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Foreword

Proximal Soil Sensing: Looking, Touching, Feeling

Proximal sensing is the oldest activity in soil science and forms the very core of
our professional existence as soil scientists. The first soil scientists looked at what
everybody called just soil and – even though others had seen before what they were
seeing – they, for the first time, became really excited and recognised the unique
character of what their eyes revealed. The soil as a natural body was born.

To better understand and interpret what they were seeing, they used looking
glasses to magnify the soil image and smelled, tasted, and squeezed the soil mate-
rial to get a better idea about its features. They also learned the hard way that soil
features could be exposed only by digging pits. This elementary proximal sensing
resulted in flowery analogies – such as the assertion I recall from my field training
as a student that ‘the feel of a loess soil was supposed to be comparable to that of
the skin of an 18-year-old girl’.

Thus, at least four elementary forms of proximal sensing have been with us since
the 19th century. This book convincingly illustrates that by now, thanks to mod-
ern technology, our sensing abilities reach way beyond what our human senses can
accomplish. Some of these techniques have already been applied for decades in
remote sensing from aeroplanes or satellites and have made significant contribu-
tions to soil and landscape science. But proximal sensing, as covered in this book,
represents a special ‘niche’ as it defines tools that are available for field scientists
who follow their own intuition and game plan as they move around in the field try-
ing to unravel the secrets of Mother Earth, independent of a rigid flight plan or a
satellite passover.

Fascinating new opportunities arise and are covered in this book: for instance,
soil spectroscopy and hyperspectral sensing allow direct estimates of nitrogen, car-
bon, and the micronutrient contents of soil materials – in contrast to cumbersome
and costly treatments associated with traditional wet chemistry. Electromagnetic
induction and resistivity measurements allow a complete characterisation of soil lay-
ering, in stark contrast with traditional approaches where separate, isolated borings
had to be somehow interpolated to form meaningful patterns.

At least two major advantages of proximal sensing stand out, while there are
also some potential pitfalls. A major advantage is the fact that, finally, there can be
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vi Foreword

enough soil data to allow meaningful (geo)statistical analyses to ascertain spatial
soil patterns. So far, major advances have been made in the theory of spatial analy-
sis (as reported in this book), but practical application has often stalled because of
lack of data as research projects did not provide funds to allow adequate sampling.
A second advantage is the fact that soil scientists, using these techniques, increase
their scientific fecundity, which make them more effective and interesting as part-
ners in interdisciplinary land use programs. With easily accessible soil databases,
user-friendly simulation models, and flashy geographical information systems, non-
soil scientists can produce many soil-related products that may look attractive at
first sight but often lack depth and scope. As is true in any science, soil scien-
tists must stay ahead in their game, and the proximal sensing toolkit is of major
assistance here.

There may be a potential problem, however, if techniques start to have a life of
their own and when they become a goal in themselves rather than a means towards
a broader purpose, which is the dynamic characterisation of soils for the benefit of
all. That is why it would be wise for modern soil scientists with their sophisticated
toolkits to recall and be inspired by the initial excitement of the first soil scientists,
because even though we know a lot more about our soils now, its complexity and
beauty are still way beyond our understanding.

The Netherlands Johan Bouma



Preface

Our scientific understanding of soil – its unique qualities and functions – has been
gained through long and arduous soil surveys complemented by careful chemi-
cal, physical, mineralogical, and biological laboratory analysis. These conventional
methodologies continue to serve us well, but they can be expensive, complex, and
time consuming and often only qualitative. The growing demand for good quality,
inexpensive soil information underlines these shortcomings.

We need better information to solve pressing problems such as how to moni-
tor the effects of climate change on soil, how to populate models of key processes,
how to use precision agriculture for improving the sustainability and efficiency of
food production, and how to assess and remediate contaminated land. These appli-
cations have prompted the development of more time- and cost-efficient quantitative
approaches to soil analysis that complement, or replace, the more conventional
laboratory techniques.

Sensors are becoming smaller, faster, more accurate, more energy efficient, wire-
less, and more intelligent. Many such devices can be used for proximal soil sensing
(PSS), for example using ion-sensitive field effect transistors to measure soil pH
and soil nutrients or using portable near-infrared spectrometers to measure soil
properties like organic carbon content and mineral composition.

