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v

The origins of amino carbenes as ligands can be traced back almost a century to the 
complex first synthesised by Tschugajeff (Chugaev). Interestingly, N-heterocyclic 
carbenes (NHCs) remained a lab curiosity until the mid-1990s. A few years later, 
this new class of ligands exploded in the literature, so much so that NHCs have 
become a ubiquitous class of ligands.

During the past decade, NHCs have been coordinated to virtually all transition 
metals (TM) and studied in numerous catalytic transformations, pushing back the 
frontiers of catalysis. In this regard, the most salient examples are found in olefin 
metathesis and cross coupling reactions, and more recently in organocatalysis.

The monograph commences with an introductory overview of NHCs, including 
a complete description of their steric and electronic properties, that shatters long-
standing dogmas such as “phosphine mimicry” and “inexistent pi-acidity”. This sets 
the stage for catalytic applications that are thoroughly discussed throughout eleven 
chapters. The penultimate chapter is devoted to decomposition pathways of 
TM-NHC systems. The closing chapter brings a unique industrial context to this 
book by describing applications of NHCs in industrial processes, a first of its kind.

In order to provide the reader with a fresh perspective on NHCs, the book has 
been assembled mainly by young emerging researchers, most of whom studied 
NHCs in undergraduate classes. This is therefore a perspective from a new genera-
tion of researchers that never considered NHCs as laboratory curiosities. A comple-
mentary perspective is brought by prominent, well-established academic researchers 
and an industrialist.

Believe it or not, I have been associated with NHCs in one form or another for 
the past eleven years. I went through it all, from the frustrations of tar-making to 
the distress of being scooped past tar-stage. I have even been told to give it all up. 
For some reason NHCs keep crossing my path, and I find them so intriguing that I 
keep coming back to them. This book has been an exciting project and I hope it 
will trigger activity from novices and provide inspiration to researchers already in 
the field.

St Andrews, UK	 Catherine S. J. Cazin
March 2010

Preface
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Abstract  N-heterocyclic carbenes (NHCs) are probably the class of ligands that not 
only has attracted the most attention during the past decade, but also for which the 
greatest advances have been made. These include a wider availability, applicability 
and understanding. In this chapter, an overview of all aspects of NHCs is given, start-
ing with an historical discussion that begins almost a century ago. An inventory of the 
structural diversity of NHCs found in the literature is given, followed by the nomen-
clature of NHCs and the trivial names used. A section is devoted to the synthetic 
strategies developed for the formation of NHC-precursors, NHC ligands and NHC-
complexes. The most diagnostic spectroscopic features of NHCs and NHC complexes 
are listed as well as the manner in which NHCs are usually represented. NHCs have 
become indubitably one of the most important and unique class of ligands as they 
have very distinctive and interesting electronic and steric features. A large section 
of this chapter is hence devoted to the discussion of these features and presents the 
recent advances made for determination of NHC properties and their understanding.

1.1 � Generalities

1.1.1 � Historical Aspects

N-Heterocyclic carbenes (NHCs) have become an incontrovertible class of mole-
cules for transition-metal- (TM) and organo-catalysis. Inception of the field dates 
back almost a century ago when Tschugajeff (Chugaev) and co-workers reacted 
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potassium tetrachloroplatinate with methyl isocyanide, followed by the addition of 
hydrazine [1, 2]. Contrarily to the authors’ expectations, this reaction does not lead 
to a dimeric species composed of tetracyanide platinum moieties bridged by hydra-
zine molecules, but leads to a compound that is probably the first diamino carbene 
complex isolated in pure form. The structure of this salt 1, and the one of its biscar-
bene derivative 2, were only solved decades later (Scheme 1.1) [3–6]. It was later 
shown that this methodology is applicable to the synthesis of NHC complexes when 
functionalised isocyanides are used [7].

In the early 1960s, Wanzlick pioneered investigations on NHCs [8]. This was 
followed by the first description of NHCs as ligands for metal complexes [9, 10]. 
However, it is only in the 1990s that this new class of ligands was brought under 
the spotlight. Firstly by Arduengo’s seminal isolation and characterisation of a free 
NHC [11], secondly by the recognition that NHCs could act as promising ligands 
for homogeneous catalysts [12]. These reports ignited the curiosity of researchers 
as the possible role of NHCs as ligands was revealed, an interest that has seen an 
incredible research activity (Fig. 1.1).
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1.1.2 � Structural Diversity of NHCs

At the origin of this abundance of publications on N-heterocyclic carbenes is the 
structural ligand diversity now available (Fig. 1.2). This developing area is noteworthy 
as most early developments were mainly focused on imidazolylidene and imidazo-
lidinylidene NHC-types.
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This schematic overview of NHC ligands found in the literature shows that most 
are based on five-membered heterocyclic cores. The most common are listed in 
Section 1.1.3.
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1.1.3 � NHC Ligands: Nomenclature and Trivial Names

The most commonly encountered NHCs are those based on five-membered 
heterocycles. Figure 1.3 summarises these heterocycles and the associated name of 
the corresponding NHC.
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The most frequently encountered NHCs are all based on imidazole and imida-
zolidine. In Fig. 1.4 are presented the most commonly found examples with their 
associated acronym.

