Hartemink,
McBratney, and Medonça-Santos (2008). We hope that this book will inspire digital
soil mapping researchers and practitioners at universities, agencies, and other orga-
nizations in their efforts to create and utilize soil information in a range of global
issues like climate change, food production, energy, and water security. We are
excited to see where global advancements in digital soil mapping research will take
us in the project.

Logan, UT J.L. Boettinger
Arcata, CA D.W. Howell
Annapolis, MD A.C. Moore
Wageningen, The Netherlands A.E. Hartemink
Logan, UT S. Kienast-Brown

November 2009
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Chapter 1
Current State of Digital Soil Mapping
and What Is Next

S. Grunwald

Abstract Digital soil mapping (DSM) involves research and operational applica-
tions to infer on patterns of soils across various spatial and temporal scales. DSM
is not solely focused to map soils and their properties, but often environmental
issues such as land degradation and global climate change, require assessing soils in
context of ecosystem change and environmental stressors imparting control on soil
properties. In this section an overview is provided of state-of-the art DSM applica-
tions and their constraints and potential is discussed. Future trends and challenges
to map soils using digital approaches are outlined.

Keywords Environmental covariates · Soil sensors · Soil inference systems ·
Legacy soil data · Environmental assessment

1.1 Introduction

Digital soil mapping has evolved as a discipline linking field, laboratory, and prox-
imal soil observations with quantitative methods to infer on spatial patterns of soils
across various spatial and temporal scales. Studies use various approaches to predict
soil properties or classes including univariate and multi-variate statistical, geostatis-
tical and hybrid methods, and process-based models that relate soils to environ-
mental covariates considering spatial and temporal dimensions. A comprehensive
overview of digital soil mapping was provided by McBratney et al. (2003) and
Grunwald (2006). Discussions of state-of-the-art digital soil mapping applications at
different extents, geographic settings, and model resolutions (grains) were provided
by Lagacherie et al. (2007) and Hartemink et al. (2008).

Research-focused digital soil mapping contrasts with agency-operated soil sur-
veys. The dichotomy between research and agency-operated digital soil mapping is
due to different sets of qualities. The former strives to find the best method/model to
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estimate soil characteristics exploiting digital, quantitative and emerging technolo-
gies with rigorous errors and uncertainty assessments. The latter aims to implement
a standardized mapping protocol to characterize soils across a soil survey region.
Soil taxonomic mapping of soil map units and development of soil information
systems have played major roles in agency-operated soil surveys covering regional,
national, and global scales. Whereas historically soil data needs were driven by food
and fiber production (agriculture-centered period), more recent needs for soil data
are more diverse with pronounced environmental-centered drivers requesting high-
resolution, pixel-based soil products, which are associated with error assessment.

Traditional soil surveys explicitly incorporate pedological knowledge into the
soil survey product, but have become costly and time-consuming when compared to
emerging digital soil mapping approaches, such as diffuse reflectance spectroscopy
(Lagacherie, 2008). This has evoked the thought to investigate in more detail how
research and operational soil mapping can be fused. Grunwald (2009) presented a
comprehensive analysis of recent digital soil mapping literature and pointed out that
merging of quantitative, geographic, and pedological expertise is required to link
production-oriented and research-oriented digital soil mapping. There is no univer-
sal soil equation or digital soil prediction model that fits all geographic regions and
purposes, which complicates matters.

At the 3rd Global Workshop on Digital Soil Mapping organized by the Inter-
national Union of Soil Sciences, Soil Science Society of America and Utah State
University, Logan, UT, September 30–October 3, 2008, researchers, agency scien-
tists, and practitioners met to share knowledge on digital soil mapping. This book
compiles the outcomes from this Workshop in form of 34 chapters.

