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Preface

The origins of amino carbenes as ligands can be traced back almost a century to the
complex first synthesised by Tschugajeff (Chugaev). Interestingly, N-heterocyclic
carbenes (NHCs) remained a lab curiosity until the mid-1990s. A few years later,
this new class of ligands exploded in the literature, so much so that NHCs have
become a ubiquitous class of ligands.

During the past decade, NHCs have been coordinated to virtually all transition
metals (TM) and studied in numerous catalytic transformations, pushing back the
frontiers of catalysis. In this regard, the most salient examples are found in olefin
metathesis and cross coupling reactions, and more recently in organocatalysis.

The monograph commences with an introductory overview of NHCs, including
a complete description of their steric and electronic properties, that shatters long-
standing dogmas such as “phosphine mimicry” and “inexistent pi-acidity”. This sets
the stage for catalytic applications that are thoroughly discussed throughout eleven
chapters. The penultimate chapter is devoted to decomposition pathways of
TM-NHC systems. The closing chapter brings a unique industrial context to this
book by describing applications of NHCs in industrial processes, a first of its kind.

In order to provide the reader with a fresh perspective on NHCs, the book has
been assembled mainly by young emerging researchers, most of whom studied
NHCs in undergraduate classes. This is therefore a perspective from a new genera-
tion of researchers that never considered NHCs as laboratory curiosities. A comple-
mentary perspective is brought by prominent, well-established academic researchers
and an industrialist.

Believe it or not, I have been associated with NHCs in one form or another for
the past eleven years. I went through it all, from the frustrations of tar-making to
the distress of being scooped past tar-stage. I have even been told to give it all up.
For some reason NHCs keep crossing my path, and I find them so intriguing that I
keep coming back to them. This book has been an exciting project and I hope it
will trigger activity from novices and provide inspiration to researchers already in
the field.

St Andrews, UK Catherine S. J. Cazin
March 2010
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Chapter 1
N-Heterocyclic Carbenes: An Introductory
Overview

Luigi Cavallo and Catherine S. J. Cazin

Abstract N-heterocyclic carbenes (NHCs) are probably the class of ligands that not
only has attracted the most attention during the past decade, but also for which the
greatest advances have been made. These include a wider availability, applicability
and understanding. In this chapter, an overview of all aspects of NHCs is given, start-
ing with an historical discussion that begins almost a century ago. An inventory of the
structural diversity of NHCs found in the literature is given, followed by the nomen-
clature of NHCs and the trivial names used. A section is devoted to the synthetic
strategies developed for the formation of NHC-precursors, NHC ligands and NHC-
complexes. The most diagnostic spectroscopic features of NHCs and NHC complexes
are listed as well as the manner in which NHCs are usually represented. NHCs have
become indubitably one of the most important and unique class of ligands as they
have very distinctive and interesting electronic and steric features. A large section
of this chapter is hence devoted to the discussion of these features and presents the
recent advances made for determination of NHC properties and their understanding.

1.1 Generalities

1.1.1 Historical Aspects

N-Heterocyclic carbenes (NHCs) have become an incontrovertible class of mole-
cules for transition-metal- (TM) and organo-catalysis. Inception of the field dates
back almost a century ago when Tschugajeff (Chugaev) and co-workers reacted
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2 L. Cavallo and C. S. J. Cazin

potassium tetrachloroplatinate with methyl isocyanide, followed by the addition of
hydrazine [1, 2]. Contrarily to the authors’ expectations, this reaction does not lead
to a dimeric species composed of tetracyanide platinum moieties bridged by hydra-
zine molecules, but leads to a compound that is probably the first diamino carbene
complex isolated in pure form. The structure of this salt 1, and the one of its biscar-
bene derivative 2, were only solved decades later (Scheme 1.1) [3-6]. It was later
shown that this methodology is applicable to the synthesis of NHC complexes when
functionalised isocyanides are used [7].