Since Arduengo’s first isolation of a free NHC (IAd) [11], a few others have 
been isolated and characterised. Despite the early assumption that bulky substituents 
on the nitrogen atoms were necessary in order to stabilise free NHCs, compounds 
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such as IMe have been found stable. However, depending on the class of NHCs, 
the isolation of the free ligand can be difficult or impossible. This is, for example, 
the case of NHCs based on imidazolidinylidene bearing small N-substituents as they 
dimerise to the corresponding tetraaminoethylene [13]. In order to overcome this 
limitation, alternate synthetic strategies have been developed for the formation of 
NHC complexes.

1.1.4 � Synthesis of NHC Precursors, NHCs and Complexes

The main synthetic routes leading to the formation of NHC complexes are depicted 
in Scheme 1.2. The methodologies given are shown with imidazolidinylidene and 
imidazolylidene ligands, however, they are applicable to other NHCs [16, 17].
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The most often encountered routes are A, B and C. Route A consists of generating 
the free carbene (by deprotonation of the corresponding salt, by reductive desulfu-
risation  or by thermal a-elimination from appropriate NHC precursors) followed 
by coordination to a metal centre (often with concomitant ligand displacement). 
Method B consists of using a metal precursor containing a base as ligand. The base 
deprotonates the imidazol(idin)ium salt, leading to the coordination of the NHC 
and of the counter-anion of the salt (if X is a coordinating anion). Method C employs 
a carbene transfer reagent (often a Ag-complex) that, by transmetallation, delivers 
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the NHC to the second metal. Methods D and F are less frequently encountered, 
they consist of a C–X or a C–H bond activation via oxidative addition. Route E 
is a possibility for the formation of imidazolidinylidene complexes by C=C bond 
activation of the dimerised imidazolidinylidene. Other routes that have not been 
depicted in Scheme 1.2 (because they are much less versatile) include the cycload-
dition to Fischer carbenes and the intramolecular addition to a C≡N bond of coor-
dinated isocyanides. The latter methodology is the intramolecular version of the 
Tschugajeff synthesis (Scheme 1.1) [7, 14, 15]. The most frequently encountered 
NHC-complexes are undoubtedly imidazolylidene and imidazolidinylidene due to 
the easy access of their precursors (imidazol(idin)ium salts). The most common 
routes for their synthesis are described in Scheme 1.3 [16, 17].

N NR R'
X-

HN N
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N N-Y+Y RX'
N NR

R'X

O O

O

HH
NH4X"
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L
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N

Scheme 1.3  Predominant routes to imidazolylidene and imidazolidinylidene precursors

Two types of imidazolium salts must be distinguished depending on the 
N,N′-substitution: symmetrically (R = R’) and unsymmetrically substituted (R ≠ R’) 
versions. For the first type (which is also the predominant one, see Fig. 1.4), two 
main strategies are viable: reaction of imidazole with RX in the presence of a base 
(G) or cyclisation of an a-diimine or diazobutadiene (obtained by the condensation 
of the amine with glyoxal) with formaldehyde in the presence of a Brønsted acid 
(H). On the other hand, the synthesis of unsymmetrically N,N’-substituted conge-
ners is less straightforward as a functionalised imidazole has to be isolated prior to 
alkylation or arylation. Two main methods are available for imidazole functionali-
sation: deprotonation with metallic Na or K leading to an imidazolide (I) followed 
by reaction with RX; or reaction of glyoxal with a primary amine, an ammonium 
salt and formaldehyde (J). N-functionalised imidazole can then be alkylated or 
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arylated (K) to the imidazolium salt. Symmetrically N,N’-substituted imidazolidinium 
salts can be easily obtained by reduction of an a-diimine (L) followed by cyclisa-
tion using triethyl orthoformate in the presence of an ammonium salt (M). The 
same strategy is operative for the synthesis of unsymmetrically N,N’-substituted 
imidazolidinium salts (M, R ≠ R’). In such cases, the diamine is synthesised in two 
steps in order to introduce different N,N’-substituents: stepwise reaction of ethyl 
2-chloro-2-oxoacetate with two primary amines leading to the corresponding oxal-
amide (N) followed by reduction to the diamine (O). Cyclisation (M) leads to the 
unsymmetrically N,N’-substituted imidazolidinium salt.

