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Preface

The discoveries of the past decade have opened new perspectives for the old field of
Hamiltonian systems and led to the creation of a new field: symplectic topology.
Surprising rigidity phenomena demonstrate that the nature of symplectic map-
pings is very different from that of volume preserving mappings which raised new
questions, many of them still unanswered. On the other hand, due to the analysis
of an old variational principle in classical mechanics, global periodic phenomena in
Hamiltonian systems have been established. As it turns out, these seemingly differ-
ent phenomena are mysteriously related. One of the links is a class of symplectic
invariants, called symplectic capacities. These invariants are the main theme of
this book which grew out of lectures given by the authors at Rutgers University,
the RUB Bochum and at the ETH Zürich (1991) and also at the Borel Seminar in
Bern 1992. Since the lectures did not require any previous knowledge, only a few
and rather elementary topics were selected and proved in detail. Moreover, our se-
lection has been prompted by a single principle: the action principle of mechanics.
The action functional for loops in the phase space, given by

F (γ) =
∫

γ

pdq −
1∫

0

H
(
t, γ(t)

)
dt ,

differs from the old Hamiltonian principle in the configuration space defined by a
Lagrangian. The critical points of F are those loops γ which solve the Hamiltonian
equations associated with the Hamiltonian H and hence are the periodic orbits.
This variational principle is sometimes called the least action principle. However,
there is no minimum for F . Indeed, the action principle is very degenerate. All
its critical points are saddle points of infinite Morse index, and at first sight, the
principle appears quite useless for existence proofs. But surprisingly it is very effec-
tive. This will be demonstrated using several variational techniques starting from
minimax arguments due to P. Rabinowitz and ending with A. Floer’s homology.
The book includes the following subjects:

The introductory chapter presents in a rather unsystematic way some back-
ground material. We give the definitions of symplectic manifolds and symplectic
mappings and briefly recall the Hamiltonian formalism. For convenience, Cartan’s
calculus is used. The classification of 2-dimensional symplectic manifolds by the
Euler-characteristic and the total volume is proved. Some questions dealt with
later on in detail are raised and discussed in special examples. We illustrate the
so-called direct method of the calculus of variations in order to establish a periodic
orbit on a convex energy surface of a Hamiltonian system in R

2n. The Birkhoff
invariants are introduced in order to describe without proofs the intricate orbit

ix
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structure of a Hamiltonian system near an equilibrium point or near a periodic
solution. These local results are quite in contrast to the global questions dealt with
in the following chapters.

In a systematic way the symplectic invariants, called symplectic capacities, are
introduced axiomatically in Chapter 2. Considering the family of all symplectic
manifolds of fixed dimension 2n, a capacity c is a map associating with every sym-
plectic manifold (M,ω) a positive number c(M,ω) or ∞ satisfying these axioms:
a monotonicity axiom for symplectic embeddings, a conformality axiom for the
symplectic structure, and a normalization axiom which rules out the volume in
higher dimensions. For subsets of R

2n, the capacity extends a familiar linear sym-
plectic invariant for positive quadratic forms to nonlinear symplectic mappings.
If M and N are symplectically diffeomorphic then c(M,ω) = c(N, τ). In view of
its monotonicity property a capacity represents, in particular, an obstruction to
certain symplectic embeddings and it will be used in order to explain rigidity phe-
nomena for symplectic embeddings, discovered by Ya. Eliashberg and M. Gromov.
In particular, Gromov’s squeezing theorem is deduced using capacities as well as
Eliashberg’s C0-stability of symplectic diffeomorphisms. We introduce a notion
of a symplectic homeomorphism, a concept which raises many questions. There
are many different capacity functions. For example, the size of the largest ball
in R

2n which can be symplectically embedded into a symplectic manifold (M,ω)
leads to a special capacity called the Gromov width. It is the smallest capacity
function originally introduced by M. Gromov. There are many other “embedding”
capacities.

Chapter 3 is devoted entirely to a very detailed construction of a distinguished
symplectic capacity c0. It is dynamically defined by means of Hamiltonian systems.
It measures the minimal C0-oscillation of a Hamiltonian function H : M → R

which allows to conclude the existence of a fast periodic solution of the corre-
sponding Hamiltonian vector field XH on M . In the special case of a connected
2-dimensional symplectic manifold, the capacity c0 agrees with the total area. The
existence proof is based on the above action principle which is introduced from
scratch in its proper functional analytic framework. The interesting aspect of this
principle is that it is bounded neither from below nor from above so that stan-
dard variational techniques do not apply directly. Techniques going back to P.
Rabinowitz permit us to establish effectively distinguished saddle points of the
functional representing special periodic solutions of the system. In the special case
of a convex, bounded and smooth domain U ⊂ R

2n, the capacity is represented by
a distinguished closed characteristic of its boundary ∂U : it has minimal reduced
action equal to c0(U). But, in general, it is rather difficult to compute the invariant
c0. Some of the recent computations based on more advanced techniques of first
order elliptic systems and Fredholm theory are presented without proofs. With the
construction of the capacity c0, the proofs of the rigidity phenomena described in
Chapter 2 are complete. Due to its special properties this invariant turns out to
be useful also for the dynamics of Hamiltonian systems.
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In Chapter 4 the dynamical capacity c0 is applied to an old question of the
qualitative theory of Hamiltonian systems originating in celestial mechanics: does
a compact energy surface carry a periodic orbit? We shall demonstrate that many
well-known global existence results previously obtained by technically intricate
proofs emerge immediately from this invariant. The phenomenon is simply this:
if a compact hypersurface in a symplectic manifold possesses a neighborhood of
finite capacity c0, then there are always uncountably many closed characteristics
nearby. If one poses, in addition, symplectically invariant restrictions, such as of
“contact type”, then the hypersurface itself carries a closed characteristic. We
shall prove, in particular, the seminal solution of the Weinstein conjecture in R

2n

due to C. Viterbo. A nonstandard symplectic torus shows that, in contrast to
the Gromov width mentioned above, not every compact symplectic manifold is
of finite capacity c0. Our special example is related to M. Herman’s celebrated
counterexample to the closing lemma which answers a longstanding open question
in dynamical systems. M. Herman’s “non-closing-lemma” is proved at the end of
the chapter.