1.2 Research

1.2.1 Environmental Covariates and Soil Sampling

The section “Environmental Covariates and Soil Sampling” presents various chap-
ters that focus on how environmental covariates are used to model soil properties.
Factorial soil-landscape models form the conceptual framework for relating envi-
ronmental covariates to soil properties as formalized in the CLORPT model (CL:
Climate; O: Organism, vegetation; R: Relief; P: Parent material; and T: time)
(Jenny, 1941) and the SCORPAN model (S: soil property or class; C : Climate;
A: Age or time factor; and N : Space, spatial position) (McBratney et al., 2003)
that are used to predict soil properties/classes (Sp). The SCORPAN model is made
spatially and temporally explicit by predicting Sc (soil classes) or Sa (soil attributes)
at a specific geographic location (x and y coordinates) and time. Grunwald (2006)
extended the SCORPAN model by incorporating the vertical dimension (z), or depth
of a specific soil property. Similarly, “environmental correlation” describes a method
of relating environmental attributes (or environmental covariates) to Sp (McKenzie
and Austin, 1993).
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Although these conceptual models are accepted widely for digital soil mapping,
the strength of relationships between environmental covariates and soil properties
of interest differ by geographic region, observation/derivation method used to map
environmental properties, spatial and temporal scales, and the specific soil property
under investigation. In a comprehensive review, McBratney et al. (2003) found that
the key environmental covariates for inferring Sa or Sc, were R (80% of studies)
followed by S (35%), O and P (both 25%), N (20%), and C (5%). In contrast,
in a review of 90 digital soil mapping journal articles Grunwald (2009) found that
the contribution of S was 51%, C 6%, O 34%, R 24%, and P 6% to predict soil
properties and classes.

To further investigate the behavior between environmental covariates and soil
properties of interest various studies are presented in Section A. Chapter 2 discusses
the use of environmental covariates in the Western USA derived from digital eleva-
tion models (DEMs) and remote sensing imagery (ASTER and Landsat) to infer on
topography, climate, geomorphology, parent material, soil, and vegetation proper-
ties. These environmental properties are incorporated into soil prediction models
to support soil mapping efforts, in particular, in the western USA region which
still lacks initial soil mapping on private and public lands. In Chapter 3 a suite
of topographic and land cover attributes to infer on soil depth using a Generalized
Additive Model and Random Forest in a watershed in Boise, Idaho, USA is used.
The importance of incorporating age (A factor) explicitly into digital soil models
are emphasized in Chapter 4 fusing geological maps, age point data, and remote
sensing data to infer on geochronology using a decision-tree analysis. The author
indicates that incorporating the A factor explicitly into soil-prediction models as a
co-variant is rare. A has been more often incorporated in implicit form carried in the
age of parent material (P) and land form (R). In Chapter 5 different terrain attributes
by varying grid and neighborhood sizes and investigate their effect on subsequent
modeling of soil attributes are derived. Their study highlights that terrain attributes
are specific to geographic land surfaces. Disparate neighborhood sizes correlate
strongest with specific soil properties (soil carbon, rock fragment content, and clay
content) suggesting that there is “no optimal” neighborhood size to model different
soil properties. In Chapter 6 authors go after finding the optimal sample size for
digital soil mapping in arid rangelands in Utah, USA. They employ conditioned
Latin Hypercube sampling on five environmental covariates and identify an optimal
sample size of 200–300 which is approximately 0.05–0.1% of the available potential
sampling points in the 30,000 ha study area.

1.2.2 Soil Sensors and Remote Sensing

Sensing of both soils and environmental covariates is widely used in digital soil
mapping studies. Lab-based or in-situ diffuse reflectance spectroscopy have been
employed in the visible, near-infrared, and mid-infrared range to infer on a multi-
tude of soil properties with varying success (Reeves, 2010). Other soil sensors map
penetration resistance using cone penetrometers, apparent electrical conductivity, or
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magnetic susceptibility (Grunwald and Lamsal, 2006). Grunwald (2009) found that
out of 90 reviewed digital soil mapping studies 39% utilized soil or remote sensors,
out of which 23.3% used soil sensors to complement analytical soil data which
are more costly and labor-intensive to derive. In 16.7% of the studies, visible/near-
infrared, mid-infrared, and/or Fourier-transform spectroscopy were used to infer dif-
ferent properties including soil organic carbon (SOC), texture, and others. Remote
sensing applications that map soil properties, landscape or soil map boundaries, or
environmental covariates, such as vegetation or climatic properties, can be readily
incorporated into digital soil prediction models. A variety of satellite images are
used in digital soil mapping projects including Landsat Enhanced Thematic Map-
per (ETM), Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), Quickbird, IKONOS or others. These satellite images differ in their spa-
tial resolution, spectral range and spectral resolution, which may affect the capabili-
ties to infer on soil and environmental covariates. Remote sensing is confounded by
the fact that the land surface is a mix of bare soil (with varying soil moisture con-
tent) and vegetation coverage which impact reflectance patterns sensed by aerial or
satellite sensors. But aerial and satellite images provide dense grids of information
across landscapes allowing to characterize SCORPAN factors.