H Me
N
H
i) C=EN-Me ‘N4+,C HCI NJ\ CI
KoPtCly — N Pt _
) HN=NH, — N=¢" "c. oM, CNMe | j/ ‘o
N,
NHON /NH
1 2

Scheme 1.1 Tschugajeft’s (Chugaev) carbene complexes [1, 2]

In the early 1960s, Wanzlick pioneered investigations on NHCs [8]. This was
followed by the first description of NHCs as ligands for metal complexes [9, 10].
However, it is only in the 1990s that this new class of ligands was brought under
the spotlight. Firstly by Arduengo’s seminal isolation and characterisation of a free
NHC [11], secondly by the recognition that NHCs could act as promising ligands
for homogeneous catalysts [12]. These reports ignited the curiosity of researchers
as the possible role of NHCs as ligands was revealed, an interest that has seen an
incredible research activity (Fig. 1.1).
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Fig. 1.1 Number of publications (N-heterocyclic carbene as research topic)
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1.1.2  Structural Diversity of NHCs

At the origin of this abundance of publications on N-heterocyclic carbenes is the
structural ligand diversity now available (Fig. 1.2). This developing area is noteworthy
as most early developments were mainly focused on imidazolylidene and imidazo-
lidinylidene NHC-types.
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Fig. 1.2 Structural diversity of NHC ligands

This schematic overview of NHC ligands found in the literature shows that most
are based on five-membered heterocyclic cores. The most common are listed in
Section 1.1.3.



4 L. Cavallo and C. S. J. Cazin

1.1.3 NHC Ligands: Nomenclature and Trivial Names

The most commonly encountered NHCs are those based on five-membered
heterocycles. Figure 1.3 summarises these heterocycles and the associated name of
the corresponding NHC.

4 5 4 5 5 1 2 3
— — —N N=N
N, N! N, N! N5 N2 "N g N2
rR-N2-N-R r-N2N-p R-N3N-R rR-Ns-N-R

imidazolidinylidene imidazolylidene triazolylidene tetrazolylidene
4_5 4_5 4_ 5

3/ \4 N R-§C1
R-Ne S R-N.2© a2 NR

thiazolylidene oxazolylidene pyrrolidinylidene
Fig. 1.3 Common five-membered heterocyclic carbenes
The most frequently encountered NHCs are all based on imidazole and imida-

zolidine. In Fig. 1.4 are presented the most commonly found examples with their
associated acronym.
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Fig. 1.4 Most common NHC ligands and their respective acronyms

Since Arduengo’s first isolation of a free NHC (IAd) [11], a few others have
been isolated and characterised. Despite the early assumption that bulky substituents
on the nitrogen atoms were necessary in order to stabilise free NHCs, compounds
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such as IMe have been found stable. However, depending on the class of NHCs,
the isolation of the free ligand can be difficult or impossible. This is, for example,
the case of NHCs based on imidazolidinylidene bearing small N-substituents as they
dimerise to the corresponding tetraaminoethylene [13]. In order to overcome this
limitation, alternate synthetic strategies have been developed for the formation of
NHC complexes.

1.1.4 Synthesis of NHC Precursors, NHCs and Complexes

The main synthetic routes leading to the formation of NHC complexes are depicted
in Scheme 1.2. The methodologies given are shown with imidazolidinylidene and
imidazolylidene ligands, however, they are applicable to other NHCs [16, 17].

VIR [\
R~ >< "R R/’EVN;R —
=\ H R X R-N_N-g
r-N_ N-gr B |M(base)
hif A c ML,
S \K\
o base

R”E%/N‘R — R-N
X- .

A

N ¥ N
N
_C.
o” O
A free carbene
B base-containing complex
C transmetallation
D oxidative addition
E C=C activation
F C-H bond activation

