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Generalized Eigenfunctions and Spectral Theory for Strongly
Local Dirichlet Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A. Mikikits-Leitner and G. Teschl
Trace Formulas for Schrödinger Operators in Connection
with Scattering Theory for Finite-gap Backgrounds . . . . . . . . . . . . . . . . . 107

A. Tikhonov
Inner-outer Factorization for Weighted Schur Class Functions
and Corresponding Invariant Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

F. Truc
Eigenvalue Asymptotics for Magnetic Fields and
Degenerate Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

List of Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171





Introduction

This volume appears as an outcome of the conference Operator Theory, Analysis
and Mathematical Physics – OTAMP2008, held at Mathematical Research and
Conference Center in Bedlewo near Poznan. The volume contains few review arti-
cles as well as original research papers presented at the conference or appeared as
a result of inspiring discussions during the meeting.
The titles of conference talks followed the subjects of four special sessions:
• random and quasi-periodic differential operators
• orthogonal polynomials
• Jacobi and CMV matrices
• quantum graphs

All contributions to this volume are devoted to different chapters of operator
theory with a focus towards applications in mathematical physics. Several articles
are in the area of spectral theory of Schrödinger operators having emphasis on
problems with magnetic fields. Another subject well-represented concerns spectral
theory for non-self-adjoint problems. Spectral analysis is not restricted to just
linear and self-adjoint problems.

This volume is devoted to the memory of Mikhail Shlemovich Birman – one
of the most outstanding scientists of the last century. The influence of his ideas
on the development of mathematical physics in the whole world and especially in
Saint Petersburg will continue for decades, several of the authors contributed to
this volume have been his students and will carry over his special attitude towards
science to new generations to come.

Preparing this volume we remembered another remarkable mathematical
physicist Israel Gohberg who always supported OTAMP conferences by includ-
ing proceedings into the series Operator Theory: Advances and Applications and
helping us with selection of outstanding contributors and interesting subjects in
operator theory.

We would like to thank the European Science Foundation (ESF) for a gen-
erous financial support which allowed to transfer the OTAMP conference into a
major event in the area of mathematical physics in 2008. We are grateful to all
people working at Mathematical Research and Conference Center in Bedlewo for
creating a stimulating scientific atmosphere and help before, during and after the
conference.

Birmingham-Krakow-London
Lund-St. Petersburg-Stockholm

May 2010
The Editors
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Floquet-Bloch Theory for Elliptic Problems
with Discontinuous Coefficients

B.M. Brown, V. Hoang, M. Plum and I.G. Wood

Abstract. We study spectral properties of elliptic problems of order 2m with
periodic coefficients in L∞. Our goal is to obtain a Floquet-Bloch type rep-
resentation of the spectrum in terms of the spectra of associated operators
acting on the period cell. Our approach using bilinear forms and operators in
H−m-type spaces easily handles discontinuous coefficients and has the merit
of being rather direct. In addition, the cell of periodicity is allowed to be
unbounded, i.e., periodicity is not required in all spatial directions.

Mathematics Subject Classification (2000). 35J10, 35j30, 35J99, 35P10.

Keywords. Floquet-Bloch, 2mth-order elliptic, spectral theory.

1. Introduction

One of the most important partial differential operators in quantum physics is the
Schrödinger operator

−∆ + V (x), x ∈ R
d.

In many application areas the potential V (·) is periodic with respect to a lattice
in R

d. An extension of this equation to include a magnetic term gives rise to the
magnetic Schrödinger operator

(−i∇− A(x))2 + V (x), x ∈ R
d

where now both the potential V and the magnetic potential A are periodic with
respect to the underlying lattice. Further examples of elliptic partial differential
operators which have periodic coefficients may also be found in the periodic Dirac
operator, the fields of periodic acoustics and photonic crystals. In all these cases
of periodic coefficients, the main way of studying the spectrum of a suitable self-
adjoint realisation is via the so-called Floquet-Bloch theory where essentially the
spectral properties of the operator in R

d are read off from the behaviour on a fun-
damental cell of periodicity resulting in the well-known band-gap structure. For
further information, see [2–5, 7, 8, 10, 11, 13–15] and the references quoted therein.