Chapter 7 provides an overview of proximal soil sensors for digital soil map-
ping including electromagnetic induction, magnetic sensors, gravitometers, ground
penetrating radar, magnetic resonance sounding, gamma-radiometrics, and diffuse
reflectance spectroscopy. The use of hyperspectral imagery with 5 m spatial res-
olution to map clay content and calcium carbonate content in a Mediterranean
region is presented in Chapter 8. In this chapter, special attention is given to derive
soil data from a region that is partially covered by vegetation using hyperspec-
tral images accounting for atmospheric effects. In Chapter 9 Quickbird imagery
with 2.4 m spatial resolution are used to discriminate between different soil types
including chernozem-like soils, light chestnut soils, and solonetzes (sodic soils).
In Chapter 10 ASTER imagery with 15 m spatial resolution to infer on vege-
tation and correlate it to soil horizons are used in the North Cascades National
Park in Washington State, USA. In Chapter 11 quantitative hydrologic parame-
ters, such as root zone soil moisture obtained by land-surface energy models, are
used for the identification of soil boundaries. They employ Landsat imagery with
30 m spatial resolution to infer on root zone moisture based on a multi-temporal
analysis.

1.2.3 Soil Inference Systems

McBratney et al. (2002) provided an overview of soil inference systems, which take
measurements we more-or-less know with a given level of (un)certainty, and infers
data we do not know with minimal inaccuracy, by means of properly and logically
conjoined pedotransfer functions (PTFs). In essence, the soil inference system has a
source, an organizer, and a predictor. The inference system is a collection of logical
rules selecting the PTFs with the minimum variance (McBratney et al., 2002).
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In her recent digital soil mapping review study Grunwald (2009) found that the
most popular soil inference methods (41.1%) were regressions followed by classifi-
cation/discrimination methods (32.2%), and tree-based methods (e.g. Classification
and Regression Trees, Random Forest) (13.3%). Other methods such as GIS-based
modeling, neural networks, and fuzzy logic based models were less frequently used
to predict soils. In her comprehensive review study, knowledge-based digital soil
models that rely on expert knowledge were rare when compared to stochastic or
deterministic methods to predict soils. Out of 90 reviewed journal articles 40.0%
presented soil prediction results derived from only one method, whereas 60.0% used
two or more quantitative methods to predict or model soil properties/classes. Grun-
wald (2009) found that 36.7% of 90 reviewed digital soil mapping journal articles
used legacy data in their research.

In Chapter 12 Homosoil, a methodology for quantitative extrapolation of soil
information across the globe is presented. Homosoil facilitates to map soils in places
where soil information is difficult to obtain or does not exist. A major assumption of
this conceptual approach is homology of soil-forming factors between a reference
area and the region of interest. Gower’s similarity index is used to quantify similar-
ity in climate, physiography, and parent materials in a reference area and the rest
of the world. In Chapter 13 Artificial Neural Networks and a Decision Tree model
for predictive soil mapping based on the SCORPAN approach are employed in a
poorly accessible 20 km2 watershed in Thailand. In Chapter 14 a knowledge-based
approach and a rule-based fuzzy inference engine, Soil Inference Engine (SIE), is
used in two small watersheds in Vermont. In this study not only the predictive capa-
bility of the inference engine is evaluated to infer on soil series and drainage classes,
but also the potential to transfer the prediction model to a watershed with similar
landscape characteristics is assessed. In Chapter 15 Random Forest to predict soil
classes using environmental covariates derived from Landsat ETM and a DEM in
an arid region in Utah are employed. Chapter 16 explicitly incorporates legacy data
into the soil predictive models (sand, silt, clay and organic carbon) implemented
using Generalized Linear Modeling and Bayesian Belief Networks. Authors of this
chapter emphasize the limitations of using legacy data that may not cover the exist-
ing feature space (i.e., the range of attribute values present in a given region) and
may contain a mix of qualitative and quantitative data.

1.3 Environmental Application and Assessment

Historically, soil surveys have focused on soil descriptions and mapping of tax-
onomic soil data and standard soil properties. Recently, the emphasis has shifted
from classification and inventory to understanding and quantifying spatially and
temporally soil patterns to address environmental problems. This environmental-
centered approach views soils as integral part of an ecosystem interacting with
environmental factors generating complex patterns and processes that co-evolve
through time. Environmental-centered digital soil mapping responds to critical soci-
etal needs including environmental quality assessment, soil degradation, soil quality,
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and health as outlined in Hartemink (2006). Spatially-explicit soil carbon assess-
ment over large landscapes has gained attention to help mitigate rising levels of
greenhouse gases in the atmosphere.

