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Preface

The ISAAC Group in Pseudo-Differential Operators (IGPDO) met again on July
13–18, 2009 at Imperial College London in England on the occasion of the Seventh
Congress of the International Society for Analysis, its Applications and Computa-
tions (ISAAC). The special session for IGPDO turned out to be the largest session
with over forty speakers filling out the entire schedule completely. Talks presented
at the IGPDO session reflected the diversity of topics cutting across disciplines in
the Analysis, Applications and Computations of Pseudo-Differential Operators.

This volume contains eighteen peer-reviewed papers related to the talks given
at the IGPDO session. Chapters 1–3 feature a chapter on the adaptive wavelet com-
putations of inverses of pseudo-differential operators (Q. Guo and M.W. Wong) and
two chapters on the pseudo-differential operators on the unit circle (M. Pirhayati;
S. Molahajloo). The latter two chapters pave the way towards the discretization
and numerical computations of pseudo-differential operators. Chapters 4–7 are on
pseudo-differential operators and boundary value problems on manifolds with sin-
gularities, non-smooth domains and Riemannian manifolds (B.-W. Schulze and
M.W. Wong; B.-W. Schulze; V.B. Vasilyev; C. Iwasaki). Chapters 8–11 are de-
voted to concrete partial differential equations that are of interest in physics and
geometry (J. Delgado; V. Catană; V.S. Rabinovich; R. DeLeo, T. Gramchev and
A. Kirilov). Chapters 12–14 consist of chapters on microlocal analysis, hyperbolic
equations and systems (Y. Chiba; W. Ichinose; K. Benmeriem and C. Bouzar).
Chapters 15–18 are on topics related to Wigner transforms, Weyl transforms
and localization operators (L. Cohen; L. Galleani; P. Boggiatto, E. Carypis and
A. Oliaro; E. Cordero and F. Nicola).

In an era of interdisciplinary studies in academia fuelled by research and de-
velopment for societal and global needs, the role of pseudo-differential operators in
the mathematical, physical, biological, atmospherical, geological and medical sci-
ences is vital. Underpinning novel applications are deep understanding in the anal-
ysis and efficient numerical computations. It is expected that new developments
in Analysis, Applications and Computations of Pseudo-Differential Operators will
deepen our understanding of science in general and hence improve the knowledge-
based well-being of the world. Future developments of IGPDO are geared in the
direction of interdisciplinarity.



  



Adaptive Wavelet Computations for Inverses
of Pseudo-Differential Operators

Qiang Guo and M.W. Wong

Abstract. For invertible pseudo-differential operators Tσ with symbols σ in
Sm, m ∈ R, we use biorthogonal wavelets to develop an adaptive algorithm to
compute the Galerkin approximations of the solution u in the Sobolev space
Hm,2 of the equation Tσu = f on R for every f in L2(R).

Mathematics Subject Classification (2000). 47G30, 65M60, 65T10.

Keywords. Multiresolution analysis, scaling functions, wavelets, biorthogonal
wavelets, vanishing moments, Sobolev spaces, pseudo-differential operators,
Galerkin approximations, adaptive algorithms.

1. Introduction

Wavelet methods are relatively recent developments with applications in pure and
applied mathematics [1, 5]. Due to the localization properties that wavelets dis-
play both in space and frequency, the wavelet multiresolution analysis allows us to
obtain an efficient sparse representation of a function, especially when the function
exhibits singular behavior and large wavelet coefficients are near the singularity.
Wavelet methods can distinguish smooth and singular regions automatically and
hence lead to adaptive techniques based on multilevel methods. Reliable and effi-
cient a posteriori error estimators have been derived for adaptive wavelet Galerkin
schemes for elliptic partial differential equations, which are based on stable mul-
tiscale biorthogonal wavelet bases in, e.g., [3]. The developed adaptive refinement
strategy guarantees an improvement for the approximate solution after the refine-
ment step. We extend the adaptive strategy developed in [3] to compute inverses
of pseudo-differential operators.

The paper is organized as follows. In Section 2, we first recall the wavelet
multiresolution analysis and describe the properties of biorthogonal wavelets. Then

This research has been supported by the Natural Sciences and Engineering Research Council of
Canada.

1 L. Rodino et al. (eds.), Pseudo-Differential Operators: Analysis, Applications and Computations,  

© Springer Basel AG 2011 
Operator Theory: Advances and Applications 213, DOI 10.1007/978-3-0348-0049-5_1,  



2 Q. Guo and M.W. Wong

the basics of pseudo-differential operators required for this paper are recalled.
Residual estimates are given in Section 3 and a posteriori error estimates are
derived in Section 4. Finally, an adaptive algorithm for the computations of inverses
of nonsymmetric pseudo-differential operators is presented in Section 5.

2. Wavelets and pseudo-differential operators

A multiresolution analysis (MRA) is a sequence of closed subspaces {Vj}j∈Z0 of
L2(R) such that

Vj ⊂ Vj+1, j ∈ Z,

∩j∈ZVj = {0},
∪j∈ZVj = L2(R),

f ∈ Vj ⇔ D2f ∈ Vj+1, j ∈ Z,

and
f ∈ V0 ⇔ T−kf ∈ V0, k ∈ Z,

where D2 and T−k are the dilation and the translation given, respectively, by

(D2g)(x) = g(2x), x ∈ R,

and
(T−kg)(x) = g(x− k), x ∈ R,

for all measurable functions g on R.
Let ϕ ∈ L2(R). Then we consider the translations and dilations ϕj,k of ϕ

given by
ϕj,k(x) = 2j/2ϕ(2jx− k), x ∈ R,

for j, k ∈ Z. If for each fixed j ∈ Z, the sequence {ϕj,k : k ∈ Z} is an orthonormal
sequence for Vj such that the sequence is uniformly stable in the sense that

∥
∥
∥
∥
∥

∑

k∈Z

cj,kϕj,k

∥
∥
∥
∥
∥

2

∼
(
∑

k∈Z

|cj,k|2
)1/2

uniformly with respect to j in Z, i.e., there exist positive constants C and C′ such
that

C

(
∑

k∈Z

|cj,k|2
)1/2

≤
∥
∥
∥
∥
∥

∑

k∈Z

cj,kϕj,k

∥
∥
∥
∥
∥

2

2

≤ C′
(
∑

k∈Z

|cj,k|2
)1/2

, j ∈ Z,

then we call ϕ a scaling function of the MRA.
For j ∈ Z, we denote the orthogonal complement of Vj−1 in Vj by Wj . The

raison d’ être for Wj−1 is that an element in Wj contains the details needed to
pass from an approximation at level j − 1 to an approximation at level j. Let
ψ ∈ W0. Then the translations and dilations ψj,k of ψ are defined by