Scheme 1.2 Main synthetic strategies for the formation of NHC-complexes

The most often encountered routes are A, B and C. Route A consists of generating
the free carbene (by deprotonation of the corresponding salt, by reductive desulfu-
risation or by thermal a-elimination from appropriate NHC precursors) followed
by coordination to a metal centre (often with concomitant ligand displacement).
Method B consists of using a metal precursor containing a base as ligand. The base
deprotonates the imidazol(idin)ium salt, leading to the coordination of the NHC
and of the counter-anion of the salt (if X is a coordinating anion). Method C employs
a carbene transfer reagent (often a Ag-complex) that, by transmetallation, delivers
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the NHC to the second metal. Methods D and F are less frequently encountered,
they consist of a C—X or a C—H bond activation via oxidative addition. Route E
is a possibility for the formation of imidazolidinylidene complexes by C=C bond
activation of the dimerised imidazolidinylidene. Other routes that have not been
depicted in Scheme 1.2 (because they are much less versatile) include the cycload-
dition to Fischer carbenes and the intramolecular addition to a C=N bond of coor-
dinated isocyanides. The latter methodology is the intramolecular version of the
Tschugajeff synthesis (Scheme 1.1) [7, 14, 15]. The most frequently encountered
NHC-complexes are undoubtedly imidazolylidene and imidazolidinylidene due to
the easy access of their precursors (imidazol(idin)ium salts). The most common
routes for their synthesis are described in Scheme 1.3 [16, 17].

G
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| A=) R
—\

N YL e\ B /\ RX X X
ANN = YENN 77 p NN TR NeR R-N2N-R
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NaBH
7N\ 7N\ 4 /N
d o R-N" 'N-R ~ |~ R-NH HN-R
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NH x2 TZ RNH, o TLlAIH4
4 o'o
H__H 7 N\
e d Y 4
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Scheme 1.3 Predominant routes to imidazolylidene and imidazolidinylidene precursors

Two types of imidazolium salts must be distinguished depending on the
N,N’-substitution: symmetrically (R = R’) and unsymmetrically substituted (R #R”)
versions. For the first type (which is also the predominant one, see Fig. 1.4), two
main strategies are viable: reaction of imidazole with RX in the presence of a base
(G) or cyclisation of an ¢-diimine or diazobutadiene (obtained by the condensation
of the amine with glyoxal) with formaldehyde in the presence of a Brgnsted acid
(H). On the other hand, the synthesis of unsymmetrically N,N’-substituted conge-
ners is less straightforward as a functionalised imidazole has to be isolated prior to
alkylation or arylation. Two main methods are available for imidazole functionali-
sation: deprotonation with metallic Na or K leading to an imidazolide (I) followed
by reaction with RX; or reaction of glyoxal with a primary amine, an ammonium
salt and formaldehyde (J). N-functionalised imidazole can then be alkylated or
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arylated (K) to the imidazolium salt. Symmetrically N,N’-substituted imidazolidinium
salts can be easily obtained by reduction of an a-diimine (L) followed by cyclisa-
tion using triethyl orthoformate in the presence of an ammonium salt (M). The
same strategy is operative for the synthesis of unsymmetrically N,N’-substituted
imidazolidinium salts (M, R # R’). In such cases, the diamine is synthesised in two
steps in order to introduce different N,N’-substituents: stepwise reaction of ethyl
2-chloro-2-oxoacetate with two primary amines leading to the corresponding oxal-
amide (N) followed by reduction to the diamine (Q). Cyclisation (M) leads to the
unsymmetrically N,N’-substituted imidazolidinium salt.

The methodologies described above lead to NHC precursors rather limited in
terms of substitution at the four- and five-positions as their access is restricted to the
accessibility of the appropriate diimine. As such substitutions are of great interest
in particular for the design of asymmetric catalysts, routes to the synthesis of the
NHC precursors have more recently been developed. Some of these approaches are
described in Scheme 1.4.

OH o o
;i i) diethyl oxalate 5[ j< R AgOTf ) &):( .
—_— —_—
R! i)y SOCl,, ii) NaOH 7 cicH.0coBy R NVNJ/R ot
R2"  NH; R? R2 o R2 + g2
i g 1Biox-HOTI
A°°5—< x- RNHp_ H°5—< x- A = x q
N R-N N RN N
R1 RZ RS\( R4 R1 R2 R3R4 R1 R2 R3R4
agoac K Rx_ Y
0 N — — R
i R-N_N R-NNR
HaNR
qi ) Bl R
Mo fomese Y s
R N i) SBuLi R'/N\[(N‘R
|
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Scheme 1.4 Synthetic pathways to NHC precursors with a substituted backbone (C* C?)