In Chapter 5 we study the subgroup D of symplectic diffeomorphisms of R
2n

which are generated by time dependent Hamiltonian vector fields of compact sup-
port. The distance from the identity map or the energy E(ϕ) of such a symplectic
diffeomorphism ϕ will be measured by means of the oscillation of its generating
Hamiltonian function. This will lead to a surprising bi-invariant metric on D called
the Hofer metric and defined by d(ϕ,ψ) = E(ϕ−1 ◦ ψ). The definition does not
involve derivatives of the Hamiltonian and is of C0-nature. The verification of the
metric property requiring that d(ϕ,ψ) = 0 if and only if ϕ = ψ is the difficult as-
pect. It is based on more refined minimax arguments for the action functional valid
simultaneously for a large class of Hamiltonians. We shall investigate the relations
of this distinguished metric to the dynamical symplectic invariant c0 introduced
in Chapter 3 and also to another symplectic invariant which is defined for subsets
of R

2n and called the displacement energy. The displacement energy of a subset
U measures the minimal energy E(ϕ) needed in order to dislocate a given set U
from itself in the sense that U ∩ ϕ(U) = ∅. The bi-invariant metric will also be
compared with the standard sup-metric. Geodesic arcs associated with the metric
will be defined and described in detail. A special example of a geodesic arc is the
flow generated by an autonomous Hamiltonian. An important role in our approach
is played by the action spectrum of a Hamiltonian mapping ϕ ∈ D, which turns
out to be a nowhere dense subset of the real numbers. Our minimax principle
singles out a nontrivial continuous section of the action spectrum bundle over D
called the γ-invariant. This invariant is the main technical tool in this chapter. It
allows the characterization of the geodesics and is used also in the existence proof
of infinitely many nontrivial periodic points for compactly supported Hamiltonian
mappings.

The subject of Chapter 6 is the fixed point theory for Hamiltonian mappings
on compact symplectic manifolds (M,ω). It differs from topological fixed point
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theories. A Hamiltonian map is a special symplectic map: it is homotopic to the
identity and the homotopy is generated by the flow of a time dependent Hamilto-
nian vector field. Prompted by H. Poincaré’s last geometric theorem, V.I. Arnold
conjectured in the sixties that such a Hamiltonian map possesses at least as many
fixed points as a real-valued function on M possesses critical points. Reformulated
in terms of dynamical systems, the conjecture asks for a Ljusternik-Schnirelman
theory respectively for a Morse theory of forced oscillations solving a time periodic
Hamiltonian system on M . We shall first prove the conjecture for the special case
of the standard torus T 2n. The proof is again based on the action principle. But
this time the aim is to find all its critical points. Our strategy is inspired by C.
Conley’s topological approach to dynamical systems: we shall study the topology
of the set of all bounded solutions of the regularized gradient equation belonging
to the action functional defined on the set of contractible loops on the manifold M .
This way the study of the gradient flow in the infinite dimensional loop space is
reduced to the study of a gradient like continuous flow of a compact metric space,
whose rest points are the desired critical points. Their number is then estimated
by Ljusternik-Schnirelman theory presented in 6.3. A reinterpretation will then
lead us to the proof of the Arnold conjecture for the larger class of symplectic
manifolds satisfying [ω]|π2(M) = 0. In this general case there is no natural regu-
larization and we are forced to investigate in 6.4 the set of bounded solutions of
the non regularized gradient system which now are smooth solutions of a special
system of first order elliptic partial differential equations of Cauchy Riemann type.
These solutions are related to M. Gromov’s pseudoholomorphic curves in M . The
compactness of the solution set will be based on an analytical technique which is
sometimes called bubbling off analysis. Following this procedure, we shall arrive
at the high point of these developments: A. Floer’s new approach to Morse theory
and Floer homology. We shall merely outline Floer’s beautiful ideas in 6.5. A com-
bination of Floer’s approach with the construction of the dynamical capacity c0

results in a symplectic homology theory which is not yet in its final form and which
will be sketched without proofs in the last section. The technical requirements of
these theories are quite advanced and beyond the scope of this book. Floer’s ideas
and further related developments will be presented in detail in a sequel. Chapter 6
illustrates, in particular, that old problems emerging from celestial mechanics still
lead to powerful new techniques useful also in other branches of mathematics. We
should point out that the Arnold conjecture for a general symplectic manifold is
still open in the dimensions ≥ 8.

