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Existence Results for Fokker–Planck Equations in Hilbert Spaces . . . . 23
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Preface

This volume contains the Proceedings of the Sixth Seminar on Stochastic Analysis,
Random Fields and Applications, which took place at the Centro Stefano Franscini
(Monte Verità) in Ascona (Ticino), Switzerland, from May 19 to 23, 2008. All
papers in this volume have been refereed.

The previous five editions of this conference occurred in 1993, 1996, 1999,
2002 and 2005. This Seminar is a periodically occurring event that attempts to
present a partial state of the art in stochastic analysis and certain related fields,
both theoretical and applied. The theoretical topics of the conference included
infinite-dimensional diffusions and multi-parameter random fields; among the ap-
plied topics, significant attention was given to fluid mechanics and mathematical
finance, but also to financial issues related to energy management and to the im-
pact of climate variations. In view of the timeliness and importance of this last sub-
ject, the meeting was honored by the presence and opening address of On. Marco
Borradori, president of the State Council of Ticino (the executive branch of the
government of the Italian-speaking canton of Switzerland), who was also in charge
of the Department of Territorio and whose responsibilities include energy issues.

As was to be expected, an important area of investigation by the Seminar
speakers is infinite-dimensional stochastic calculus, which includes fundamental
questions such as pathwise uniqueness and uniqueness in law for stochastic partial
differential equations, including not only wave and heat equations but also Navier-
Stokes and many other equations; in relation to such equations, large deviations
estimates, ergodicity results, and perturbations by fractal noise were discussed. Re-
lated subjects included infinite-dimensional backward stochastic differential equa-
tions, local times of random fields, and, of course, Malliavin calculus.

Malliavin calculus remains an important investigation technique, both with
respect to existence, smoothness and estimates of densities of the laws of con-
tinuous or jump processes and random fields, and as a technique for stochastic
integration with respect to non-semimartingale processes (or random fields). New
promising applications appear however, in probabilistic potential theory and in
statistics, for instance via generalizations of the classical Stein’s method.

Multi-parameter processes and infinite-dimensional processes remain an im-
portant tool in mathematical finance: they appear naturally in the study of the
term structure of interest rates and of other financial assets whose price depends
on the present time t and some additional parameter such as a delivery time T
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(such assets are also present in commodities and energy markets). Mathematical
finance and stochastic analysis remain intimately connected: new stochastic volatil-
ity models are being considered, involving both continuous and jump diffusions;
risk measures, hedging in incomplete markets, portfolio management with trans-
action costs, together with the formulation and study of general semimartingale
(and even non-semimartingale) models, require extensions of the classical tools
of stochastic analysis as well as the creation of new tools; new numerical tech-
niques, which can be deterministic or probabilistic, are also required. In this last
topic, substantial efforts have been devoted to simulating solutions of backward
stochastic differential equations.

A phenomenon which has been the subject of much recent investigation is
the impact of microstructure noise. Statistical and econometric tools are being
implemented in order to model and analyze such noises using perturbations by
classical Lévy or continuous diffusions. Other researchers analyze the robustness
of Black-Scholes and related formulas under non log-normal assumptions while
conserving the quadratic variation properties of the underlying. Quadratic varia-
tion becomes an important approximatively observed process related to the price
process of a financial asset, and has motivated theoreticians and practitioners to
introduce path-dependent options such as variance swaps, which are closely related
to this quantity.

Applications of finite- and infinite-dimensional stochastic analysis arise in
climatology, a science which has been the subject of several interdisciplinary re-
search projects. One afternoon during the conference was devoted to climate and
energy; this session was open to the general public. In addition to the address of
On. Marco Borradori mentioned above, three presentations were aimed toward a
wider audience:
• Prof. René Carmona (Princeton University) spoke on The European Union

emissions trading scheme from a mathematician’s perspective;
• Prof. Arturo Romer (Università della Svizzera Italiana) spoke (in French) on

Energie et environnement. Quel avenir?
• Prof. Peter Imkeller (Humboldt-Universität Berlin) lectured on Mathematical

challenges of managing energy and weather risk.
Significant financial support for this meeting was provided by the Fonds Na-

tional Suisse pour la Recherche Scientifique (Berne), the Centro Stefano Franscini
(ETH-Zürich), and the Ecole Polytechnique Fédérale de Lausanne (EPFL). We
take this opportunity to thank these institutions.