The cyclisation of o-diimines can be efficiently performed using chloromethyl
pivalate in the presence of silver triflate (P) [18]. This method is a good alternative
to the use of formaldehyde (pathway H, Scheme 1.3) as it overcomes the problem
of ring-closing of sterically hindered substrates encountered when using H. This
method allowed Glorius and co-workers to introduce a new class of sterically
demanding NHCs: the tricyclic Biox ligands. Imidazolium salts with substituted
backbones can also be obtained by reaction of oxazolinium acetals with a primary
amine, leading to hydroxylated imidazolidinium salts that lead to the imidazolium
salt after elimination of water (Q) [19]. Imidazolidinium salts with a substituted
backbone can be obtained by alkylation of the parent 2-imidazolidine [20]. The latter
can be obtained by the reaction of an aldehyde with an amine and an isocyanide (R)
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[21]. Imidazolidine-2-thiones functionalised on the four-position can be obtained
by reaction of HN(CH,)R* with n-butyllithium, followed by addition of carbon
disulfide. The lithium thicarbamate can then by further lithiated and cyclisation
occurs upon reaction of this species with an imine (S) [22].

1.1.5 Spectroscopic Features of NHCs and Complexes

The most convenient tool for the characterisation of NHCs is NMR spectroscopy,
in particular *C{'H} NMR. As a case study, the carbenes IPr and SIPr, and their
corresponding salts IPr-HCI and SIPr-HCl were chosen. As described above
(Scheme 1.2), free carbenes are often obtained by deprotonation of the corresponding
salt. The best diagnostic tool to observe the salt deprotonation, and thus indirectly
monitor the carbene formation, is 'H NMR spectroscopy, by means of the
disappearance of the characteristic acidic proton resonance. The signal corresponding
to the latter (H?) is largely shifted downfield (typically 8—12 ppm) and disappears
upon deprotonation (Fig. 1.5).

H"H“H5H5 45
E = |
,_LAH4|;|5H5 4-5
'Pr N\th Procr
e 7 W' s
(" e
7
N 4-5
pr 7 e ﬂ
ﬁ _N__N-
= )\
74
Pr 'Pr JIL
-~
H5 4-5
N"’N Pr. CI”
n ﬁ e
T T T T T 3 T T T T T T T
“ppm 11 10 9 8 7 6 5 4

Fig. 1.5 'H NMR (CD,CI, — salt; CD, - free NHC) spectra of IPr, IPr-HCI, SIPr and SIPr-HCl
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The carbene formation can be monitored by *C{'H} NMR, as the carbene
carbon atom of free NHCs has a signal significantly shifted downfield.
Typically, the signal for the C? atom is found between 200 and 250 ppm for
the free carbene, and between 130 and 160 ppm for the corresponding salt

(Fig. 1.6) [23].
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Fig. 1.6 “C{'H} NMR (CD,CI, - salt; C.DD, — free NHC) spectra of IPr, IPr-HCI, SIPr and

SIPr-HCI

Once coordinated to a metal centre, the signal corresponding to the carbene
carbon atom is usually shifted upfield. The chemical shift of the carbene carbon
atom (C?) for a given metal in a given oxidation state is usually characteristic

(Table 1.1).
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Table 1.1 "C{'H} NMR chemical shifts of the carbenic carbon atom C?