The Appendix contains some technical topics presented for the convenience of
the reader. In A.1 we show that a symplectic diffeomorphism can be locally rep-
resented in terms of a single function, the so-called generating function. This clas-
sical fact is used in Chapter 5. Appendix A.2 illustrates the generating functions
in the construction of action-angle coordinates for integrable systems occurring in
Chapter 4. A special Sobolev embedding theorem required in the analysis of the
action functional (Chapter 5) is proved in A.3. We derive some basic estimates
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for the Cauchy-Riemann operator on the sphere (A.4), elliptic estimates near the
boundary (A.5) and prove the generalized Carleman similarity principle (A.6); all
these results for special partial differential equations are important in Chapter 6.
While the analytical tools required in the first five chapters are introduced in de-
tail, we make use of topological tools without explanations: we use the Brouwer
mapping degree (Chapter 2), the Leray-Schauder degree (Chapter 3), the Smale
degree (mod2) and (co-) homology theories (Chapter 6). References concerning
these topological topics are given in A.7 and A.8 where we explain the Brouwer
degree and the continuity property of the Alexander-Spanier cohomology. This
continuity property is important to us for the proof of the Arnold conjecture in
the general case.
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Chapter 1

Introduction

We shall introduce the concepts of symplectic manifolds, symplectic mappings and
Hamiltonian vector fields. It is not the intention to give a systematic treatment of
the Hamiltonian formalism, because it is already presented in many books. Rather
we shall ask some questions related to these concepts which recently lead to new
phenomena and interesting open problems. The question: “What can be done with
a symplectic mapping?” leads, for example, to new symplectic invariants different
from the volume and discussed in detail in subsequent chapters. We shall illustrate
that a seemingly very different and old problem originating in celestial mechan-
ics is related to these invariants. Namely, prompted by the Poincaré recurrence
theorem, we ask whether a compact energy surface of a Hamiltonian vector field
possesses a periodic orbit. For the very special case of a convex hypersurface in
R

2n, historically one of the landmarks in this qualitative problem of Hamiltonian
systems, we shall give an existence proof in order to illustrate the so-called direct
method of the calculus of variation. This classical method is in contrast to the more
recent methods introduced in the following chapters in order to establish global
periodic solutions. At the end of the introduction we shall illustrate without proofs
the rich and intricate orbit structure to be expected near a given periodic orbit.
The considerations are based on the local, nonlinear Birkhoff-invariants presented
in detail.

1.1 Symplectic vector spaces

Definition. A symplectic vector space (V, ω) is a finite dimensional real vector
space V equipped with a distinguished bilinear form ω which is antisymmetric
and nondegenerate, i.e.,

ω(u, v) = −ω(v, u) , u, v ∈ V(1.1)

and, for every u 	= 0 ∈ V , there is a v ∈ V satisfying ω(u, v) 	= 0. This nondegen-
eracy is equivalent to the requirement that the map

V → V ∗ , v 
→ ω(v, ·)(1.2)

is a linear isomorphism of V onto its dual vector space V ∗. An example is the
so-called standard symplectic vector space (R2n, ω0) with

ω0(u, v) = 〈Ju, v〉 for all u, v ∈ R
2n,(1.3)

1 H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics,  
Modern Birkhäuser Classics, DOI 10.1007/978-3-0348-0104-1_1, © Springer Basel AG 2011



2 Chapter 1 Introduction

where the bracket denotes the Euclidean inner product in R
2n, and where the

2n × 2n matrix J is defined by

J =

(
0 1

−1 0

)
(1.4)

with respect to the splitting R
2n = R

n×R
n. Clearly det J 	= 0 and since JT = −J

the form ω0 is nondegenerate and antisymmetric. We note that

JT = J−1 = −J.(1.5)

In particular J2 = −1 and
ω0(u, Jv) = 〈u, v〉.

Therefore, J is a complex structure on R
2n compatible with the Euclidean inner

product. Recall that a complex structure on a real vector space V is a linear
transformation J : V → V satisfying J2 = −1. It makes V into an n-dimensional
complex vector space by defining

(α + iβ)v = αv + βJv

for α, β ∈ R and v ∈ V . In the example (R2n, ω0) we may identify R
2n with C

n in
the usual way by mapping z = (x, y) ∈ R

n ×R
n onto x + iy ∈ C

n. The linear map
J corresponds to the multiplication by −i in C

n.

In the following we shall call v orthogonal to u and write v ⊥ u if ω(v, u) = 0.
If E is a linear subspace of V , we define its orthogonal complement by

E⊥ =
{

u ∈ V
∣∣∣ ω(v, u) = 0 for all v ∈ E

}
.(1.6)

E⊥ is a linear subspace and in view of the nondegeneracy of the bilinear form ω,
we have

dim E + dim E⊥ = dim V.(1.7)

Indeed, choosing a basis e1, . . . , ed in E, the subspace E⊥ is the kernel of the
linearly independent functionals ω(ej , ·) on V such that dim E⊥ = dim V − dim E
as claimed. Since u ⊥ v is equivalent to v ⊥ u we see that

(E⊥)
⊥

= E.(1.8)

The concept of orthogonality in symplectic geometry differs sharply from that
in Euclidean geometry: E and E⊥ need not be complementary subspaces. For
example, every vector v ∈ V is orthogonal to itself since ω(v, v) = −ω(v, v). Hence
if dim E = 1 we have E ⊂ E⊥.
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We can, of course, restrict the bilinear form ω to a linear subspace E ⊂ V .
This restricted form will obviously be antisymmetric but, in general, fails to be
nondegenerate. It is nondegenerate on E if and only if

E ∩ E⊥ = {0},(1.9)

which follows immediately from the definitions. In view of (1.7) the statement (1.9)
holds precisely if E and E⊥ are complementary, i.e.,

E ⊕ E⊥ = V.