In a review it was found that out of 90 investigated digital soil mapping studies,
40.0% focused on predictions of base soil properties such as texture, bulk density,
and structure, 31.1% on soil carbon/global climate change, 24.4% on eutrophica-
tion/environmental quality assessment, 16.6% on hydrologic properties (such as
soil moisture, saturated hydraulic conductivity, or soil water content), 8.9% on soil
degradation (salinity, acidity, and erosion), and 15.6% on mapping of soil taxo-
nomic/ecological classes (Grunwald, 2009). In particular, studies that focus on map-
ping of SOC and soil organic matter (SOM) are prominently represented in the
recent digital soil mapping literature.

Chapter 17 addressed the problem of heavy metals in soils in a study site in the
Italian Alps. They use multi-scale Support Vector Regression (SVR), a machine
learning technique, to model distribution patterns of heavy metals. SVR is a non-
parametric technique based on Structural Risk Minimization that aims to opti-
mize model performance by minimizing both the error and the model complex-
ity. Chapter 18 map carbon/nitrogen (C/N) ratio of forest soils aiming to evalu-
ate soil functions and provide needed information to address climate change in
Europe. Interestingly, in their study the classical Kriging approach performs better
to model C/N ratios when compared to Neural Network modeling of C/N using
environmental covariates. This may be explained by the scale of the “global soil
mapping approach” extending over Europe. Chapter 19 compares various meth-
ods (Multiple Linear Regression, Universal Kriging, Regression Kriging, Artificial
Neural Network–Kriging, Regression Tree, and Sequential Indicator Simulation) to
model SOC in a province in China, with Regression Tree outperforming all other
tested methods. In Chapter 20 SOM is estimated using Regression Kriging and
various environmental covariates in central Italy. The topsoil SOC stocks are esti-
mated using six different sets of SCORPAN factors implemented using Multi-linear
Regression analysis and Regression Kriging in Rio de Jaineiro State (Chapter 21).
Chapter 22 assesses the extent of organic soils in Denmark using Decision Tree
Modeling and Indicator Kriging, which classified 58 and 52% correctly, respec-
tively. In Chapter 23 wind erosion is assessed in the Danuve Basin using Regression
Kriging and various environmental covariates bridging the gap between digital soil
mapping and digital soil risk assessment.

1.4 Making Digital Soil Mapping Operational

Research-focused digital soil mapping contrasts with need-driven digital soil map-
ping and agency-operated soil surveys. Digital soil mapping studies are diverse with
specialized, mathematical prototype models tested on limited geographic regions
and/or datasets and simpler, operational digital soil mapping used for routine map-
ping over large soil regions.
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Grunwald (2009) pointed out that numerous research-oriented digital soil map-
ping studies ranked high in terms of quantitative knowledge and expertise, but
lacked pedological interpretations which may limit widespread adoption by prac-
titioners. In her review study she documented various complex digital soil mapping
methods, such as genetic programming, Simulation of Gaussian Fields, Markov
Chain Random Fields, or mechanistic models, which require profound mathematical
expertise. Minasny and McBratney (2007) suggested that for practical applications
digital soil prediction methods, such as Regression Kriging, may be mathematically
biased, however, they appear robust to predict soil properties in various soil regions.
Both authors conclude that improvement in the prediction of soil properties does
not rely on more sophisticated quantitative methods, but rather on gathering more
useful and higher quality data.

There are multiple studies presented in this book that use Multivariate Regres-
sion, Regression Kriging, Tree-based models, or Neural Networks, which are meth-
ods that are versatile and easy to implement. In these studies much effort is invested
in assembly of SCORPAN factors from various sources (legacy datasets, soil and
remote sensors, derivatives from DEMs, and others). In many cases, data collec-
tion of environmental covariates is given more attention than the collection of
soil samples. The presented studies further suggest that there is not one method
emerging that performs best to estimate multiple soil properties/classes in different
geographic regions. Factors that confound findings to estimate soil properties and
classes include sampling design and sample density, quality and spatial resolution
of soil and environmental covariates, scale (extent of study site, model grain), data
aggregation, and integration methods. Critical is to evaluate the performance of soil
prediction models using calibration and/or validation. Grunwald (2009) found that
out of 90 investigated studies 21.1% used cross-validation, 46.7% used validation,
and 35.6% did not use cross-validation, validation or any other performance test.
Rigorous performance tests to evaluate soil predictions in various geographic soil-
landscape settings are critical to minimize uncertainty in soil predictions at unsam-
pled locations.