Operator Theory:
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Often, in particular when the potentials are non-smooth, it is advantageous
to study these problems using an associated bilinear form, and this is the approach
that we take. We work with an mth-order elliptic Hermitian sesquilinear form on
Hm(Rd) with periodic and bounded coefficients which we also allow to be discon-
tinuous. This is equivalent to studying a selfadjoint operator L (associated with the
bilinear form) in the dual space H−m(Rd). Our motivation for this is found in the
study of crystals where in practice often two (or more) materials are combined to
form a periodic structure, which results in piecewise constant periodic coefficients.
For future investigation of wave-guide properties we will require periodicity of the
coefficients only in some spatial directions, i.e., we allow unbounded periodic cells.
Hence in general no Bloch waves are available, and we have to use other tech-
niques replacing the usual Bloch wave expansion, e.g., we prove that the Floquet
transform (which is known to be an isometric isomorphism between L2-spaces) is
an isometric isomorphism also between H−m spaces (see [10] for further mapping
properties of the Floquet transformation).

Our result gives the well-known decomposition of the spectrum of periodic
differential operators, developed, e.g., in [10], [14], [4], now also in the case of
discontinuous coefficients (including the principal ones) and unbounded periodicity
cell. A corresponding result is stated in [6], lacking however a detailed and self-
contained proof, which we will give in this paper in a rather direct way.

We shall further show that the spectrum of L coincides with the spectrum
of a suitable operator L̃ in L2(Rd) associated with the bilinear form, which is
constructed in a standard way. A direct study of the spectrum of L̃ by the “usual”
Floquet-Bloch theory in L2(Rd) seems to be problematic due to lack of smoothness
in the coefficients.

2. Definitions and preliminary results

In the following, Hm(Rd) will always denote the Sobolev space of functions which
are square Lebesgue-integrable over R

d with square integrable derivatives up to
order m. We denote the usual norm by

|||u|||2Hm(Rd) =
∑

|α|≤m
‖Dαu‖2L2(Rd) .

Let

B : Hm(Rd)×Hm(Rd)→ C

be a closed Hermitian sesquilinear form. We write d = d1 + d2 and use variables
x ∈ R

d1 and y ∈ R
d2 . We assume B is given in the form

B[u, v] :=
∑

|ρ|,|σ|≤m

∫

Rd

aρσ(x, y)(Dρu)(x, y)(Dσv)(x, y)dxdy (2.1)
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where aρσ ∈ L∞(Rd), aρσ = aσρ, and aρσ(x, y) = aρσ(x, y + ej) for any x ∈ R
d1 ,

y ∈ R
d2 , j = 1, . . . , d2, where e1, . . . , ed2 are the unit vectors1 in R

d2 . Moreover,
we assume that the leading coefficients satisfy the ellipticity condition2

∑

|ρ|,|σ|=m
aρσ(x, y)ζρζσ ≥ c

∑

|α|=m
|ζα|2 (2.2)

for some c > 0, all (x, y) ∈ R
d and all ζ = (ζα)|α|=m ∈ C

N , where N = #{α :
|α| = m}.
Remark 2.1. This condition, which (for the case of real-valued coefficients) ap-
pears, e.g., in [12], is, in general, stronger than the usual strong ellipticity condi-
tion

Re
∑

|ρ|,|σ|=m
aρσ(x, y)ξρξσ ≥ c|ξ|2m

for all ξ ∈ R
d and (x, y) ∈ R

d. We need this stronger condition, since we want to
avoid the assumption of continuity of the leading coefficients aρσ.