ψj,k(x) = 2j/2ψ(2jx− k), x ∈ R,
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for all j, k ∈ Z. If for each j in Z, the set {ψj,k : k ∈ Z} forms an orthonormal
basis for Wj , then we call ψ a mother wavelet and ψj,k, j, k ∈ Z, the wavelets
for the MRA. It is well known that Daubechies [4, 5] has constructed for L2(R)
orthonormal bases consisting of compactly supported wavelets that can be repre-
sented by polynomials of a fixed degree. The support of the Daubechies scaling
function is [0, 2N − 1], where N is a positive integer. The length of the support
increases linearly with the regularity. The corresponding mother wavelet then has
compact support given by [1 −N,N ] and has N vanishing moments in the sense
that ∫ ∞

−∞
xkψ(x) dx = 0, k = 0, 1, 2, . . . , N − 1.

If we denote for convenience W0 by V0, then for all positive integers n, every
element vn in Vn given by

vn =
∑

k∈Z

cn,kϕn,k,

where each cn,k is a complex number, has an alternative multiscale representation
given by the wavelets. More precisely,

vn =
n∑

j=0

∑

k∈Z

dj,kψj,k,

where each dj,k is a complex number. Equivalently, we can write

Vn = ⊕nj=0Wj .

Now, we start with two biorthogonal MRAs of L2(R). This means that
{Vj}j∈Z and {Ṽj}j∈Z are MRAs of L2(R) such that the primal MRA {Vj}j∈Z

and the dual MRA {Ṽj}j∈Z can be equipped with, respectively, Riesz bases Φj =
{ϕj,k : k ∈ Z} and Φ̃j = {ϕ̃j,k : k ∈ Z} with the property of biorthogonality to the
effect that

(ϕj,k, ϕ̃j,k′ ) = δk,k′ , k, k′ ∈ Z,

where ( , ) is the inner product in L2(R). Each of the primal scaling function ϕ
and the dual scaling function ϕ̃ is assumed to have compact support such that the
measure of ϕj,k and that of ϕ̃j,k are ∼ 2−j for all j, k ∈ Z. These biorthogonal
bases also define projections Pj : L2(R) → Vj and P̃j : L2(R) → Ṽj , which are
uniformly stable in L2(R). They are given by

Pjv =
∑

k∈Z

(v, ϕ̃j,k)ϕj,k

and
P̃jv =

∑

k∈Z

(v, ϕj,k)ϕ̃j,k

for all v in L2(R) and j = 0, 1, 2, . . . . The nestedness of the MRA spaces gives us
the properties that

PjPj+1 = Pj
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and
P̃jP̃j+1 = P̃j

for all j ∈ Z. Hence for j ∈ Z, the operators Qj and Q̃j given by

Qj = Pj+1 − Pj
and

Q̃j = P̃j+1 − P̃j
are also projections.

For j ∈ Z, the wavelet spaces Wj and W̃j are given by

Wj = Vj+1 ∩ Ṽ ⊥
j

and
W̃j = Ṽj+1 ∩ V ⊥

j ,

which are, respectively, the range R(Qj) of Qj and the range R(Q̃j) of Q̃j . The
wavelet spaces {Wj}j∈Z and {W̃j}j∈Z induce two multiscale decompositions of
L2(R) via

v = P1v +
∞∑

j=1

Qjv =
∞∑

j=0

Qjv, v ∈ L2(R),

where Q0 = P1 and

ṽ = P̃1 +
∞∑

j=1

Q̃jv, v ∈ L2(R).

Furthermore, we assume that for j ∈ Z, the wavelet spacesWj and W̃j are equipped
with compactly supported biorthogonal Riesz bases denoted, respectively, by

Ψj = {ψj,k : k ∈ Z}
and

Ψ̃j = {ψ̃j,k : k ∈ Z}.
For all nonnegative integers n, we can introduce the canonical truncated

projections Qn and Q′
n by

Qnv =
n∑

j=0

∑

k∈Z

(v, ψ̃j,k)ψj,k

and

Q′
nv =

n∑

j=0

∑

k∈Z

(v, ψj,k)ψ̃j,k

for all functions v in L2(R).
For s ∈ R, let Hs,2 be the L2-Sobolev space of order s defined to be the set

of all tempered distributions u on R such that

σ−sû ∈ L2(R),
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where
σs(ξ) = (1 + ξ2)−s/2, ξ ∈ R,

û is the Fourier transform of u and the Fourier transform f̂ of a function f in
L1(R) is defined by

f̂(ξ) = (2π)−1/2

∫ ∞

−∞
e−ixξf(x) dx, ξ ∈ R.

The norm ‖ ‖s,2 in Hs,2 is given by

‖u‖2s,2 =
∫ ∞

−∞
(1 + ξ2)s|û(ξ)|2dξ,

Henceforth, we let λ = (j, k), where j is the level of resolution and k is the
location. We let J be the index set given by

J = {λ = (j, k) : j = 0, 1, 2, . . . , k ∈ Z},
and for λ = (j, k) in J , we define |λ| by

|λ| = j.

Then we have the following result.

Theorem 2.1. Suppose that Ψ = {ψλ : λ ∈ J} and Ψ̃ = {ψ̃λ : λ ∈ J} are
biorthogonal collections in L2(R) such that the associated sequence {Qn}∞n=0 of
projections defined by

Qnv =
n∑

j=0

∑

k∈Z

(v, ψ̃j,k)ψj,k, v ∈ L2(R),

is uniformly bounded in the sense that there exists a positive constant C such that

‖Qnv‖s,2 ≤ C‖v‖s,2, n = 0, 1, 2, . . . .

Then for all v ∈ Hs,2, we have

‖v‖s,2 ∼
(
∑

λ∈J
22|λ|s|(v, ψ̃λ)|2

)1/2

, s ∈ (−γ′, γ),

where
γ = sup{s ∈ R : ϕ ∈ Hs,2}

and
γ′ = sup{s ∈ R : ψ ∈ Hs,2}.

It is worth pointing out that γ and γ′ are, respectively, less than or equal to
the vanishing moments of ϕ and ϕ̃.