In this book, PSS is defined as the use of field-based sensors to collect soil infor-
mation from close by (say within 2 m), or within, the soil body. Proximal soil sensors
may be active or passive; they may be invasive, where there is direct sensor-to-soil
contact, or non-invasive, measuring properties of the soil from above the surface.
They may either measure the soil property directly or indirectly – by finding a
proxy that is easier and cheaper to measure and developing a pedotransfer function.
Frequently, the sensors are mounted on vehicles for on-the-go measurements. The
rationale for PSS is that although it may produce results that are not as accurate –
per individual measurement – as conventional laboratory analysis, it facilitates the
generation of larger amounts of (spatial) data using cheaper, simpler, and less labo-
rious techniques which, as an ensemble, may be highly informative. Moreover, the
information is produced in a timely manner (that is, almost instantaneously).

This book reports on developments in PSS and high-resolution digital soil map-
ping presented at the First Global Workshop on High Resolution Digital Soil
Sensing and Mapping held in Sydney in 2008. The workshop was held under the
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auspices of the International Union of Soil Sciences (IUSS) and was hosted by the
University of Sydney Faculty of Agriculture, Food and Natural Resources, with sup-
port from the Commonwealth Scientific Industrial Research Organisation (CSIRO)
and Environmental Earth Sciences International (EESI Pty Ltd). The workshop
attracted 90 soil scientists, agronomists, agricultural engineers, spectroscopists,
statisticians, geostatisticians, and proximal and remote sensing specialists from 18
countries.

We have selected 36 chapters, arranged in sections, which represent the range of
presentations made on various aspects of PSS. The book comprises an introductory
section that sets the scene; a section on soil sensing and soil sampling; a section on
soil (UV), visible, and infrared spectral sensing; one on soil electromagnetic induc-
tion and electrical resistivity sensing; one on radar and gamma radiometric sensing;
one on multisensor systems and other sensors; and a final section on applications
of PSS.

Australia Raphael A. Viscarra Rossel
Alex B. McBratney
Budiman Minasny
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Chapter 1
Sampling for High-Resolution Soil Mapping

J.J. de Gruijter, A.B. McBratney, and J. Taylor

Abstract When doing sensing for high-resolution soil mapping, one has to decide
on the disposition of the sensor, which is a special case of spatial sampling. To
optimise the pattern of measurements, a cost model and a quality model are pro-
posed. The quality model reflects the coverage of the geographic space, and this
is illustrated with some practical experiments. Optimisation of sensing patterns is
worked out for two different types of sensing equipment. If the sensor variable dif-
fers from the target (management or decision) variable, then a model is needed to
predict the target variable from the ancillary data. So in that case, one also has to
decide how and where to sample for calibration data. This ‘calibration sampling’
differs from ‘sensor sampling’, as now coverage of the predictor space rather than
the geographic space is important. In addition, the handling of extremes is an issue
here. Existing methods for calibration sampling are reviewed and a suggestion is
made for a new approach, based on fuzzy cluster analysis, which might avoid some
of the shortcomings of existing methods.

Keywords Soil sampling · Calibration · Proximal sensing · Latin hypercube
sampling · Fuzzy k-means · Cost modeling

1.1 Introduction

High-resolution soil mapping often needs some form of proximal sensing, and it
should be realised that this is not complete enumeration. Proximal sensing enables
measurement at high densities, but practical and financial constraints usually prevent
sensing at sufficiently high resolution. Thus empty spaces will remain between the
sensing locations, and proximal sensing can be seen as a form of soil sampling.

J.J. de Gruijter (B)
Alterra, Wageningen University & Research Centre, P.O. Box 47, 6700 AA
Wageningen, The Netherlands
e-mail: jaap.degruijter@wur.nl

3R.A. Viscarra Rossel et al. (eds.), Proximal Soil Sensing, Progress in Soil Science 1,
DOI 10.1007/978-90-481-8859-8_1, C© Springer Science+Business Media B.V. 2010
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Sampling for high-resolution soil mapping therefore will often be twofold: sensor
sampling and calibration sampling. Sensor sampling is in order if

• the available prior information (detailed soil maps, soil sample data, remote sens-
ing images, previous proximal sensing data, yield data, DEMs) is insufficient for
the required mapping and

• sensing can produce data about the target variable, either directly (e.g. pH
sensing) or indirectly via a model (e.g. lime requirement sensing).

Calibration sampling should be done if

• a model is needed for prediction of the target variable from the prior information
and/or newly acquired sensing data and

• such a model is not yet available.

The flow diagram of Fig. 1.1 shows the various possibilities of data needs and
their consequences for data acquisition.

Usually one has to decide on two different spatial sampling patterns: one for
the sensing locations and one for the locations from which calibration data are to
be collected. It should be realised that entirely different aims are involved, leading
to different methods. The aim of sensor sampling is to enable mapping so that the
pattern should have sufficient coverage of the geographic space. The aim of calibra-
tion sampling is to identify a useful model so that the pattern should have sufficient
coverage of the predictor space.