Throughout this paper, let Ω := R
d1× [0, 1]d2 denote the periodic cell for our

problem. We also introduce a bilinear form acting on Ω. Let

BΩ[u, v] :=
∑

|ρ|, |σ|≤m

∫

Ω

aρσ(x, y)(Dρu)(x, y)(Dσv)(x, y)dxdy, (2.3)

for u, v ∈ Hm(Ω).
Due to condition (2.2) and [1, Theorem 5.2], BΩ satisfies a G̊arding inequality

of the form

BΩ[u, u] ≥ c |||u|||2Hm(Ω) − C ‖u‖2L2(Ω) for all u ∈ Hm(Ω).

Since we are studying a spectral problem, we therefore may assume without loss
of generality (introducing a shift by C) that B and BΩ are Hm-elliptic, i.e., there
is a c > 0 such that B[u, u] ≥ c |||u|||2Hm(Rd) for all u ∈ Hm(Rd) and BΩ[v, v] ≥
c |||v|||2Hm(Ω) for all v ∈ Hm(Ω), where |||v|||2Hm(Ω) =

∑

|α|≤m ‖Dαv‖2L2(Ω). (Note
that Hm-ellipticity of BΩ implies Hm-ellipticity for B due to periodicity of the
coefficients.)

This allows us to introduce new scalar products on Hm(Rd) and Hm(Ω)
given by

〈u, v〉Hm(Rd) := B[u, v] and 〈u, v〉Hm(Ω) := BΩ[u, v]

which are equivalent to the usual scalar products in Hm(Rd) and Hm(Ω), respec-
tively. By ‖·‖Hm(Rd) and ‖·‖Hm(Ω) we denote the associated norms.

1This assumption is made for simplicity; in general, we only require d2 linearly independent

vectors in R
d2 .

2The authors wish to thank Gerd Grubb and Hans-Christoph Grunau for their related remarks.
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Definition 2.2. Let H−m(Rd) denote the dual space ofHm(Rd). Let φ : Hm(Rd) →
H−m(Rd) be defined by

〈φ[u], ϕ〉 = B[u, ϕ] for all u, ϕ ∈ Hm(Rd) (2.4)

where the 〈·, ·〉-notation indicates the dual pairing, i.e.,

〈w,ϕ〉 = w[ϕ] for all w ∈ H−m(Rd), ϕ ∈ Hm(Rd).

φ is an isometric isomorphism, and hence the scalar product on H−m(Rd)
given by

〈u, v〉H−m(Rd) := 〈φ−1u, φ−1v〉Hm(Rd)

induces a norm which coincides with the usual operator sup-norm on H−m(Rd).

Proposition 2.3. We define an operator L : D(L) → H−m(Rd) by D(L) :=
Hm(Rd) ⊂ H−m(Rd) and

Lu := φu.

Then L is self-adjoint.

Proof. For u, v ∈ Hm(Rd),

〈Lu, v〉H−m(Rd) = 〈φ−1 Lu, φ−1v〉Hm(Rd)

= 〈u, φ−1v〉Hm(Rd) = 〈φ−1v, u〉Hm(Rd) = B[φ−1v, u]

= 〈v, u〉 = 〈v, u〉L2 = 〈u, v〉L2 ;

the last line follows by (2.4). Thus L is symmetric.
Since φ is bijective it follows that L is bijective, thus L−1 : H−m(Rd) →

H−m(Rd) is defined on the whole space and is also symmetric. Therefore, L−1 is
self-adjoint. Hence L is self-adjoint. �

3. Floquet transform in Hm(Rd) and H−m(Rd)

In this section, we recall the Floquet transform on L2(Rd) and show that its
restriction to Hm(Rd) is an isometric isomorphism betweenHm(Rd) and a suitable
Hilbert space H. By a simple duality argument, we extend the Floquet transform
to an isometric isomorphism between H−m(Rd) and H′.

Definition 3.1. For a lattice R ⊂ R
n the reciprocal lattice K consists of those

points k in R
n such that

eir·k = 1
for all r ∈ R. The first Brillouin zone associated with a lattice R consists of those
points in R

n whose distance to the origin is smaller than or equal to their distance
from any other point in the reciprocal lattice.