For every real number m, we define Sm to be the set of all functions σ in
C∞(R×R) such that for all nonnegative integers α and β, there exists a positive
constant Cα,β such that

|(∂αx ∂βξ σ)(x, ξ)| ≤ Cα,β(1 + |ξ|)m−β , x, ξ ∈ R.
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Then we call σ a symbol of order m. Let σ ∈ Sm. Then we define the pseudo-
differential operator Tσ on the Schwartz space S on R by

(Tσϕ)(x) = (2π)−1/2

∫ ∞

−∞
eixξσ(x, ξ)ϕ̂(ξ) dξ, x ∈ R,

for all functions ϕ in S. The following result is well known.

Theorem 2.2. Tσ can be extended to a bounded linear operator from Hs,2 into
Hs−m,2.

A proof can be found in, for instance, the book [7].
Let σ ∈ Sm. Suppose that there exist positive constants C and R such that

|σ(x, ξ)| ≥ C(1 + |ξ|)m, |ξ| > R.

Then we say that the symbol σ is elliptic or the pseudo-differential operator Tσ is
elliptic.

The following result on spectral invariance [6] is well known. See also Theorem
4.9 in [2] in this connection.

Theorem 2.3. Let σ ∈ Sm be such that the pseudo-differential operator Tσ :
Hm/2,2 → H−m/2,2 is invertible. Then σ is elliptic and T−1

σ is an elliptic pseudo-
differential operator with symbol in S−m.

The following estimate is useful to us.

Theorem 2.4. Let σ ∈ Sm be such that the pseudo-differential operator Tσ :
Hm/2,2 → H−m/2,2 is invertible. Then there exist positive constants C1 and C2

such that

C1‖Tσu‖−m/2,2 ≤ ‖u‖m/2,2 ≤ C2‖Tσu‖−m/2,2, u ∈ Hm/2,2.

Proof. The “first” inequality follows from Theorem 2.2. By Theorems 2.2 and 2.3,
there exists a positive constant C such that

‖u‖m/2,2 = ‖T−1
σ Tσu‖m/2,2 ≤ C‖Tσu‖−m/2,2, u ∈ Hm/2,2.

This completes the proof. �

The aim of this paper is to use adaptive wavelets to compute numerically
the inverse of an invertible pseudo-differential operator Tσ : Hm,2 → L2(R), where
σ ∈ Sm and m = min(γ, γ′). This amounts to solving the pseudo-differential
equation

Tσu = f (2.1)

on R for u ∈ Hm,2 for all functions f in L2(R). To do this, we transform the
equation (2.1) to the equation

T ∗
σTσu = T ∗

σf (2.2)
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on R, where T ∗
σ denotes the formal adjoint of Tσ. Now, T ∗

σTσ is a pseudo-differential
operator Tτ of order 2m and T ∗

σf ∈ H−m,2. Furthermore, Tτ is symmetric and
there exist positive constants A and B such that

A‖u‖2m,2 ≤ (Tτu, u) ≤ B‖u‖2m,2, u ∈ Hm,2. (2.3)

The “second” inequality follows from Theorem 2.2. In fact, there exists a positive
constant B such that

(Tτu, u) ≤ |(Tτu, u)| ≤ ‖Tτu‖−m,2‖u‖m,2 ≤ B‖u‖2m,2, u ∈ Hm,2.

On the other hand, we get from Theorems 2.2 and 2.3 a positive constant C such
that

‖u‖2m,2 = ‖T−1
σ Tσu‖2m,2 ≤ C‖Tσu‖2m,2, u ∈ Hm,2.

With slight abuse of notation, the problem (2.1) is then the same as solving
for u in Hm,2 to the equation

Tσu = f

on R for every f in H−m,2, where Tσ is a symmetric pseudo-differential operator
of order 2m such that there exist positive constants A′ and B′ for which

A′‖u‖m,2 ≤ ‖u‖Tσ ≤ B′‖u‖m,2, u ∈ Hm,2,

where
‖u‖2Tσ

= (Tσu, u).

Remark 2.5. The existence of a positive constant A′ for which

‖u‖2Tσ
≥ A′‖u‖2m,2, u ∈ Hm,2,

is a condition related to G̊arding’s inequality on the symbol σ. See, e.g., the paper
[8] in this connection.

Adaptive wavelet methods in finding solutions to differential and integral
equations can be found in [1, 3].

3. Residual estimates

The problem of computing the inverse of Tσ : Hm,2 → H−m,2 numerically is
equivalent to the computation of subspaces VΛ of the form

VΛ = span{ψλ : λ ∈ Λ}
that are adapted to the unique solution u in Hm,2 of the pseudo-differential equa-
tion

Tσu = f (3.1)

on R for every function f in H−m,2. To do this, we use the weak formulation of
(3.1) to the effect of finding a solution uΛ in VΛ such that

(TσuΛ, v) = (f, v), v ∈ VΛ. (3.2)
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More precisely, for every tolerance eps, we seek a subset Λ of J such that the
Galerkin approximation uΛ in VΛ defined by (3.2) satisfies the estimate

‖u− uΛ‖m,2 ≤ eps.

This is to be achieved by successively upgrading Λ based on appropriate a poste-
riori estimates of a current Galerkin approximation uΛ. To this end, we define the
residual term rΛ by

rΛ = TσuΛ − f,
which is the same as

rΛ = Tσ(uΛ − u).

So, by Theorem 2.4, we can find positive constants C1 and C2 such that

C1‖rΛ‖−m,2 ≤ ‖u− uΛ‖m,2 ≤ C2‖rΛ‖−m,2
for all subsets Λ of J . Thus, we can find positive constants C3 and C4 such that

C3




∑

λ∈J\Λ
2−2m|λ||(rΛ, ψλ)|2





1/2

≤ ‖rΛ‖−m,2 ≤ C4




∑

J\Λ
2−2m|λ||(rΛ, ψλ)|2





1/2

.

Now, for λ ∈ J \ Λ, define δλ by

δλ = 2−m|λ||(rΛ, ψλ)|.
Since uΛ ∈ VΛ, it follows that

uΛ =
∑

λ′∈Λ

uλ′ψλ′ ,

where
uλ′ = (uΛ, ψ̃λ′).

So, for λ ∈ J \ Λ,

δλ = 2−m|λ|
∣
∣
∣
∣
∣
fλ −

∑

λ′∈Λ

(Tσψλ′ , ψλ)u′λ

∣
∣
∣
∣
∣
.