Like the sampling itself, the aim of this chapter is twofold. Firstly, a recon-
naissance of the problems of sensor sampling is aimed at, with a first attempt to
optimise sensing patterns theoretically, supplemented with some field experiments.
Secondly, we shall consider some existing and possible methods for calibration sam-
pling, which will have mostly the character of a review on the basis of a priori
considerations.

Fig. 1.1 Flow diagram of
high-resolution digital soil
sensing and mapping
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1.2 Materials and Methods

1.2.1 Sensor Sampling: Some Theory

Sensor sampling will normally be done with a vehicle taking measurements at fixed
intervals while driving along straight parallel lines, thus forming a regular grid of
sample points. The size and the shape of this grid should be chosen such that the
resulting sensing data will form the best starting point for interpolation onto the
final grid at which the target variable is to be predicted, subject to a cost constraint.
This needs a cost model and a quality model (see below). In cases where there is
more than one sensor mounted on the vehicle, the measurements are generally not
collocated, but we assume that the data will be transformed into collocated ones by
post-processing.

For cost modelling and optimisation, we distinguish two types of equipments:
sensors mounted on a vehicle that stops to take a measurement (type A) and sen-
sors mounted on a vehicle that does not stop for measuring (type B). With type A
we assume that the operator can choose the swathe width and the interval between
measurements along the driving lines. With type B we assume that the measure-
ment frequency is fixed and that the operator can choose the swathe width and
the speed.

1.2.1.1 Optimisation for Equipment Type A

Assuming that we drive a sensing instrument along parallel lines through the field,
with equal distance w between the lines and equal distance between sensing points
h at the lines, a simple model of the variable costs is

C = cd

w
+ cm

wh
, (1.1)

where C is the variable sensing cost per hectare (C ha−1), cd is the cost of driving per
hectometre (C hm−1) and cm is the cost of measuring per sensing point (w and h both
given in hectometre). This model neglects boundary effects and driving between
lines, which seems reasonable for large fields.

The patterns of sensing points that are best for spatial prediction, regardless of
costs, are square grids, i.e. w = h. (Theoretically, triangular grids would be slightly
more efficient, but these are not practical for routine application.) When we take
costs into account, the optimal grid shape may be rectangular instead of square. To
maximise the quality of the pattern, given a budget, we need a quality measure.
Ideally we would define this in terms of prediction error variance, but that assumes
that we have an explicit model of the spatial variation and knowledge of the relation
between the sensor variable(s) and the target variable. In the absence of these, we
can take recourse to a geometric measure that penalises large distances from predic-
tion points to nearest sensing points. One such measure is the mean of the squared
shortest distances (MSSD) of the prediction points to the sensing points (Brus et al.,
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2003; de Gruijter et al., 2006, p. 153). If we take this as the quality measure, Q (ha),
then the model is, by double integration of the squared distance between points over
a rectangle

Q = w2 + h2

12
. (1.2)

Using Eqs. (1.1) and (1.2) one can minimise the costs under the constraint of a
given quality requirement Qr. It can be shown by the Lagrange multiplier technique
that the optimal value of h equals [for non-negative D and (R − √

D)]

h = 3
√

R + √
D + 3

√
R − √

D − 2

3
r, (1.3)

where r = cm
cd

, R = 6Qrr −
(

2
3 r
)3

and D = R2 −
(

2
3 r
)6

.

The optimal value of w follows by substitution in Eq. (1.2). Given the cost ratio r,
the optimised spacing between driving lines is a function of the quality requirement.
Graphs of this function are given in Fig. 1.2 for r = 0.05, 0.25 and 0.5 hm.

Note that for a given cost ratio r, the ratio of the two optimal spacings h/w
is a function of the quality requirement Qr. This function is given in Fig. 1.3 for
r = 0.05, 0.25 and 0.5 hm. The graphs show that the stronger the quality require-
ment, the more the optimised grid shape approaches h /w = 1, i.e. the ideal of the
square. As expected, the rectangles of the optimised grids become more elongated
as the ratio of measuring cost and driving cost is smaller.

Two extremes in terms of the cost ratio r deserve special attention. One extreme
occurs when the cost of measuring is negligible; then r ≈ 0, and according to
Eq. (1.3), also h ≈ 0. This would mean that sensing is done at the smallest pos-
sible spacing along the driving lines, the latter being w = √

12Qr hm apart. One
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Fig. 1.3 Ratio of optimised spacings h and w as a function of the required grid quality (MSSD),
for cost ratios r = 0.05, 0.25 and 0.5 hm

may ask if in such cases more efficient patterns can be formed by two perpendicular
sets of equidistant parallel lines. The answer is negative because, to keep the invest-
ment at the same level, the spacing between the lines should be doubled and it can
be shown that Q would then equal approximately w2/9 instead of w2/12.