The Brillouin zone K ⊂ R
d2 for the lattice Z

d2 , which corresponds to our
periodic cell, is K := [−π, π]d2 .
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L2(Ω)→ L2
loc(R

d) with

(Ek u)(x, y + p) := eik·pu(x, y)

for all (x, y) ∈ Ω, p ∈ Z
d2 .

The Floquet transform

U : L2(Rd)→ L2(Ω×K)

is given by

(U u)(x, y, k) :=
1

(2π)d2/2
∑

n∈Zd2

eik·nu(x, y − n) for (x, y) ∈ Ω, k ∈ K.

We need the following lemma which together with a proof can be found
in [10, Theorem 2.2.5].

Lemma 3.3. U is an isometric isomorphism and

(U−1 v)(x, y) =
1

(2π)d2/2

∫

K
(Ek v(·, ·, k))(x, y)dk.

The following lemma shows that the formula for U has a canonical extension.

Lemma 3.4. For all u ∈ L2(Rd), k ∈ K and (x, y) ∈ R
d

Ek[Uu(·, ·, k)](x, y) =
1

(2π)
d2
2

∑

n∈Zd2

eik·nu(x, y − n).

Proof. It follows from the definition of Ek that, for p ∈ Z
d2 and (x, y) ∈ Ω,

Ek[Uu(·, ·, k)](x, y + p) = eik·p Uu(x, y, k)

=
1

(2π)
d2
2

∑

n∈Zd2

eik·(n+p)u(x, y + p− (n+ p))

=
1

(2π)
d2
2

∑

ñ∈Zd2

eik·ñu(x, y + p− ñ).

Noting that (x, y + p) runs through R
d completes the proof. �

Definition 3.5. For all k ∈ K, let

Hk := {u ∈ Hm(Ω) : Ek u ∈ Hm
loc(R

d)}.
Note that being an element of Hk requires a weak form of semi-periodic boundary
conditions on ∂Ω.

We denote by Nk the mapping

Nk : H0 → Hk, (Nku)(x, y) := eik·yu(x, y)

and extend it to a mapping H′
0 → H′

k by

〈Nku, ϕ〉 := 〈u,N−1
k ϕ〉 for all u ∈ H′

0, ϕ ∈ Hk.

Definition 3.2. For all k ∈ K, we now introduce an extension operator Ek :
d
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Let

H =
{

u ∈ L2(Ω×K) : ∀′k ∈ K u(·, ·, k) ∈ Hk,
{ K → C

k 
→ 〈N−1
k u(·, ·, k), ϕ〉Hm(Ω)

} measurable for all ϕ ∈ H0,
and ‖u‖H <∞

}

where the norm ‖·‖H is induced by the scalar product

〈u, v〉H =
∫

K
〈u(·, ·, k), v(·, ·, k)〉Hm(Ω)dk.

H can be viewed as the space of all functions u(x, y, k) = (Nkv(k))(x, y) with v ∈
L2(K,H0). Nk : H0 → Hk is a homeomorphism, with Nk andN−1

k being uniformly
bounded with respect to k in the compact set K, which implies in particular that
H is a Hilbert space.

Lemma 3.6. Let M ⊆ R
d2 be any open bounded set. Then

a) the operator Ek : L2(Ω)→ L2(Rd1 ×M) is bounded,
b) the operator Ek : Hk → Hm(Rd1×M) is bounded, and Dρ(Ek u) = Ek(Dρu),

for u ∈ Hk, |ρ| ≤ m.
c) for all k ∈ K, Hk ⊆ Hm(Ω) is closed,

Proof. a) Let M ⊆ [−l, l]d2. Then
∫

Rd1×M
| Ek u |2 dxdy ≤ (2l)d2

∫

Ω

| Ek u |2 dxdy = (2l)d2
∫

Ω

| u |2 dxdy.