Let µ be the Hölder exponent of ∂γϕ. Then for all positive numbers ε and δ
with δ < µ− 1

2 , we can choose positive numbers ε1 and ε2 such that

ε
2(r̃+1)
1 + 2−δ/ε2 ≤ ε,

where r̃ is the vanishing moment of ϕ̃.
For all λ in J and for every positive number ε, we define the tolerance set

Jλ,ε by

Jλ,ε = {λ′ ∈ J : ||λ| − |λ′|| ≤ ε−1
2 , 2min(|λ|,|λ′|)d(supp(ψλ), supp(ψλ′)) ≤ ε−1

1 }.
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Then we have the following lemma, which is Lemma 4.2 in [3].

Lemma 3.1. For λ ∈ J \ Λ, let eλ be defined by

eλ =
∑

λ′∈Λ\Jλ,ε

2−m|λ|(Tσψλ′ , ψλ)uλ′ .

Then there exists a positive constant C5 such that
(

∑

λ∈J\Λ
|eλ|2

)1/2

≤ C5ε‖Q′
Λf‖−m,2,

where
Q′

Λf =
∑

λ∈Λ

(f, ψλ)ψ̃λ.

We note that for λ ∈ J \ Λ,

δλ = 2−m|λ|
∣
∣
∣
∣
fλ −

(
∑

λ′∈Λ∩Jλ,ε

+
∑

λ′∈Λ\Jλ,ε

)

(Tσψλ′ , ψλ)uλ

∣
∣
∣
∣

≤ |dλ|+ |eλ|,
where

dλ = 2−m|λ
∣
∣
∣
∣
fλ −

∑

λ′∈Λ∩Jλ,ε

(Tσψλ′ , ψλ)uλ′

∣
∣
∣
∣
.

Let NΛ,ε be the set of all indices in the complement of Λ with influence set
intersecting Λ. More precisely,

NΛ,ε = {λ ∈ J \ Λ : Jλ,ε ∩ Λ �= φ}.
It can be shown that

NΛ,ε = ∪λ′∈ΛJλ′,ε

and NΛ,ε has at most a finite number of elements. Hence

λ′ ∈ J \ (Λ ∪NΛ,ε)⇒ Jλ′,ε ∩ Λ = φ.

Since
f ∈ H−m,2 ⇔

∑

λ∈J
2−2m|λ||fλ|2 <∞,

it follows that
∑

λ∈J\(NΛ,ε∪Λ) 2−2m|λ||fλ|2 can be made arbitrarily small by choos-
ing Λ appropriately. Indeed,

∑

λ∈J\(NΛ,ε∪Λ)

2−2m|λ||fλ|2 =
∑

λ∈J
22m|λ||fλ|2 −

∑

λ∈(NΛ,ε∪Λ)

2−2m|λ||fλ|2

= ‖f −Q′
Λ∪NΛ,ε

f‖2−m,2
∼ inf

v∈ṼΛ∪NΛ,ε

‖f − v‖2−m,2

≤ inf
v∈ṼΛ

‖f − v‖2−m,2.
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We can now lay out the basic assumptions to the effect that there are positive
constants C6 and C7 such that

C5‖Q′
Λf‖−m,2 ≤ C6‖f‖−m,2

and



∑

λ∈J\Λ
2−2m|λ||fλ|2





1/2

≤ C7 inf
v∈ṼΛ

‖f − v‖−m,2

for all subsets Λ of J .

4. A posteriori error bounds

For λ ∈ J \ Λ, we define aλ by

aλ = 2−m|λ|

∣
∣
∣
∣
∣
∣

∑

λ′∈Λ∩Jλ,ε

(Tσψλ′ , ψλ)uλ′

∣
∣
∣
∣
∣
∣

.

Theorem 4.1. Under the hypotheses of Lemma 3.1, we have

‖u− uΛ‖m,2 ≤ C2C4










∑

λ∈NΛ,ε

a2
λ





1/2

+ C6ε‖f‖−m,2 + C7 inf
v∈ṼΛ

‖f − v‖−m,2







and



∑

λ∈NΛ,ε

a2
λ





1/2

≤ 1
C1C3

‖u− uΛ‖m,2 + C6ε‖f‖−m,2 + C7 inf
v∈ṼΛ

‖f − v‖−m,2.

Theorem 4.2. Suppose that Λ ⊂ Λ̃ ⊂ J. Then



∑

λ∈Λ̃∩NΛ,ε

a2
λ





1/2

≤ 1
C1C3

‖uΛ̃ − uΛ‖m,2 + C6ε‖f‖−m,2 + C7 inf
v∈ṼΛ

‖f − v‖−m,2.

Proof. Let λ ∈ Λ̃. Then

(TσuΛ, ψλ) = (Tσ(uΛ − uΛ̃), ψλ) + fλ.

So,
dλ(Λ, ε) ≤ 2−m|λ||(Tσ(uΛ − uΛ̃), ψλ)|+ |eλ|.

Moreover,
∑

λ∈Λ̃\Λ
2−2m|λ||(Tσ(uΛ−uΛ̃), ψλ)|2 ≤ 1

C2
3

‖Tσ(uΛ−uΛ̃)‖2−m,2 ≤
1

C2
1C

2
3

‖uΛ−uΛ̃‖2m,2
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So, by Lemma 3.1,



∑

λ∈Λ̃\Λ
dλ(Λ, ε)2





1/2

≤ 1
C1C3

‖uΛ̃ − uΛ‖m,2 + C5ε‖Q′
Λf‖−m,2.

Hence
|aλ(Λ, ε)| ≤ |dλ(Λ, ε)|+ 2−m|λ||fλ|,

and the proof is complete. �

5. An adaptive algorithm

We prove in this section that for a set Λ̃ containing Λ, the solution in VΛ̃ ap-
proximates the actual solution better than the one in VΛ. To do this, we recall
our assumptions spelled out at the end of Section 2 that the pseudo-differential
operator Tσ is symmetric and there exist positive constants C8 and C9 such that

C8‖u‖m,2 ≤ ‖u‖Tσ ≤ C9‖u‖m,2, u ∈ Hm,2,

where
‖u‖2Tσ

= (Tσu, u).

Theorem 5.1. Let eps be a given tolerance. For θ∗ ∈ (0, 1), we define the number
Ce by

Ce =
(

1
C1C3

+
1− θ∗
2C2C4

)

.