We see that (E,ω) is a symplectic vector space if (1.9) is satisfied and we call E
a symplectic subspace. Because of the symmetry of (1.9) in E and E⊥, we conclude
that E is symplectic if and only if E⊥ is symplectic.

The following proposition shows that every symplectic space looks like the
standard space (R2n, ω0).

Proposition 1. The dimension of a symplectic vector space (V, ω) is even. If dim V =
2n there exists a basis e1, . . . , en, f1, . . . , fn of V satisfying, for i, j = 1, 2, . . . n,

ω(ei, ej) = 0

ω(fi, fj) = 0

ω(fi, ej) =
{

1 if i = j
0 if i 	= j .

Such a basis is called a symplectic (or canonical) basis of V . Representing
u, v ∈ V in this basis by

u =
n∑

j=1

(
xj ej + xn+j fj

)

v =
n∑

j=1

(
yj ej + yn+j fj

)

one computes readily that

ω(u, v) = 〈Jx, y〉 , x, y ∈ R
2n ,

where the matrix J is defined by (1.4). The subspaces Vj = span {ej, fj} are
symplectic and orthogonal to each other if i 	= j, so that the vector space V is the
orthogonal sum

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn(1.10)
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of 2-dimensional symplectic subspaces. With respect to this splitting the bilinear
form ω is, in symplectic coordinates, represented by the matrix




(
0 1

−1 0

)

(
0 1

−1 0

)

. . . (
0 1

−1 0

)




.

Proof of Proposition 1. Choose any vector e1 	= 0 in V . Since ω is nondegenerate
we find u ∈ V satisfying ω(u, e1) 	= 0, and we can normalize f1 = αu such that

ω(f1, e1) = 1.

Consequently, f1 and e1 are linearly independent since ω is antisymmetric so that
E = span {e1, f1} is a 2-dimensional symplectic subspace of V . If dim V = 2 the
proof is finished. If dim V > 2 we apply the same argument to the complementary
symplectic subspace E⊥ of V and thus find the desired basis in finitely many
steps. �

We see that for fixed dimension every symplectic vector space (V, ω) can be
put into the same normal form, quite in contrast to the situation of nondegenerate
symmetric bilinear forms. The symplectic form ω singles out those linear maps of
v which leave the form invariant.

Definition. A linear map A : V → V of a symplectic vector space (V, ω) is called
symplectic (or canonical) if

A∗ω = ω.

By definition, A∗ω is the so-called pullback 2-form given by A∗ω(u,v)=ω(Au,Av).
In the standard space (R2n, ω0) a matrix A is, therefore, symplectic if and only if
〈JAu,Av〉 = 〈Ju, v〉 for all u, v ∈ R

2n, or equivalently,

AT J A = J.(1.11)

In the special case R
2 of two dimensions this is equivalent to the condition that

det A = 1. In general we conclude from (1.11) immediately that (detA)2 = 1. It
turns out that

det A = 1,(1.12)

so that symplectic matrices in R
2n are volume-preserving. This requires a proof

and it is convenient to use the language of differential forms . Recall that, with the
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coordinates z = (z1, . . . , z2n) ∈ R
2n, the bilinear form dzi ∧ dzj on R

2n is defined
by

(dzi ∧ dzj)(u, v) = uivj − ujvi,

for u, v ∈ R
2n. Introducing the notation z = (x, y) ∈ R

2n, we can, therefore,
represent ω0 in the form

ω0 =
n∑

j=1

dyj ∧ dxj .

Then the 2n-form
Ω = ω0 ∧ ω0 ∧ . . . ∧ ω0 (n times )

on R
2n is the volume form

Ω = c dx1 ∧ . . . ∧ dxn ∧ dy1 ∧ . . . ∧ dyn

with a constant c 	= 0. If A is a matrix in R
2n then A∗Ω = (det A)Ω by the

definition of a determinant. Assuming that A∗ω0 = ω0 we conclude A∗Ω = Ω and,
hence, det A = 1 as claimed.

The set of symplectic matrices in R
2n, which meet the conditions (1.11), is

a group under matrix multiplication. It is one of the classical Lie groups and is
denoted by Sp(n).

Proposition 2. If A and B ∈ Sp(n) then A−1, AB ∈ Sp(n). Moreover, AT ∈ Sp(n)
and J ∈ Sp(n).

Proof. By multiplying AT JA = J with A−1 from the right and with (AT )−1 from
the left, we find J = (AT )−1JA−1 so that A−1 ∈ Sp(n). Taking now the inverse
on both sides of the latter identity we find J−1 = AJ−1AT , and since J−1 = −J

we find (AT )T
JAT = J and AT ∈ Sp(n). �

Note that if a 2n by 2n matrix is written in block form

U =

(
A B

C D

)
(1.13)

with respect to the splitting R
2n = R

n × R
n, it is symplectic if and only if

AT C , BT D are symmetric and AT D − CT B = 1,

as is readily verified. For example, a matrix U having B = 0 is symplectic if and
only if A is nonsingular and U can be written as

U =


 A 0

0 (AT )−1




(
1 0

S 1

)
,

with some symmetric matrix S.
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Definition. If (V , ω1 1) and (V , ω2 2) are two symplectic vector spaces we call a linear
map A : V1 → V2 symplectic if

A∗ω2 = ω1,

where, by definition, (A∗ω2)(u, v) = ω2(Au,Av) for all u, v ∈ V1. Clearly A is
injective such that dim V1 ≤ dim V2.