The methodologies described above lead to NHC precursors rather limited in 
terms of substitution at the four- and five-positions as their access is restricted to the 
accessibility of the appropriate diimine. As such substitutions are of great interest 
in particular for the design of asymmetric catalysts, routes to the synthesis of the 
NHC precursors have more recently been developed. Some of these approaches are 
described in Scheme 1.4.
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Scheme 1.4  Synthetic pathways to NHC precursors with a substituted backbone (C4 C5)

The cyclisation of a-diimines can be efficiently performed using chloromethyl 
pivalate in the presence of silver triflate (P) [18]. This method is a good alternative 
to the use of formaldehyde (pathway H, Scheme 1.3) as it overcomes the problem 
of ring-closing of sterically hindered substrates encountered when using H. This 
method allowed Glorius and co-workers to introduce a new class of sterically 
demanding NHCs: the tricyclic Biox ligands. Imidazolium salts with substituted 
backbones can also be obtained by reaction of oxazolinium acetals with a primary 
amine, leading to hydroxylated imidazolidinium salts that lead to the imidazolium 
salt after elimination of water (Q) [19]. Imidazolidinium salts with a substituted 
backbone can be obtained by alkylation of the parent 2-imidazolidine [20]. The latter 
can be obtained by the reaction of an aldehyde with an amine and an isocyanide (R) 
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[21]. Imidazolidine-2-thiones functionalised on the four-position can be obtained 
by reaction of HN(CH

3
)R’ with n-butyllithium, followed by addition of carbon 

disulfide. The lithium thicarbamate can then by further lithiated and cyclisation 
occurs upon reaction of this species with an imine (S) [22].

1.1.5 � Spectroscopic Features of NHCs and Complexes

The most convenient tool for the characterisation of NHCs is NMR spectroscopy, 
in particular 13C{1H} NMR. As a case study, the carbenes IPr and SIPr, and their 
corresponding salts IPr·HCl and SIPr·HCl were chosen. As described above 
(Scheme 1.2), free carbenes are often obtained by deprotonation of the corresponding 
salt. The best diagnostic tool to observe the salt deprotonation, and thus indirectly 
monitor the carbene formation, is 1H NMR spectroscopy, by means of the 
disappearance of the characteristic acidic proton resonance. The signal corresponding 
to the latter (H2) is largely shifted downfield (typically 8–12 ppm) and disappears 
upon deprotonation (Fig. 1.5).
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Fig. 1.5  1H NMR (CD
2
Cl

2
 – salt; C

6
D

6
 – free NHC) spectra of IPr, IPr·HCl, SIPr and SIPr·HCl
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The carbene formation can be monitored by 13C{1H} NMR, as the carbene 
carbon atom of free NHCs has a signal significantly shifted downfield. 
Typically, the signal for the C2 atom is found between 200 and 250 ppm for 
the free carbene, and between 130 and 160 ppm for the corresponding salt 
(Fig. 1.6) [23].

Once coordinated to a metal centre, the signal corresponding to the carbene 
carbon atom is usually shifted upfield. The chemical shift of the carbene carbon 
atom (C2) for a given metal in a given oxidation state is usually characteristic 
(Table 1.1).
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Table 1.1  13C{1H} NMR chemical shifts of the carbenic carbon atom C2 

Metal Complex dC2 (ppm) Solvent Ref.

Ru(II) [RuHCl(CO)
2
(IPr)

2
] 185.9 thf-d

8
[24]

[RuHCl(CO)(IPr)
2
] 195.6 thf-d

8
[24]

[RuHCl(CO)
2
(SIPr)

2
] 193.0 thf-d

8
[24]

[RuHCl(CO)(SIPr)
2
] 201.0 thf-d

8
[24]

Rh(I) [RhCl(COD)(IPr)] 187.7 C
6
D

6
[25]

1J
Rh–C

 = 53 Hz
[RhCl(COE)(IPr)]

2
181.7 C

6
D

6
[26]

1J
Rh–C

 = 64 Hz
[Rh(OAc)(CO)(IPr)

2
] 190.6 CDCl

3
[27]

1J
Rh–C

 = 44 Hz
[Rh(acac)(CO)(SIPr)] 210.75 CDCl

3
[28]

1J
Rh–C

 = 54 Hz
Rh(III) [RhCl(h2-O

2
)(IPr)

2
] 180.8 C

6
D

5
CD

3
[29]