Let µ∗ be a positive number such that

µ∗Ce ≤ 1− θ∗
2(2− θ∗)C2C4

.

Let ε be the positive number defined by

ε =
µ∗eps

2C6‖f‖−m,2 .

Suppose that Λ is a subset of J such that

C7 inf
v∈ṼΛ

‖f − v‖−m,2 ≤ 1
2
µ∗eps.

Then for all subsets Λ̃ of J such that Λ ⊂ Λ̃ and



∑

λ∈Λ̃∩NΛ,ε

a2
λ





1/2

≥ (1− θ∗)



∑

λ∈NΛ,ε

a2
λ





1/2

,

there exists a number κ in (0, 1) such that

‖u− uΛ̃‖Tσ ≤ κ‖u− uΛ‖Tσ .
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Proof. We begin with the assumption that

‖u− uΛ‖m,2 ≥ eps
Ce

.

By Theorems 4.1 and 4.2,

‖uΛ̃ − uΛ‖m,2 ≥ C1C3

{(
∑

λ∈Λ̃∩NΛ,ε

a2
λ

)1/2

− C6ε‖f‖−m,2 − C7 inf
v∈ṼΛ

‖f − v‖−m,2
}

≥ C1C3{(1− θ∗)((C2C4)−1‖u− uΛ‖m,2 − C6ε‖f‖−m,2
− C7 inf

v∈ṼΛ

‖f − v‖−m,2)− C6ε‖f‖−m,2 − C7 inf
v∈ṼΛ

‖f − v‖−m,2}

≥ C1C3((1 − θ∗)(C2C4)−1‖u− uΛ‖m,2 − (2− θ∗)C6ε‖f‖−m,2
− (2− θ∗)C7 inf

v∈ṼΛ

‖f − v‖−m,2).

So,

‖uΛ̃ − uΛ‖m,2 ≥ C1C3

(
1− θ∗
C2C4

‖u− uΛ‖m,2 − (2− θ∗)µ∗eps
)

,

and consequently

‖uΛ̃ − uΛ‖m,2 ≥ C1C3

(
1− θ∗
C2C4

− (2− θ∗)µ∗Ce

)

‖u− uΛ‖m,2

≥ C1C3(1− θ∗)
2C2C4

‖u− uΛ‖m,2.

Now,

‖uΛ̃ − uΛ‖2Tσ
= (TσuΛ̃ − TσuΛ, uΛ̃ − uΛ)

= ‖uΛ̃‖2Tσ
+ ‖uΛ‖2Tσ

− (TσuΛ̃, uΛ)− (TσuΛ, uΛ̃)

= ‖uΛ̃‖2Tσ
+ ‖uΛ‖2Tσ

− (f, uΛ)− (uΛ, f)

= ‖uΛ̃‖2Tσ
+ ‖uΛ‖2Tσ

− (TσuΛ, uΛ)− (uΛ, TσuΛ)

= ‖uΛ̃‖2Tσ
− ‖uΛ‖2Tσ

. (5.1)

Also,

‖u− uΛ̃‖2Tσ
= (Tσu− TσuΛ̃, u− uΛ̃)

= ‖u‖2Tσ
+ ‖uΛ̃‖2Tσ

− (Tσu, uΛ̃)− (TσuΛ̃, u)

= ‖u‖2Tσ
+ ‖uΛ̃‖2Tσ

− (f, uΛ̃)− (uΛ̃, f)

= ‖uΛ̃‖2Tσ
+ ‖u‖2Tσ

− (TσuΛ̃, uΛ̃)− (uΛ̃, TσuΛ̃)

= ‖u‖2Tσ
− ‖uΛ̃‖2Tσ

. (5.2)
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Furthermore,

‖u− uΛ‖2Tσ
= (Tσu− TσuΛ, u− uΛ)

= ‖u‖2Tσ
+ ‖uΛ‖2Tσ

− (Tσu, uΛ)− (TσuΛ, u)

= ‖u‖2Tσ
+ ‖uΛ‖2Tσ

− (f, uΛ)− (uΛ, f)

= ‖u‖2Tσ
+ ‖uΛ‖2Tσ

− (TσuΛ, uΛ)− (uΛ, TσuΛ)

= ‖u‖2Tσ
− ‖uΛ‖2Tσ

. (5.3)

Therefore by (5.1)–(5.3),

‖uΛ̃ − uΛ‖2Tσ
= ‖u− uΛ‖2Tσ

− ‖u− uΛ̃‖2Tσ
,

or equivalently

‖u− uΛ̃‖2Tσ
+ ‖uΛ̃ − uΛ‖2Tσ

= ‖u− uΛ‖2Tσ
.

Now,

‖uΛ̃ − uΛ‖Tσ ≥ C8‖uΛ̃ − uΛ‖m,2
≥ C1C3C8(1 − θ∗)

2C2C4
‖u− uΛ‖m,2

≥ C1C3C8(1 − θ∗)
2C2C4C9

‖u− uΛ‖Tσ . (5.4)

Hence

‖u− uΛ̃‖2Tσ
= ‖u− uΛ‖2Tσ

− ‖uΛ̃ − uΛ‖2Tσ

≤ ‖u− uΛ‖2Tσ
−

(
C1C3C8(1 − θ∗)

2C2C4C9

)2

‖u− uΛ‖2Tσ

= κ2‖u− uΛ‖2Tσ
,

where

κ =

√

1−
(
C1C3C8(1− θ∗)

2C2C4C9

)2

. �

We can now give an adaptive algorithm as promised.

An adaptive algorithm Given θ∗ ∈ (0, 1) and the desired accuracy eps, we proceed
as follows:

• Step 1: Compute ε = µ∗eps
2C6‖f‖−m,2

.

• Step2: Determine an index set Λ ⊂ J such that

C7 inf
v∈ṼΛ

‖f − v‖−m,2 < 1
2
µ∗eps.

• Step 3: Compute the Galerkin solution uΛ with respect to VΛ.
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• Step 4: Compute

ηΛ,ε =
(

∑

λ∈NΛ,ε

a2
λ

)1/2

.

If ηΛ,ε < eps, then we stop and accept uΛ as a solution. Otherwise, go to the
next step.