Proposition 3. If (V1, ω1) and (V2, ω2) are two symplectic spaces of the same dimen-
sion, then there exists a linear isomorphism A : V1 → V2 satisfying A∗ω2 = ω1.

This means that all symplectic vector spaces of the same dimension are, in this
sense, equivalent; they are symplectically indistinguishable.

Proof. The proof follows immediately from the normal form in Proposition 1.
Choosing symplectic bases (ej , fj) in (V1, ω1) and (êj , f̂j) in (V2, ω2) we define the
linear map A : V1 → V2 by

A ej = êj and A fj = f̂j

for 1 ≤ j ≤ n. Then clearly A∗ω2 = ω1 by definition of a symplectic basis. �
Since the choice of e1 and ê1 in the construction of the symplectic bases is at our

disposal we conclude from the above proof that the group Sp(n) acts transitively
in R

2n. Moreover, it also acts transitively on the set of symplectic subspaces of R
2n

having the same dimension. This follows because a symplectic basis in a subspace
E can always be completed to a basis of V by adding a symplectic basis of its
complement E⊥, as we did in the proof of Proposition 1.

1.2 Symplectic diffeomorphisms and Hamiltonian
vector fields in (R2n, ω0)

We now turn to nonlinear maps in the symplectic space (R2n, ω0). A diffeomor-
phism ϕ in R

2n is called symplectic if

ϕ∗ω0 = ω0,(1.14)

where, by definition, the pullback of any 2-form ω is given by

(ϕ∗ω)x(a, b) = ωϕ(x)(ϕ′(x)a, ϕ′(x)b)

for x ∈ R
2n and for all a, b ∈ TxR

2n = R
2n. Here ϕ′(x) denotes the derivative

of ϕ at the point x represented by the Jacobian matrix. In view of the definition
of ω0, a symplectic diffeomorphism in (R2n, ω0) is, therefore, characterized by the
identity

ϕ′(x)T J ϕ′(x) = J , x ∈ R
2n(1.15)
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for the first derivatives of ϕ. Hence ϕ′(x) is a symplectic matrix and, in particular,

detϕ′(x) = 1,(1.16)

so that symplectic diffeomorphisms are volume-preserving. However, if n > 1 the
class of symplectic diffeomorphisms is much more restricted than that of volume-
preserving diffeomorphisms. This will become clear below when, taking our lead
from Gromov, we look at the question: what can be done with symplectic diffeo-
morphisms?

A symplectic diffeomorphism ϕ in (R2n, ω0) not only preserves ω0 and the
associated volume form Ω but also the action of closed curves, as we shall see
next. The form ω0 is an exact form, since

ω0 =
n∑

j=1

dyj ∧ dxj = dλ,(1.17)

with the 1-form λ defined by

λ =
n∑

j=1

yj dxj .

Therefore, λ−ϕ∗λ is a closed form provided ϕ is symplectic. Indeed, d(λ−ϕ∗λ) =
dλ − d(ϕ∗λ) = dλ − ϕ∗dλ = ω0 − ϕ∗ω0 = 0. Using the Poincaré lemma one finds
a function F : R

2n → R satisfying

λ − ϕ∗λ = dF.(1.18)

If γ is an oriented simply closed curve we can integrate and find in view of (1.18)
∫

γ

λ =
∫

γ

ϕ∗λ =
∫

ϕ(γ)

λ

since the integral of an exact form over a closed curve vanishes. Defining the action
A(γ) of a closed curve γ by

A(γ) =
∫

γ

λ ∈ R,(1.19)

we see that

A
(
ϕ(γ)

)
= A(γ)(1.20)

provided ϕ is symplectic; hence ϕ leaves the action invariant as claimed. Con-
versely, of course, if a diffeomorphism ϕ in R

2n satisfies (1.20) for all closed curves
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in R
2n we conclude that ϕ is symplectic. Parameterizing γ by x(t), with 0 ≤ t ≤ 1

and x(0) = x(1), the action becomes

A(γ) =
1
2

1∫

0

〈−Jẋ, x〉 dt.(1.21)

Examples of symplectic diffeomorphisms are generated by the so-called Hamilto-
nian vector fields which we now recall. To the symplectic form ω0 and to a smooth
function

H : R
2n → R,

we can associate a vector field XH on R
2n by requiring

ω0

(
XH(x), a

)
= −dH(x)a(1.22)

for all a ∈ R
2n and x ∈ R

2n. Since ω0 is nondegenerate, the vector XH(x) is deter-
mined uniquely. The condition (1.22) is equivalent to 〈JXH(x), a〉 = −〈∇H(x), a〉
where the gradient of H is, as usual, defined with respect to the Euclidean inner
product. Therefore, JXH(x) = −∇H(x) and in view of J2 = −1 we find the
representation

XH(x) = J∇H(x) , x ∈ R
2n.(1.23)

Clearly the Hamiltonian vector fields are very special. They differ in particular
sharply from vector fields X = ∇H(x) of gradient type, since J is antisymmetric.

In the following we denote by ϕt the flow of a vector field X. It is defined by

d

dt
ϕt(x) = X

(
ϕt(x)

)

ϕ0(x) = x , x ∈ R
2n .