The other extreme is when the cost of driving is negligible compared with mea-
suring. The only concern is then to keep the sensing density as low as possible,
under the constraint Qr. The optimal grid shape is now square for any density so
that [from Eq. (1.2)] h = w = √

6Qr.
The spacing between the lines cannot always be chosen freely because there may

be controlled driving lines in the field, say wm apart. In that case w is allowed to take
only the values wm or multiples of it. Given Qr and a series of permissible values of
w, optimisation can be done by calculating h from Eq. (1.2) and C from Eq. (1.1)
for each value of w and selecting the (w, h) combination with the smallest C.

1.2.1.2 Optimisation for Equipment Type B

Assume that we drive the vehicle at speed v (m min−1) while the sensor is measuring
at frequency f (min−1). A cost model in terms of time T (min ha−1) needed for
optimisation is now as follows:

T = 1

w · v
. (1.4)

The measuring interval along the lines h is determined by speed and frequency:
h = v/f .

Minimising T, again under quality constraint Qr, results in w = h = √
6Qr. So

with this type of equipment one should always strive for a square grid, regardless of
the quality requirement and the measuring frequency, as with type A when driving
costs are negligible.
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1.2.2 Sensor Sampling: Some Experiments

Three surveys were done in a 9.4-ha field located at ‘The Lagoon’ near Bathurst,
New South Wales, on the flood plain of the Campbell River. Soil ranged from sandy,
crusting, coarse textured profiles (Arenosols) with rock fragments on the higher
elevations to heavy alluvial clays (Fluvisols) on the flats adjoining the river. The
surveys were done with equipment of type B (non-stop driving) with an EM38 (hor-
izontal): (1) fast driving in north–south direction; (2) slowly driving in north–south
direction, half the speed but double swathe width of (1); and (3) same as (2) but
in east–west direction. The driving lines were approximately straight, parallel and
equidistant, two times farther apart with the slow surveys than with the fast one
(13.3, 26.6 and 26.8 m on average). Figure 1.4 shows the swathe patterns for the
three surveys.

The difference in speed caused differences in spacing between the measurements
along the lines. The variable costs of the three surveys were approximately equal.
See Table 1.1 for the key parameter values of the surveys. The numbers in brackets
in this table are the expected parameter values after optimisation of the sampling
design, given the same measuring frequencies and quality requirements as realised
in the surveys.

The ECa was mapped by ordinary kriging with the three datasets separately,
and the mean kriging standard deviation was calculated. Figure 1.5 shows that, as
expected, both the geographic pattern quality and the geostatistical pattern quality
are better for the fast survey than for the slow survey, because the grid pattern is less
elongated. This better quality was achieved with no extra costs.

Fig. 1.4 Swathe patterns as applied in three sensing experiments
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Table 1.1 Key parameter values of the three surveys

Survey parameter Fast N–S Slow N–S Slow E–W

Swathe width, w (m) 13.3 (11.0) 26.6 (19.0) 26.8 (19.0)
Sample size, n 870 965 1035
Total line length (m) 7,080 3,540 3,520
Interval, h (m) 8.14 (11.0) 3.67 (19.0) 3.40 (19.0)
Frequency, f (min−1) 24.2 24.7 28.8
Speed, v (m min−1) 197 (267) 90.8 (469) 97.8 (547)
Time, T (min ha−1) 3.82 (3.40) 4.13 (1.12) 3.82 (0.96)
Quality, Q (m2) 20.3 60.1 60.8

Values for the optimised pattern are represented in brackets, given the
same frequency and quality requirement as realised in the survey
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Fig. 1.5 Geometric pattern
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(mean kriging standard
deviation) for the surveys fast
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E−W (from left to right)

Table 1.1 shows that optimising the sensing pattern at the low-quality level of the
slow speed surveys would decrease the survey time by about 75%. However, this
could be achieved only with a more than four times higher speed of driving, which
is clearly impracticable. Optimising the sensing pattern at the higher quality level
of the fast survey decreases the survey time much less than with the slow surveys
(11%), and this would require a 36% higher driving speed. However, as the speed of
the fast survey was already high from the point of view of sensing precision, such a
speed-up might be at the cost of too much loss of data quality.

1.2.3 Calibration Sampling

As opposed to sensor sampling, in calibration sampling, aliquots are taken to the
laboratory for measurements, and the total costs are therefore dominated by the