• Step 5: Determine an index set Λ̃ such that Λ ⊂ Λ̃ ⊂ J and
(

∑

λ∈Λ̃∩NΛ,ε

a2
λ

)1/2

≥ (1− θ∗)ηΛ,ε,

and go to Step 3 with Λ replaced by Λ̃.
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Spectral Theory of Pseudo-Differential
Operators on S

1

Mohammad Pirhayati

Abstract. For a bounded pseudo-differential operator with the dense domain
C∞(S1) on Lp(S1), the minimal and maximal operator are introduced. An
analogue of Agmon-Douglis-Nirenberg [1] is proved and then is used to prove
the uniqueness of the closed extension of an elliptic pseudo-differential oper-
ator of symbol of positive order. We show the Fredholmness of the minimal
operator. The essential spectra of pseudo-differential operators on S

1 are de-
scribed.

Mathematics Subject Classification (2000). Primary 47G30.

Keywords. Pseudo-differential operators, Sobolev spaces, Fredholmness, ellip-
ticity, essential spectra, indices.

1. Introduction

In this paper the focus is on pseudo-differential operators on the unit circle S
1

centered at the origin. For −∞ < m <∞, let Sm(S1 × Z) be the set all functions
σ in C∞(S1 × Z) such that for all nonnegative integers α and β there exists a
positive constant Cα,β for which

|(∂αθ ∂βnσ)(θ, n)| ≤ Cα,β(1 + |n|)m−β , θ ∈ [−π, π], n ∈ Z.

Let σ ∈ Sm(S1 × Z), −∞ < m < ∞. Then we define the pseudo-differential
operator Tσ on L1(S1) by

(Tσf)(θ) =
∑

n∈Z

einθσ(θ, n)(FS1f)(n), θ ∈ [−π, π],

where

(FS1f)(n) = (2π)−1

∫ π

−π
e−inθf(θ) dθ, n ∈ Z.

Basic properties of pseudo-differential operators with symbols in Sm(S1 × Z),
−∞ < m < ∞, can be found in [2, 3, 4, 6, 10, 9]. The basic calculi for the

L. Rodino et al. (eds.), Pseudo-Differential Operators: Analysis, Applications and Computations,  

© Springer Basel AG 2011 
Operator Theory: Advances and Applications 213, DOI 10.1007/978-3-0348-0049-5_2,  
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product and the formal adjoint of pseudo-differential operators with symbols in
Sm(S1 × Z) can be found in [9].

A symbol σ in Sm(S1×Z), −∞ < m <∞, is said to be elliptic if there exist
positive constants C and R such that

|σ(θ, n)| ≥ C(1 + |n|)m, |n| ≥ R, θ ∈ [−π, π].

The following theorem gives a parametrix for an elliptic pseudo-differential oper-
ator with symbol in Sm(S1 × Z), ∞ < m < −∞, see [9].

Theorem 1.1. Let σ ∈ Sm(S1 × Z), −∞ < m <∞ be elliptic. Then there exists a
symbol τ ∈ S−m(S1 × Z) such that

TσTτ = I +K and TτTσ = I +R,

where K and R are infinitely smoothing in the sense that they are pseudo-differ-
ential operators with symbols in ∩m∈RS

m(S1 × Z).

Similar results for the symbol class Sm(Rn × R
n) of the pseudo-differential

operators on R
n have been studied for example in [15].

In Section 2, we recall Lp-Sobolev spacesHs,p,−∞ < s <∞, 1 ≤ p ≤ ∞, and
we give some of the results in [7]. Then in Section 3, we consider bounded pseudo-
differential operators Tσ on Lp(S1), 1 < p < ∞ with dense domain C∞(S1). The
smallest and largest closed extension of Tσ are provided. The analogue of Agmon-
Douglis-Nirenberg [1], is given to prove that for an elliptic symbol σ of positive or-
derm, the corresponding pseudo-differential operator has a unique closed extension
with domain Hm,p on Lp(S1). In Section 4, we focus on Fredholmness of pseudo-
differential operator and its essential spectrum. Results on the Fredholmness of
pseudo-differential operators on R

n can be found in [16, 13]. By using Theorem
2.9 in [7], we see that the minimal operator of an elliptic pseudo-differential oper-
ator of positive order is Fredholm. The essential spectra of the pseudo-differential
operator and the minimal (maximal) operator are then provided. Similar results
for the SG Pseudo-differential operator on R

n are given in [5, 8].

2. Lp-Sobolev spaces

For −∞ < s < ∞, let Js be the pseudo-differential operator with symbol σs
given by

σs(n) = (1 + |n|2)−s/2, n ∈ Z.

Js is called the Bessel potential of order s.
Now, for −∞ < s < ∞ and 1 ≤ p ≤ ∞, we define the Lp-Sobolev space

Hs,p to be the set of all tempered distributions u for which J−su is a function in
Lp(S1). Then Hs,p is a Banach space in which the norm ‖ · ‖s,p is given by

‖u‖s,p = ‖J−su‖Lp(S1), u ∈ Hs,p.

It is easy to show that for −∞ < s, t <∞, Jt is an isometry of Hs,p onto Hs+t,p.
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The following theorem is known as Sobolev embedding theorem.

Theorem 2.1. Let 1 < p <∞ and s ≤ t. Then Ht,p ⊆ Hs,p and

‖u‖s,p ≤ ‖u‖t,p, u ∈ Ht,p.

Proposition 2.2. Let σ ∈ Sm(S1 × Z), −∞ < m < ∞. Then Tσ : Hs,p → Hs−m,p

is a bounded linear operator for 1 < p <∞.

Proposition 2.3. Let s < t. Then the inclusion operator i : Ht,p ↪→ Hs,p is compact
for 1 ≤ p ≤ ∞.

The results above can be found in [7].

3. Minimal and maximal operators

Let σ ∈ Sm(S1×Z), m ∈ R. Then the formal adjoint of Tσ, denoted T ∗
σ is a linear

operator on C∞(S1) such that

(Tσϕ, ψ) = (ϕ, T ∗
σψ), ϕ, ψ ∈ C∞(S1).

It can be proved that the formal adjoint of Tσ is a pseudo-differential operator
of symbol of order −m (see [10]). The following proposition guarantee that the
minimal operator of Tσ exists.

Proposition 3.1. Let Sm(S1 × Z), −∞ < m < ∞. Then Tσ : Lp(S1) → Lp(S1) is
closable with dense domain C∞(S1) for 1 < p <∞.

Proof. Let {ϕk}∞k=1 be a sequence in C∞(S1) such that ϕk → 0 and Tσϕk → f for
some f in Lp(S1) as k→∞. We only need to show that f = 0. We have

(Tσϕk, ψ) = (ϕk, T ∗
σψ), ψ ∈ C∞(S1), k = 1, 2, . . . .