The curve x(t) = ϕt(x) solves the Cauchy initial value problem for the initial
condition x ∈ R

2n. Assume now that X = XH is the Hamiltonian vector field
determined by ω0 and H. Then every flow map ϕt preserves the form ω0:

(ϕt)∗ ω0 = ω0,(1.24)

and is, therefore, a symplectic map. This is easily verified and will be proved in
the next section in a more abstract setting.

It is useful for the following to recall the transformation formula for vector
fields X on R

m. Assume x(t) is a solution of the differential equation

ẋ = X(x) , x ∈ R
m.
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If u : R
m → R

m is a diffeomorphism we can define the curve y(t) by

x(t) = u
(
y(t)

)
.

Differentiating in t we conclude that y(t) solves the equation

ẏ = Y (y) , y ∈ R
m

for the transformed vector field Y defined by

Y (y) = du(y)−1 · X ◦ u(y).

In the following, we shall use the notation

u∗X : = (du)−1 · X ◦ u.(1.25)

We have demonstrated that the two flows ϕt of X and ψt of u∗X are conjugated
by the diffeomorphism u, i.e.,

ϕt ◦ u = u ◦ ψt .

If we subject a Hamiltonian vector field XH in R
2n to an arbitrary transformation u

its special form will be destroyed. However, a symplectic transformation preserves
the class of Hamiltonian vector fields. Indeed, if u∗ω0 = ω0 then

u∗XH = XK and K = H ◦ u.(1.26)

This is easily verified: defining the function K as the composition K = H ◦ u,
then by the chain rule, dK = dH ◦ u · du, and the gradient with respect to the
Euclidean scalar product becomes ∇K = (du)T∇H ◦ u. By assumption, du is, at
every point, a symplectic map and, therefore, also (du)T so that du ·J · (du)T = J .
Consequently, in view of the definition (1.23) of a Hamiltonian vector field

XK = J∇K = J(du)T ∇H ◦ u

= (du)−1(J∇H) ◦ u

= u∗XH ,

as we set out to prove.

1.3 Hamiltonian vector fields and symplectic manifolds

In order to introduce Hamiltonian vector fields on a manifold, we first have to
extend the symplectic structure

ω0 =
n∑

j=1

dyj ∧ dxj on R
2n

to even dimensional manifolds.
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Definition. A symplectic structure on an even dimensional manifold M is a 2-form
ω on M satisfying

(i) dω = 0, i.e., ω is a closed form.

(ii) ω is nondegenerate.

The second condition requires that for every tangent space TxM : if ωx(u, v) = 0
for all v ∈ TxM then u = 0. The pair (M,ω) is then called a symplectic manifold.
Thus every tangent space TxM of a symplectic manifold becomes a symplectic
vector space with respect to the distinguished antisymmetric and nondegenerate
bilinear form ωx at x. Therefore, M has even dimension.

An example is the symplectic manifold (R2n, ω0); indeed, since ω0 is a constant
form we have dω0 = 0. Since the symplectic form ω is assumed to be closed, every
symplectic manifold looks, locally, like (R2n, ω0); we shall now prove that there
are always local coordinates in which the symplectic form is represented by the
constant form ω0.

Theorem 1. (Darboux) Suppose ω is a nondegenerate 2-form on a manifold of
dim M = 2n. Then dω = 0 if and only if at each point p ∈ M there are coordinates
(U,ϕ) where ϕ : (x1, . . . , xn, y1, . . . , yn) → q ∈ U ⊂ M satisfies ϕ(0) = p and

ϕ∗ω = ω0 =
n∑

j=1

dyj ∧ dxj.

Such coordinates are sometimes called symplectic coordinates. They are clearly
not determined uniquely; the most general coordinates of this sort are related to
(x, y) by symplectic transformation u∗ω0 = ω0 in R

2n, as previously introduced.
We see that we can define a symplectic manifold alternatively as follows: it is
a manifold of dim M = 2n for which there are local coordinates ϕj mapping
open sets Uj ⊂ M onto open sets of the fixed symplectic space (R2n, ω0) such
that the coordinates changes ϕi ◦ ϕ−1

j defined on ϕj(Ui ∩Uj) are symplectic local
diffeomorphisms in (R2n, ω0).

Proof. Choosing any local coordinates, we may assume that ω is a 2-form on R
2n

depending on z ∈ R
2n and that p corresponds to z = 0. By a linear change of

coordinates we can achieve that the form be in normal form at the origin, i.e.,

ω(0) =
n∑

j=1

dyj ∧ dxj at z = 0.

This is precisely the same as the statement that any nondegenerate antisymmet-
ric bilinear form can be brought into normal form (Proposition 1). With ω0 we
shall denote the constant form Σdyj ∧ dxj on R

2n. The aim is to find a local
diffeomorphism ϕ in a neighborhood of 0 leaving the origin fixed and solving

ϕ∗ω = ω0.
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We shall solve this equation by a deformation argument. We interpolate ω and ω0

by a family ωt of forms defined by

ωt = ω0 + t(ω − ω0) , 0 ≤ t ≤ 1,

such that ωt = ω0 for t = 0 and ω1 = ω, and look for a whole family ϕt of
diffeomorphisms satisfying ϕ0 = id and

(ϕt)∗ωt = ω0 , 0 ≤ t ≤ 1.(1.27)

The diffeomorphism ϕt for t = 1 will then be the solution to our problem. In order
to find ϕt we shall construct a t-dependent vector field Xt generating ϕt as its
flow. Differentiating (1.27), such a vector field Xt has to satisfy the identity

0 =
d

dt
(ϕt)∗ ωt = (ϕt)∗

{
LXt

ωt +
d

dt
ωt

}
.(1.28)

Here LY denotes the Lie derivative of the vector field Y . Now we use Cartan’s
identity

LX = iX ◦ d + d ◦ iX(1.29)

and the assumption that dωt = 0 and find

0 = (ϕt)∗
{
d(iXt

ωt) + ω − ω0

}
.