b) For all p ∈ Z
d2 , all ϕ ∈ C∞

0 (Ω + p), u ∈ Hk and | ρ |≤ m we have

〈Dρ(Ek u), ϕ〉L2(Rd) =
∫

Rd

Dρ(Ek u)ϕdxdy

= (−1)|ρ|
∫

Rd

Ek uDρϕdxdy

= (−1)|ρ|
∫

Rd

eik·pu(x, y − p)Dρϕ(x, y)dxdy

=
∫

Rd

eik·p(Dρu)(x, y − p)ϕ(x, y)dxdy

=
∫

Rd

Ek(Dρu)ϕdxdy = 〈Ek(Dρu), ϕ〉L2(Rd).

This implies that Dρ(Ek u) = Ek(Dρu). Hence, by part a), for all | ρ |≤ m,

‖Dρ(Ek u)‖L2(Rd1×M) = ‖Ek(Dρu)‖L2(Rd1×M) ≤ (2l)d2 ‖Dρu‖L2(Ω) .

c) Suppose (uµ) ∈ HN

k is a sequence with uµ → u in Hm(Ω) as µ → ∞. Part
b) proves that (Ek uµ) is a Cauchy sequence in Hm(Rd1 × M) and hence
converges to some w ∈ Hm(Rd1 ×M). On the other hand, Ek uµ → Ek u in
L2(Rd1 ×M) by part a). Hence, Ek u = w ∈ Hm(Rd1 ×M), which proves
u ∈ Hk. �
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We are now ready to introduce the Floquet transform on Hm(Rd).

Theorem 3.7. Let V be given by V := U |Hm(Rd). For u, v ∈ Hm(Rd) we have
V u,V v ∈ H, and

∫

K
BΩ[V u(·, ·, k),V v(·, ·, k)]dk = B[u, v],

that is

〈V u,V v〉H = 〈u, v〉Hm(Rd), (3.1)

i.e., V : Hm(Rd)→ H is an isometry.

Proof. Let u ∈ Hm(Rd) have compact support. Then

Ek[V u(·, ·, k)](x, y) =
1

(2π)
d2
2

∑

n∈Zd2

eik·nu(x, y − n) on R
d

by Lemma 3.4, and hence (V u)(·, ·, k) ∈ Hk since the sum is locally finite. Fur-
thermore, for ϕ ∈ H0,

〈N−1
k (V u)(·, ·, k), ϕ〉Hm(Ω)

1

(2π)
d2
2

∑

n∈Zd2

eik·nBΩ[N−1
k u(·, · − n), ϕ]

is a measurable function of k.
With v ∈ Hm(Rd) denoting a second compact support function, we get

〈(V u)(·, ·, k), (V v)(·, ·, k)〉Hm(Ω)

=
1

(2π)d2
BΩ

[
∑

n∈Zd2

eik·nu(·, · − n),
∑

ñ∈Zd2

eik·ñv(·, · − ñ)
]

=
1

(2π)d2
∑

n,ñ∈Zd2

eik·(n−ñ)BΩ[u(·, · − n), v(·, · − ñ)].

Since the sum is finite, this expression is integrable over K and
∫

K
〈(V u)(·, ·, k), (V v)(·, ·, k)〉Hm(Ω)dk =

∑

n∈Zd2

BΩ[u(·, · − n), v(·, · − n)]

∑

n∈Zd2

∑

|ρ|,|σ|≤m

∫

Ω

aρσ(x, y)Dρu(x, y − n)Dσv(x, y − n)dxdy

=
∑

n∈Zd2

∑

|ρ|,|σ|≤m

∫

Ω−(0,n)

aρσ(x, ỹ + n)Dρu(x, ỹ)Dσv(x, ỹ)dxdỹ

=
∑

|ρ|,|σ|≤m

∫

Rd

aρσ(x, y)Dρu(x, y)Dσv(x, y)dxdy

= B[u, v] = 〈u, v〉Hm(Rd),

which shows that V u,V v ∈ H, and that (3.1) holds.