Let k → ∞, then (f, ψ) = 0 for all ψ ∈ C∞(S1). By the density of C∞(S1) in
Lp(S1), it follows that f = 0. �

Consider Tσ : Lp(S1) → Lp(S1) with domain C∞(S1). Then by Proposition
3.1, Tσ has a closed extension. Let Tσ,0 be the minimal operator of Tσ which is the
smallest closed extension of Tσ. Then the domain D(Tσ,0) of Tσ,0 consists of all
functions u ∈ Lp(S1) for which there exists a sequence {ϕk}∞k=1 in C∞(S1) such
that ϕk → u in Lp(S1) and Tσϕk → f for some f ∈ Lp(S1) in Lp(S1) as k → ∞.
It can be shown that f does not depend on the choice of {ϕk}∞k=1 in C∞(S1) and
Tσ,0u = f .

We define the linear operator Tσ,1 on Lp(S1) with domain D(Tσ,1) by the
following. Let f and u be in Lp(S1). Then we say that u ∈ D(Tσ,1) and Tσ,1u = f
if and only if

(u, T ∗
σϕ) = (f, ϕ), ϕ ∈ C∞(S1).

It can be proved that Tσ,1 is a closed linear operator from Lp(S1) into Lp(S1) with
domain D(Tσ,1) containing C∞(S1). In fact, C∞(S1) is contained in the domain
D(T tσ,1) of the true adjoint T tσ,1 of Tσ,1. Furthermore, Tσ,1(u) = Tσ(u) for all u in
D(Tσ,1).
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It is easy to see that Tσ,1 is an extension of Tσ,0. In fact Tσ,1 is the largest
closed extension of Tσ in the sense that if B is any closed extension of Tσ such that
C∞(S1) ⊆ D(Bt), then Tσ,1 is an extension of B. Tσ,1 is called the maximal opera-
tor of Tσ. The following theorem is an analogue of Agmon-Douglis-Nirenberg in [1].

Proposition 3.2. Let σ ∈ Sm(S1 × Z), m > 0 be elliptic. Then there exist positive
constants C and D > 0 such that

C‖u‖m,p ≤ ‖Tσu‖Lp(S1) + ‖u‖Lp(S1) ≤ D‖u‖m,p, u ∈ Hm,p.

Proof. By the boundedness of Tσ in Proposition 2.2 and the boundedness of the
inclusion operator in Theorem 2.1, there exists a positive constant D such that for
all u ∈ Hm,p,

‖Tσu‖Lp(S1) + ‖u‖Lp(S1) ≤ D‖u‖m,p, u ∈ Hm,p.

Since σ ∈ Sm(S1 × Z) is elliptic, by Theorem 1.1, there exists a symbol τ ∈
S−m(S1 × Z) such that

u = TτTσu−Ru, u ∈ Hm,p,

where R is an infinitely smoothing operator in the sense that R is a pseudo-
differential operator with symbol in ∩m∈RS

m(S1 × Z). By using Proposition 2.2
again, Tσu ∈ Lp(S1). Therefore, TτTσu ∈ Hm,p, for all u ∈ Hm,p, Moreover there
exists a positive constant C such that

‖u‖m,p ≤ C(‖Tσu‖Lp(S1) + ‖u‖Lp(S1)), u ∈ Hm,p. �
We have the following result which we use in the next theorem.

Lemma 3.3. Let s ∈ R and 1 < p <∞. Then C∞(S1) is dense in Hs,p.

Proof. Let u ∈ Hs,p. Then J−su ∈ Lp(S1). Since C∞(S1) is dense in Lp(S1), there
exists a sequence {ϕk}∞k=1 in C∞(S1) such that ϕk → J−su in Lp(S1) as k → ∞.
Let ψk = Jsϕk, k = 1, 2, . . . . Then ψk ∈ C∞(S1), k = 1, 2, . . . , and

‖ψk − u‖s,p = ‖J−sψk − J−su‖Lp(S1)

= ‖ϕk − J−su‖Lp(S1) → 0,

as k →∞, which completes the proof. �
The following theorem gives the domain of the minimal operator of an elliptic

pseudo-differential operator with symbol of positive order.

Theorem 3.4. Let σ ∈ Sm(S1 × Z), m > 0, be elliptic. Then D(Tσ,0) = Hm,p.

Proof. Let u ∈ Hm,p. Then by using the density of C∞(S1) in Hm,p, there exists
a sequence {ϕk}∞k=1 in C∞(S1) such that ϕk → u in Hm,p and therefore in Lp(S1)
as k → ∞. By Proposition 3.2, ϕk and Tσϕk are Cauchy sequences in Lp(S1).
Therefore ϕk → u and Tσϕk → f for some f in Lp(S1) as k → ∞. This implies
that u ∈ D(Tσ,0) and Tσ,0u = f . Now assume that u ∈ D(Tσ,0). Then there exists
a sequence {ϕk}∞k=1 in C∞(S1) such that ϕk → u in Lp(S1) and Tσϕk → f , for
some f ∈ Lp(S1) as k →∞. So, by Proposition 3.2, {ϕk}∞k=1 is a Cauchy sequence
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in Hm,p. Since Hm,p is complete, there exists v ∈ Hm,p such that ϕk → v in Hm,p

as k → ∞. By Sobolev embedding theorem ϕk → v in Lp(S1) which implies that
u = v ∈ Hm,p. �

The following theorem shows that the closed extension of an elliptic pseudo-
differential operator on Lp(S1) with symbol σ ∈ Sm(S1×Z), m > 0, is unique and
moreover by Theorem 3.4, its domain is Hm,p.

Theorem 3.5. Let σ ∈ Sm(S1 × Z), m > 0, be elliptic. Then Tσ,0 = Tσ,1.