Hence, Xt has to satisfy the linear equation

d(iXt
ωt) + ω − ω0 = 0.(1.30)

In order to solve this equation we observe that ω − ω0 is closed, hence, locally
exact by the Poincaré lemma and there is a 1-form λ satisfying

ω − ω0 = dλ and λ(0) = 0.

Since ωt(0) = ω0 the 2-forms ωt are nondegenerate for 0 ≤ t ≤ 1 in an open
neighborhood of the origin and hence there is a unique vector field Xt determined
by

iXt
ωt = ωt(Xt, ·) = −λ

for 0 ≤ t ≤ 1 which then solves the equation (1.30). Since we normalized λ(0) = 0
we have Xt(0) = 0 and there is an open neighborhood of the origin on which the
flow ϕt of Xt exists for all 0 ≤ t ≤ 1. It satisfies ϕ0 = id and ϕt(0) = 0. We can
follow our arguments backwards: by construction this family ϕt of diffeomorphisms
satisfies

d

dt
(ϕt)∗ωt = 0 , 0 ≤ t ≤ 1,

hence (ϕt)∗ωt = (ϕ0)∗ω0 = ω0 for all 0 ≤ t ≤ 1, as we wanted to prove. �
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The method employed in the proof above is the so-called deformation method
of J. Moser. Its unusual aspect is that one searches for a differential equation to be
solved. J. Moser introduced the method in [160] in order to prove, in particular,
that two symplectic structures ω0 and ω1 on a compact manifold M are equivalent,
in the sense that

ϕ∗ω1 = ω0

for a diffeomorphism ϕ of M , provided the forms can be deformed into each other
within the class of symplectic forms having their periods fixed. Incidentally, the
classification of symplectic forms up to equivalence is still open.

From Darboux’s normal form we conclude that any two symplectic manifolds
having the same dimension are locally indistinguishable: symplectic manifolds do
not possess any local symplectic invariants other than the dimension. This is in
sharp contrast to Riemannian manifolds: two different metrics generally are not
locally isometric, e.g., the Gaussian curvature is an invariant. It is our aim later
on to construct global symplectic invariants.

Every manifold M carries a Riemannian structure. In contrast, not every even
dimensional manifold admits a symplectic structure. For example, spheres S2n do
not admit a symplectic structure if n ≥ 2. Indeed, arguing by contradiction we
assume ω is a symplectic structure. Then Ω = ω ∧ ω ∧ . . . ∧ ω (n times) is a
volume form, since ω is nondegenerate. But ω = dα for a 1-form α on S2n since
the second de Rham cohomology group vanishes: H2(S2n) = 0. Therefore, Ω = dβ
with β = ω ∧ ω ∧ . . . ∧ ω ∧ α and by Stokes’ theorem

∫

S2n

Ω =
∫

∂S2n

β = 0

which is, of course, not possible for a volume form. This argument evidently applies
to any compact manifold M without boundary having H2j(M) = 0 for some
1 ≤ j ≤ n − 1.

Next we introduce the analogue of symplectic maps in (R2n, ω0). A differen-
tiable map f : M1 → M2 between two symplectic manifolds (M1, ω1) and (M2, ω2)
is called symplectic if

f∗ω2 = ω1,

where, by definition of the pullback of a 2-form ω

(f∗ω)x(u, v) = ωf(x)(df(x)u, df(x)v) for all u, v ∈ TxM.

Since ω1 is nondegenerate the tangent map df(x) must be injective at every point
and hence dim M1 ≤ dim M2. If dim M1 = dim M2 then f is a local diffeomor-
phism. In the case that f maps a symplectic manifold (M,ω) into itself the con-
dition for f to be symplectic becomes

f∗ω = ω,
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i.e., f preserves the symplectic structure. Expressed in the distinguished local
symplectic coordinates defined by Darboux’s theorem, this condition for f agrees
with our previous condition for a map to be symplectic in (R2n, ω0). It is useful to
point out that locally such a symplectic map can be presented in terms of a single
function on R

2n, a so-called generating function and we refer to the Appendix for
details.

The symplectic structure, being nondegenerate, defines an isomorphism be-
tween vector fields X and 1-forms on M given by X 
→ ω(X, ·). In particular,
if

H : M → R

is a smooth function on M , then dH is a 1-form on M and hence together with ω
determines the vector field XH by(

iXH
ω
)
(x) = ω

(
XH(x), ·

)
= −dH(x),(1.31)

x ∈ M . This distinguished vector field XH is called the Hamiltonian vector field
belonging to the function H. Since dω = 0 we deduce from (1.31) using Cartan’s
formula LX = diX + iXd and ddH = 0 that

LXH
ω = 0.(1.32)

We conclude that the maps ϕt belonging to the flow of a Hamiltonian vector field
XH leave the symplectic form invariant,

(ϕt)∗ω = ω,(1.33)

hence are symplectic. Indeed, the derivative d
dt(ϕ

t)∗ω = (ϕt)∗LXω = 0 vanishes
in view of (1.32) and since (ϕ0)∗ω = ω the claim follows. The set of Hamiltonian
vector fields is invariant under symplectic transformations as we shall verify next.
Recall that u∗X = (du)−1X ◦ u for a vector field X and a diffeomorphism u, and,
equivalently, ϕt ◦ u = u ◦ ψt for the associated flows ϕt of X and ψt of u∗X.