Metal Complex SC? (ppm) Solvent Ref.
Ru(II) [RuHCI(CO),(IPr),] 185.9 thf-d, [24]
[RuHCI(CO)(IPr),] 195.6 thf-d, [24]
[RuHCI(CO),(SIP),] 193.0 thf-d, [24]
[RuHCI(CO)(SIPr), ] 201.0 thf-d, [24]
Rh(I) [RhCI(COD)(IPr)] 187.7 C.D, [25]
Uy =53 Hz
[RhCI(COE)(IPr)], 181.7 C.D, [26]
Uy, o= 64 Hz
[Rh(OACc)(CO)(IPr),] 190.6 CDCl, [27]
Uy o= 44 Hz
[Rh(acac)(CO)(SIPr)] 210.75 CDCl, [28]
Uy o= 54 Hz
Rh(IID) [RhCI(1>-0,)(IPr),] 180.8 C,D.CD, [29]
Uy, o= 40 Hz
Ir(T) [IrCI(COD)(IPr)] 182.6 CDCl, [30]
[IrCI(CO),(IPr)] 178.6 CDCI, [30]
[IrCI(COD)(SIPr)] 209.5 CDCl, [30]
[IrC1(CO) (SIPr)] 204.9 CDCl, [30]
Ir(11T) [IrCl(M2-0,)(IPr), ] 167.4 c.D, [31]
[IrCI(H),(IPr)(alPp)]* 187.5 (IPr) CD, (32]
166.8 (alPr)
Ni(0) [Ni(CO),(IPr)] 198.2 CD, [33]
[Ni(CO),(SIP)] 2032 C.D, [33]
Ni(I) [Ni(n*-C,H,)CI(IPr)] 187.8 C.D, [34]
[Ni(n*-C,H,)(OH,)(IPD)I[BAr F]- 176.4 CD,Cl, [35]
[Ni(’*-C,H,)CI(SIPr)] 218.4 CD, [36]
Pd(0) [Pd(dvtms)(IPr)] 200.8 thf-d, [37]
[Pd(IPr),] 199.0 C.D, [38]
[PA(IPr)(PPh,)] 198.0 C,D, [38]
2], =94 Hz
[Pd(SIPr)(PPh,)] 218.1 CD, [38]
2], . =86 Hz
Pd(IT) [Pd(n*-C,H,)CI(IPr)] 188.5 C.D, [39]
[Pd(n?-2-MeC,H,)CI(IPr)] 189.6 C.D, [40]
[PACL,(IPr),] 1725 CDCl, [41]
[PACL(IPr)(PPh,)] 170.9 CDCl, [42]
=198 Hz
[PdH,(IPr)(PCy,)] 200.5 C.D, [43]
2], =138 Hz
[Pd(>0,)(IPr)(PCy,)] 192.0 C.D, [43]
%, .=16Hz
[Pd(n*-C,H,)CI(SIPr)] 215.4 CD, [39]
Pt(0) [Pt(AE)(IPr)] 187.5° CDCl, [44]
[Pt(dvtms)(IPr)] 186.4 CDCI, [45]
[Pt(dvtms)(SIPr)] 213.3b CDCI, [45]

(continued)
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Table 1.1 (continued)
Metal Complex 4C? (ppm) Solvent Ref.
Pt(II) [Pt(n*-2-MeC,H ))CI(IPr)] 180.8° CDCl, [46]
[PtCL,(dmso)(IPr)] 147.4 CDCl, [47]
Voo = 1,479 Hz
[PtC1,(dmso)(STPr)] 174.4 CDCl, [47]
Yoo =1,373 Hz
Cu(l) [CuCI{Pr)] 182.3 (CD,),CO [48]
[Cu(TPr),][BF,] 177.4 CDCl, [49]
[Cu(1Pr),][PF,] 178.4 CDCl, [49]
[CuCI(SIPr)] 204.3 CDCl, [50]
[Cu(SIPr),][BF,] 201.4 CDCl, [51]
[Cu(SIPr),][PF,] 199.8 CDCl, [51]
Ag) [AgCI(IPr)] 184.6 CDCl, [52]
J ngc =271 Hz
) nec =235 Hz
[Ag(IPr),][PF,] 8 .6 CDCl, [25]
Jypc=211Hz
’JAgfC =183 Hz
[AgCI(SIPr)] 207.7 CD,C], [52]
lJAg—C =253 Hz
=219 Hz
Au(l) [AuCI(IPr)] 175.1 CD,C], [53]
[AuBr(IPr)] 179.0 CDCl, [54]
[AuCI(SIPr)] 196.1 CDCl, [53]
[AuBr(SIPr)] 199.0 CDCl [54]
Au(IIT) [AuBr,(IPr)] 146.2 CDCl [54]
[AuBr,(SIPr)] 174.1 CDCl [54]

2alPr = abnormal IPr (i.e. IPr bound through C*)

b1
JPl{

1.1.6 NHC Complexes: Representation and Convention

not observed

The standardised representation of NHC metal complexes is still not fully established,
and different representations are used. Figure 1.7 summarises the representations
found in the literature.
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Fig. 1.7 Representations of NHCs found in the literature
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Early representations exhibited a double bond between the metal centre and the
carbene carbon atom. This was soon recognised as being a misleading representation
as NHC:s are two-electron donor ligands [55]. With respect to the disparity of repre-
sentation still currently found in the literature, none is very accurate. The most accurate
representation is the one displaying the charges [56], however, presumably for the
sake of clarity, the most often encountered representation (conventional) does not
contain any charge. It will also be the representation used throughout this book.