1J
Rh–C

 = 40 Hz
Ir(I) [IrCl(COD)(IPr)] 182.6 CDCl

3
[30]

[IrCl(CO)
2
(IPr)] 178.6 CDCl

3
[30]

[IrCl(COD)(SIPr)] 209.5 CDCl
3

[30]
[IrCl(CO)

2
(SIPr)] 204.9 CDCl

3
[30]

Ir(III) [IrCl(h2-O
2
)(IPr)

2
] 167.4 C

6
D

6
[31]

[IrCl(H)
2
(IPr)(aIPr)]a 187.5 (IPr) C

6
D

6
[32]

166.8 (aIPr)
Ni(0) [Ni(CO)

3
(IPr)] 198.2 C

6
D

6
[33]

[Ni(CO)
3
(SIPr)] 223.2 C

6
D

6
[33]

Ni(II) [Ni(h3-C
3
H

5
)Cl(IPr)] 187.8 C

6
D

6
[34]

[Ni(h3-C
3
H

5
)(OH

2
)(IPr)]+[BAr

4
F]− 176.4 CD

2
Cl

2
[35]

[Ni(h3-C
3
H

5
)Cl(SIPr)] 218.4 C

6
D

6
[36]

Pd(0) [Pd(dvtms)(IPr)] 200.8 thf-d
8

[37]
[Pd(IPr)

2
] 199.0 C

6
D

6
[38]

[Pd(IPr)(PPh
3
)] 198.0 C

6
D

6
[38]

2J
P–C

 = 94 Hz
[Pd(SIPr)(PPh

3
)] 218.1 C

6
D

6
[38]

2J
P–C

 = 86 Hz
Pd(II) [Pd(h3-C

3
H

5
)Cl(IPr)] 188.5 C

6
D

6
[39]

[Pd(h3-2-MeC
3
H

4
)Cl(IPr)] 189.6 C

6
D

6
[40]

[PdCl
2
(IPr)

2
] 172.5 CDCl

3
[41]

[PdCl
2
(IPr)(PPh

3
)] 170.9 CDCl

3
[42]

2J
P–C

 = 198 Hz
[PdH

2
(IPr)(PCy

3
)] 200.5 C

6
D

6
[43]

2J
P–C

 = 138 Hz
[Pd(h2-O

2
)(IPr)(PCy

3
)] 192.0 C

6
D

6
[43]

2J
P–C

 = 16 Hz
[Pd(h3-C

3
H

5
)Cl(SIPr)] 215.4 C

6
D

6
[39]

Pt(0) [Pt(AE)(IPr)] 187.5b CDCl
3

[44]
[Pt(dvtms)(IPr)] 186.4b CDCl

3
[45]

[Pt(dvtms)(SIPr)] 213.3b CDCl
3

[45]

(continued)
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Fig. 1.7  Representations of NHCs found in the literature

Metal Complex dC2 (ppm) Solvent Ref.

Pt(II) [Pt(h3-2-MeC
3
H

4
)Cl(IPr)] 180.8b CDCl

3
[46]

[PtCl
2
(dmso)(IPr)] 147.4 CDCl

3
[47]

1J
Pt–C

 = 1,479 Hz
[PtCl

2
(dmso)(SIPr)] 174.4 CDCl

3
[47]

1J
Pt–C

 = 1,373 Hz
Cu(I) [CuCl(IPr)] 182.3 (CD

3
)

2
CO [48]

[Cu(IPr)
2
][BF

4
] 177.4 CDCl

3
[49]

[Cu(IPr)
2
][PF

6
] 178.4 CDCl

3
[49]

[CuCl(SIPr)] 204.3 CDCl
3

[50]
[Cu(SIPr)

2
][BF

4
] 201.4 CDCl

3
[51]

[Cu(SIPr)
2
][PF

6
] 199.8 CDCl

3
[51]

Ag(I) [AgCl(IPr)] 184.6 CDCl
3

[52]
1J

Ag–C
 = 271 Hz

1J
Ag–C

 = 235 Hz
[Ag(IPr)

2
][PF

6
] 183.6 CDCl

3
[25]

1J
Ag–C

 = 211 Hz
1J

Ag–C
 = 183 Hz

[AgCl(SIPr)] 207.7 CD
2
Cl

2
[52]

1J
Ag–C

 = 253 Hz
1J

Ag–C
 = 219 Hz

Au(I) [AuCl(IPr)] 175.1 CD
2
Cl

2
[53]

[AuBr(IPr)] 179.0 CDCl
3

[54]
[AuCl(SIPr)] 196.1 CDCl

3
[53]