Chapter 24 presents the S-map designed to deliver a new digital soil map,
database, inference system, and soil information system for New Zealand. The sys-
tem builds on legacy data, older soil surveys, expert-knowledge, and digital soil
mapping methods. Preliminary results contrast expert-clustering and data-driven
clustering deriving soilscapes. Chapter 25 addresses the problem of legacy soil
data harmonization and data base integration for a region covering the Hungarian-
Slovakian border. They form an integrated database of profiles using pedotransfer
rules and environmental covariates to employ Regression Kriging and Maximum
Likelihood Classification to derive soil groupings, pH, and humus content. Chap-
ter 26 provides an overview of how existing soil survey data and expert-knowledge
is linked to implement digital soil mapping in Canada. Authors aim is to produce
raster-based soil maps that utilize existing soil survey information managed by
the Canadian Soil Information System (CanSIS). Chapter 27 demonstrates predic-
tive ecosystem mapping for 8.2 million hectare of forestland in British Columbia,
Canada. Their approach for operational modeling of ecological entities is based
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on a combination of fuzzy membership functions and knowledge-based predic-
tive rules. Chapter 28 presents an operational initiative facilitated by the Natural
Resources Conservation Service building digital soil mapping capacity within the
U.S. National Cooperative Soil Survey. In this pilot project ASTER satellite imagery
and DEM data will be used to create soil predictive models in the Joshua Tree
National Park, Mojave Desert. Complimentary, Chapter 29 presents a qualitative
comparison of conventional soil survey product and one derived using environmen-
tal covariates and Random Forest to predict soil subgroups as part of the Mojave
Desert initiative. In Chapter 30 the Optimum Index Factor (OIF) to multiple data
types is applied to identify the optimum combination of bands from Landsat TM and
DEM data. The OIF is used to determine which data layers, derived from elevation
data and remote-sensing images, best represent the full range of biophysical charac-
teristics in a study area in north-eastern Utah. The optimum data layers are combined
into a multiband image used for classification and modeling, and ultimately to cre-
ate a pre-map for the study area. Chapter 31 presents the TEUI-Geospatial Toolkit
which is an operational GIS-based ecological inventory application used by the U.S.
Department of Agriculture, Forest Service and other land management agencies. In
Chapter 32 a GIS framework and rule-based system developed by experts is used
to map shallow soil condition to model dust emissions in the arid southwest U.S.
Chapter 33 describes the GlobalSoilMap project that aims to produce a new digital
soil map of the world with a grid resolution of 90 m × 90 m. The global soil map will
be freely available, web-accessible, and widely distributed. The first portion of the
global soil map is focused on Sub-Saharan Africa. Chapter 34 provides methodolo-
gies for global soil mapping based on the current state of knowledge incorporating
legacy data, extracting information from soil maps, combining soil maps and soil
point data, SCORPAN, Kriging, extrapolating based on reference areas, and the
Homosoil approach.

1.5 What Is Next in Digital Soil Mapping

The methodological digital soil mapping framework to map soils across the globe
at fine grains (≤90 m × 90 m) has been formalized (compare Chapters 33 and 34;
and McBratney et al., 2003). Research-oriented digital soil mapping studies pre-
sented in this book and digital soil mapping literature (Grunwald, 2009; Hartemink
et al., 2008; Lagacherie et al., 2007) provide evidence that soil taxonomic data and
soil properties can be predicted successfully using sets of environmental covari-
ates as shown in various soil-landscape settings. Availability of high-resolution and
hyperspectral remote sensing data, high-quality DEMs as well as soil sensors, and
multi-sensor systems have facilitated to improve soil prediction models. In research-
oriented digital soil mapping error and uncertainty metrics accompany soil estimates
to document the quality of digital soil maps, which have often not been provided
in transparent format by operational soil survey programs. The trend to formalize
pedological expertise in form of quantitative soil prediction models of various types
is continuing in the research community.