By convention, the carbenes displayed in Fig. 1.7 are “normal” NHCs as they
are coordinated to the metal centre through the C? atom. By contrast, abnormal
(also named non-classical or unusual) are those bound through the C* atom.
Abnormal is also a term used for NHCs having a valence representation requiring
additional charges. Remote is a term used to describe a carbene which does not
have any heteroatom on the o-position to the carbenic carbon (Fig. 1.8) [57].

/ \ /
=\ N &y
i P
ML, ML, ML,
normal abnormal remote

Fig. 1.8 Normal, abnormal and remote NHCs

As depicted above, there is a large variety of NHCs, and their access is relatively
easy. This is a veritable advantage in the use of NHCs for homogeneous catalytic
systems. However, it is probably their unique electronic and steric properties that
make NHCs an exceptional class of molecules. These unique features are described
in the following sections.

1.2 Electronic Properties of NHCs

NHCs can be classified as typical c-basic/n*-acid ligands [58-61], whose electronics
can be rationalised considering the Molecular Orbitals diagram presented in Fig. 1.9.
The diagrams show the interaction of the basic imidazolidinylidene skeleton with a
transition metal. The NHC presents a lone electrons pair in a high energy ¢ orbital, see
Fig. 1.9a, which confers to NHCs a ¢-donicity (basicity) clearly-stronger than that of
even basic phosphines, such as PCy, [62, 63]. This key feature is accompanied by the
presence of an empty low energy 1* orbital, see Fig. 1.9b, which allows NHCs to act
as acceptor of electron density from filled d orbitals of the metals (wt-acidity) in a clas-
sical d — m* back-donation scheme [64, 65]. Finally, with electron-deficient metals,
NHCs can also engage in a T — d donation, in which electron density is donated from
an appropriate combination of filled and empty w orbitals on the NHC, see Fig. 1.9c,
to empty d orbitals of the metal (w-basicity) [66]. This picture of the M—NHC
bonding is the result of years of research, since NHC ligands were initially considered to
be pure 6-donors with insignificant w-acidity capability. Almost a decade later, seminal
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reports [64, 65, 67, 68] clearly showed that NHCs can accept electron density from the
metal into ¥ orbitals, and this contribution cannot be neglected. Finally, the -donor
capability of NHC ligands towards electron poor metals, which completes the picture,
has been recognised only in the past few years [59, 60, 66, 69].

a e
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Fig. 1.9 Diagram illustrating the ¢ — d (a), the d — w* (b), and the T — d (c¢) bonding modes
occurring between NHCs and transition metals

Different electronic properties of the NHC ligand can result in drastic conse-
quences on the catalytic efficiency of the corresponding metal complexes. The key
structural parameters that can be modified to tune the electronic properties in five-
membered NHCs, shown in Fig. 1.10, are: (a) the NHC skeleton; (b) the nature of the
substituents on the C* and C° carbon atoms of the NHC skeleton; (c) the N-substituents.
To discuss these points, we will privilege studies focused on the [IrCI(CO),(NHC)]
and [IrCl(cod)(NHC)] complexes (cod = 1,5-cyclooctadiene), since these two classes
of compounds are gaining the status of model systems to investigate the stereoelec-
tronic properties of NHC ligands [30, 70-75]. The former through the measurement
of the average CO stretching frequency, v_, by IR spectroscopy [30, 70-74], the latter

through the measurement of the redox potential, E, ,, by cyclic voltammetry [18].

<—— C* and C®-substituents

Fig. 1.10 Schematic illustration of the structural points whose modification can be used to tune
the electronic properties of NHC ligands