[AuBr(SIPr)] 199.0 CDCl
3

[54]
Au(III) [AuBr

3
(IPr)] 146.2 CDCl

3
[54]

[AuBr
3
(SIPr)] 174.1 CDCl

3
[54]

a aIPr = abnormal IPr (i.e. IPr bound through C4)
b 1J

Pt–C
 not observed

Table 1.1  (continued)

1.1.6 � NHC Complexes: Representation and Convention

The standardised representation of NHC metal complexes is still not fully established, 
and different representations are used. Figure 1.7 summarises the representations 
found in the literature.
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Early representations exhibited a double bond between the metal centre and the 
carbene carbon atom. This was soon recognised as being a misleading representation 
as NHCs are two-electron donor ligands [55]. With respect to the disparity of repre-
sentation still currently found in the literature, none is very accurate. The most accurate 
representation is the one displaying the charges [56], however, presumably for the 
sake of clarity, the most often encountered representation (conventional) does not 
contain any charge. It will also be the representation used throughout this book.

By convention, the carbenes displayed in Fig. 1.7 are “normal” NHCs as they 
are coordinated to the metal centre through the C2 atom. By contrast, abnormal 
(also named non-classical or unusual) are those bound through the C4 atom. 
Abnormal is also a term used for NHCs having a valence representation requiring 
additional charges. Remote is a term used to describe a carbene which does not 
have any heteroatom on the a-position to the carbenic carbon (Fig. 1.8) [57]. 

As depicted above, there is a large variety of NHCs, and their access is relatively 
easy. This is a veritable advantage in the use of NHCs for homogeneous catalytic 
systems. However, it is probably their unique electronic and steric properties that 
make NHCs an exceptional class of molecules. These unique features are described 
in the following sections.

1.2 � Electronic Properties of NHCs

NHCs can be classified as typical s-basic/p*-acid ligands [58–61], whose electronics 
can be rationalised considering the Molecular Orbitals diagram presented in Fig. 1.9. 
The diagrams show the interaction of the basic imidazolidinylidene skeleton with a 
transition metal. The NHC presents a lone electrons pair in a high energy s orbital, see 
Fig. 1.9a, which confers to NHCs a s-donicity (basicity) clearly-stronger than that of 
even basic phosphines, such as PCy

3
 [62, 63]. This key feature is accompanied by the 

presence of an empty low energy p* orbital, see Fig. 1.9b, which allows NHCs to act 
as acceptor of electron density from filled d orbitals of the metals (p-acidity) in a clas-
sical d → p* back-donation scheme [64, 65]. Finally, with electron-deficient metals, 
NHCs can also engage in a p → d donation, in which electron density is donated from 
an appropriate combination of filled and empty p orbitals on the NHC, see Fig. 1.9c, 
to empty d orbitals of the metal (p-basicity) [66]. This picture of the M–NHC 
bonding is the result of years of research, since NHC ligands were initially considered to 
be pure s-donors with insignificant p-acidity capability. Almost a decade later, seminal 

NN RR

MLn

normal

MLn

N
N
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NN

MLn

Fig. 1.8  Normal, abnormal and remote NHCs
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reports [64, 65, 67, 68] clearly showed that NHCs can accept electron density from the 
metal into p* orbitals, and this contribution cannot be neglected. Finally, the p-donor 
capability of NHC ligands towards electron poor metals, which completes the picture, 
has been recognised only in the past few years [59, 60, 66, 69].

N N

X X

Y Y

C4- and C5-substituents
bridge

N -substituent

Fig. 1.10  Schematic illustration of the structural points whose modification can be used to tune 
the electronic properties of NHC ligands

Fig. 1.9  Diagram illustrating the s → d (a), the d → p* (b), and the p → d (c) bonding modes 
occurring between NHCs and transition metals

Different electronic properties of the NHC ligand can result in drastic conse-
quences on the catalytic efficiency of the corresponding metal complexes. The key 
structural parameters that can be modified to tune the electronic properties in five-
membered NHCs, shown in Fig. 1.10, are: (a) the NHC skeleton; (b) the nature of the 
substituents on the C4 and C5 carbon atoms of the NHC skeleton; (c) the N-substituents. 
To discuss these points, we will privilege studies focused on the [IrCl(CO)

2
(NHC)]  

and [IrCl(cod)(NHC)] complexes (cod = 1,5-cyclooctadiene), since these two classes 
of compounds are gaining the status of model systems to investigate the stereoelec-
tronic properties of NHC ligands [30, 70–75]. The former through the measurement 
of the average CO stretching frequency, n

av
, by IR spectroscopy [30, 70–74], the latter 

through the measurement of the redox potential, E
1/2

, by cyclic voltammetry [18].