Proof. Since Tσ,1 is a closed extension of Tσ,0, by Theorem 3.4, it is enough to
show that D(Tσ,1) ⊆ Hm,p. Let u ∈ D(Tσ,1). By ellipticity of σ, there exists
τ ∈ S−m(S1 × Z) such that

u = TτTσu−Ru,
where R is an infinitely smoothing operator. Since Tσu = Tσ,1u ∈ Lp(S1), by
Proposition 2.2, it follows that u ∈ Hm,p, which completes the proof. �

4. Fredholm pseudo-differential operators

A closed linear operator A from a complex Banach space X into a complex Banach
space Y with dense domain D(A) is said to be Fredholm if
• the range of A, R(A) is closed subspace of Y and
• the null space of A, N(A) and the null space of the true adjoint of A, N(At)

are finite dimensional.
The index of a Fredholm operator A is defined by

i(A) = dimN(A) − dimN(At)

By Atkinson’s theorem, a closed linear operator A : X → Y with dense domain
D(A) is Fredholm if and only if there exists a bounded linear operator B : Y → X
such that K1 = AB − I : Y → Y and K2 = BA − I : X → X are compact
operators.
Let A : X → X be a closed linear operator with dense domain D(A) in the complex
Banach space X . Then the spectrum of A, Σ(A) is defined by

Σ(A) = C− ρ(A),

where ρ(A) is the resolvent set of A given by

ρ(A) = {λ ∈ C : A− λI is bijective}.
The essential spectrum Σw(A) of A, which has been defined in [14] by Wolf given by

Σw(A) = C− Φw(A), where Φw(A) = {λ ∈ C : A− λI is Fredholm}.
Note that i(A− λI) is constant for all λ in a connected component of Φw(A).
The essential spectrum Σs(A) of A in sense of Schechter [11] is defined by

Σs(A) = C− Φs(A), where Φs(A) = {λ ∈ Φw(A) : i(A− λI) = 0}.
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For the properties of essential spectra see [12]. The following theorem gives a
sufficient condition for Tσ : Hs,p → Hs−m,p to be a Fredholm operator. The proof
can be found in [7].

Theorem 4.1. Let σ ∈ Sm(S1 × Z), −∞ < m < ∞ be elliptic. Then for all
−∞ < s < ∞ and 1 < p < ∞, Tσ : Hs,p → Hs−m,p is a Fredholm operator. In
particular if σ ∈ S0(S1×Z), then the bounded linear operator Tσ : Lp(S1)→ Lp(S1)
is Fredholm.

The following is an immediate corollary of Theorem 3.4 and Theorem 4.1.

Corollary 4.2. Let σ ∈ Sm(S1 × Z), m > 0 be elliptic. Then for 1 < p < ∞, Tσ,0
is a Fredholm operator on Lp(S1) with the domain Hm,p.

The following theorem gives the essential spectrum of an elliptic pseudo-
differential operator of positive order.

Theorem 4.3. Let σ ∈ Sm(S1 × Z), m > 0 be elliptic. Then

Σw(Tσ,0) = ∅.

Proof. Let λ ∈ C. By Corollary 4.2, we need only to show that σ − λ is elliptic.
The ellipticity of σ, implies that there exist constants C,R > 0 such that

|σ(θ, n)− λ| ≥ C(1 + |n|)m − |λ| = (1 + |n|)m(C − |λ|
(1 + |n|)m ), θ ∈ [−π, π],

whenever |n| ≥ R. Since (1 + |n|)m → ∞ as |n| → ∞, there exists M > 0 such
that

|σ(θ, n)− λ| ≥ C

2
(1 + |n|)m, |n| ≥M, θ ∈ [−π, π],

which implies that σ − λ is elliptic. �
Let σ ∈ Sm(S1 × Z), m ≥ 0. Then the following theorem is a result on the

essential spectra of the bounded pseudo-differential operator Tσ with the domain
Hm,p on Lp(S1).

Theorem 4.4. Let σ ∈ Sm(S1×Z), m ≥ 0. Then for Tσ on Lp(S1) with the domain
Hm,p, 1 < p <∞, we have

Σw(Tσ) ⊆ {λ ∈ C : |λ| ≥ Li},
where

Li = lim inf
|n|→∞

{( inf
θ∈[−π,π]

|σ(θ, n)|)(1 + |n|)−m}.

Proof. Let λ ∈ C be such that |λ| < Li. Then there exists ε > 0 such that

|λ|+ ε < Li.

Since m ≥ 0, it follows that |λ| < (Li − ε)(1 + |n|)m. On the other hand, there
exists a positive constant R such that

inf
|n|≥R

{( inf
θ∈[−π,π]

|σ(n, θ)|)(1 + |n|)−m} > Li − ε

2
.
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So, for |n| ≥ R,

|σ(θ, n) − λ| ≥ |σ(θ, n)| − |λ|
> (Li − ε

2
− Li + ε)(1 + |n|)m

=
ε

2
(1 + |n|)m, θ ∈ [−π, π].

Therefore, σ − λ is elliptic and hence Tσ − λI : Lp(S1) → Lp(S1) with domain
Hm,p is Fredholm. Thus,

{λ ∈ C : |λ| < Li} ⊆ Φw(Tσ),

which implies that
Σw(Tσ) ⊆ {λ ∈ C : |λ| ≥ Li}. �

We have the following theorem on the essential spectrum of a pseudo-differ-
ential operator of order 0 from Lp(S1) into Lp(S1).

Theorem 4.5. Let σ ∈ S0(S1 × Z). Then for Tσ : Lp(S1) → Lp(S1), 1 < p < ∞,
we have

Σs(Tσ) ⊆ {λ : |λ| ≤ Ls},
where

Ls = lim sup
|n|→∞

{ sup
θ∈[−π,π]

|σ(θ, n)|}.

Proof. Let λ ∈ C such that |λ| > Ls. Then there exists ε > 0 such that

|λ| − ε > Ls,

and there exists a positive number R such that

sup
|n|≥R

{ sup
θ∈[−π,π]

|σ(θ, n)|} < Ls +
ε

2
.

For all |n| ≥ R,

|σ(θ, n)− λ| ≥ |λ| − |σ(θ, n)|
> Ls + ε− Ls − ε

2
=
ε

2
, θ ∈ [−π, π].

Hence σ−λ is elliptic and by Theorem 4.1, Tσ−λI : Lp(S1)→ Lp(S1) is Fredholm.
Thus,

{λ ∈ C : |λ| > Ls} ⊆ Φw(Tσ),
which is the same as

Σw(Tσ) ⊆ {λ ∈ C : |λ| ≤ Ls}.
Since {λ ∈ C : |λ| > Ls} is a connected component of Φw(Tσ), it follows that
i(Tσ − λI) is a constant for all λ in {λ ∈ C : |λ| > Ls}. On the other hand,

ρ(Tσ) ∩ {λ ∈ C : |λ| > Ls} �= ∅.