Proposition 4. If u : M → M satisfies u∗ω = ω then for every function H : M → R

u∗XH = XK and K = H ◦ u.

Proof. In view of the definition of a Hamiltonian vector field

iXH◦u
ω = −d(H ◦ u) = −u∗(dH)

= u∗(iXH
ω) = iu∗XH

(u∗ω)

= iu∗XH
ω

and since ω is nondegenerate the vector fields XH◦u and u∗XH must be equal. �
From the symplectic structure we shall deduce an auxiliary structure which

will be convenient later on. Recall that an almost complex structure on a manifold
M associates smoothly with every x ∈ M a linear map J = Jx : TxM → TxM
satisfying J2 = −1.
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Proposition 5. If (M,ω) is a symplectic manifold there exists an almost complex
structure J on M and a Riemannian metric 〈·, ·〉 on M satisfying

ωx(v, Ju) = 〈v, u〉x(1.34)

for v, u ∈ TxM . From the symmetry of the bilinear form 〈·, ·〉 it follows that

ωx(Jv, Ju) = ωx(v, u),(1.35)

i.e., J is a symplectic map of the symplectic vector space (TxM,ωx). Moreover,

J∗ = J−1 = −J ,(1.36)

where J∗ is the adjoint of J in the inner product space (TxM, 〈·, ·〉x).

Proof. We choose any Riemannian metric g on M . Fixing a point x ∈ M we shall
construct J = Jx in TxM . All the constructions will depend smoothly on x and, for
notational convenience, the dependence on x will not be explicitly mentioned. Since
ω is nondegenerate there exists a unique linear isomorphism A : TxM → TxM
satisfying

ω(u, v) = g(Au, v) , u, v ∈ TxM.

Since ω is antisymmetric we infer g(Au, v) = ω(u, v) = −ω(v, u) = −g(Av, u) =
−g(v,A∗u) = g(−A∗u, v), where A∗ is the g-adjoint map of A. Hence

A∗ = −A.

Consequently, A∗A = AA∗ = −A2 is a positive definite g-self-adjoint map and we
denote by Q =

√
−A2 the positive square root of −A2. Set

J = AQ−1.

Since A and A∗ do commute, A is a normal operator and consequently A and Q−1

commute and we compute

J2 = AQ−1AQ−1 = A2(−A2)−1 = −id.

Finally,
ω(u, Jv) = g(Au, Jv) = g(Au,AQ−1v)

= g(A∗Au,Q−1v) = g(Q2u,Q−1v)

= g(Qu, v).

Since Q is symmetric and positive definite we conclude that

〈u, v〉 : = g(Qu, v)

defines a Riemannian metric on M which, in general, is different from g. It is the
desired metric. The remainder of the statement is now readily verified making use
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of the fact that the metric 〈u, v〉 = 〈v, u〉 is symmetric. Since the construction
depends smoothly on x the proof is completed. �

This almost complex structure compatible with ω extends the complex struc-
ture in (R2n, ω0) considered above. Moreover, if ∇H denotes the gradient of a
function H with respect to the Riemannian metric 〈·, ·〉 of Proposition 5, i.e.,
〈∇H(x), v〉 = dH(x)v for all v ∈ TxM , we find for the Hamiltonian vector field
XH the representation

XH(x) = J∇H(x) ∈ TxM(1.37)

using that J2 = −1. This agrees with the representation of XH in (R2n, ω0).
We should point out that the almost complex structure is not unique. If we

denote by Jω the set of almost complex structures compatible with ω in the sense
of (1.34), it can easily be shown that this set is contractible. Indeed, for every
J ∈ Jω there exists, by definition, a unique Riemannian metric gJ satisfying
ω(u, Jv) = gJ(u, v). Starting from any Riemannian metric g, we constructed in
the proof of the proposition an almost complex structure J = Jg and a metric gJ

such that JgJ
= J . Hence, fixing any metric g∗ on M , we can define the contraction

in Jω by
(t, J) 
→ J(1−t)gJ+tg∗

for 0 ≤ t ≤ 1 and J ∈ Jω.
In view of Darboux’s theorem there are locally no symplectic invariants other

than the dimension. On the other hand, the total volume is a trivial example of
a global symplectic invariant. Indeed, if u : (M1, ω1) → (M2, ω2) is a symplectic
diffeomorphism of M1 onto M2 then it follows from u∗ω2 = ω1 that the associated
volume forms Ω1 = ω1 ∧ . . . ∧ ω1 (n times) on M1 and similarly Ω2 on M2 are
related by

u∗Ω2 = Ω1.(1.38)

Since the diffeomorphism u : M1 → M2 preserves the orientation we have
∫

M1

u∗Ω2 =
∫

M2

Ω2

and in view of (1.38), ∫

M1

Ω1 =
∫

M2

Ω2,

so that the total volumes of Ω1 and Ω2 have to agree. Consider now the special case
of compact, connected and oriented manifolds of dimension 2, i.e., surfaces. The
orientation will be given by a volume form denoted by ω. It evidently is a closed
form, since every 3-form on a surface vanishes. Therefore, (M,ω) is a symplectic
manifold with the volume form as the symplectic structure.