May 2010 Robert C. Dalang
Marco Dozzi
Francesco Russo
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Alòs, E. Universitat Pompeu Fabra, Spain
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Liu, W. Universität Bielefeld, Germany
Lörinczi, J. Loughborough University, U.K.
Malyarenko, A. Mälardalen University, Sweden
Masiero, F. Università di Milano Bicocca, Italy
Maslowski, B. Charles University, Czech Republic
Mattingly, J.C. Duke University, U.S.A.
Mayer-Wolf, E. Technion, Israel
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Pham, H. Université Paris VI et VII, France
Platen, E. Sidney University of Technology, Australia
Rasonyi, M. Hungarian Academy of Sciences, Hungary
Romer, A. Università della Svizzera Italiana, Switzerland
Romito, M. Università di Firenze, Italy
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The Trace Formula for the Heat Semigroup
with Polynomial Potential

Sergio Albeverio and Sonia Mazzucchi

Abstract. We consider the heat semigroup e−
t
�

H , t > 0, on R
d with generator

H corresponding to a potential growing polynomially at infinity. Its trace for
positive times is represented as an analytically continued infinite-dimensional
oscillatory integral. The asymptotics in the small parameter � is exhibited by
using Laplace’s method in infinite dimensions in the case of a degenerate phase
(this corresponds to the limit from quantum mechanics to classical mechanics,
in a situation where the Euclidean action functional has a degenerate critical
point).

Mathematics Subject Classification (2000). 35K05, 11F72, 28C20, 35C15,
35C20.

Keywords. Heat kernels, polynomial potential, infinite-dimensional oscillatory
integrals, Laplace method, degenerate phase, asymptotics, semiclassical limit.

1. Introduction

The study of the asymptotic behavior in the limit λ ↓ 0 of infinite-dimensional
integrals of the form ∫

B
e

F (λx)
λ2 G(λx)dµ(x) (1.1)

(where λ is a real positive parameter, µ a Gaussian measure on a Banach space
B, F,G Borel measurable functionals on B) by means of an infinite-dimensional
version of the Laplace method is a classical topic of investigation. The first results
were obtained by Schilder [31] for the asymptotics of classical Wiener integrals,
where B is the space of continuous functions with the sup norm and µ is the
Wiener measure. Schilder’s main theorems were generalized by Pincus [26] to the
case of more general Gaussian functional integrals, by Kallianpur and Oodaira
[21] in an abstract Wiener space setting, and by Ben Arous [14] to the case of
path space measures associated to stochastic differential equations. These results

Progress in Probability 63, DOI 10.1007/978-3-0348-0021-1_1, © Springer Basel AG 2011
R.C. Dalang et al. (eds.), Seminar on Stochastic Analysis, Random Fields and Applications VI, 
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were successfully applied to the study of the asymptotics of the solution of some
partial differential equation, see, e.g., [1, 22]. For some recent results see, e.g.,
[2, 10, 13, 17, 18, 25, 28, 30].

According to the Laplace method for integrals of the form (1.1), in the case
where one is dealing with an abstract Wiener space (i,H,B, µ), the asymptotics
should be determined by the maximum of the phase function F (x)−‖x‖2/2, where
‖ ‖ is the norm in the Hilbert space H, i.e., the reproducing kernel Hilbert space
of the Banach space B. The simplest case is the one where there is a unique non
degenerate maximum [31].

In this paper we are interested in the study the trace of the heat semigroup
Tr[e−

t
�
H ], t > 0, and its asymptotics when � ↓ 0, in the case where H is the

essentially self-adjoint operator on C∞0 ⊂ L2(Rd) given on the functions φ ∈ C∞0 by

Hφ(x) =
(
− �

2

2
∆x + V (x)

)
φ(x), x ∈ R

d, (1.2)

where � > 0 and V is a polynomially growing potential of the form V (x) = |x|2N .
H can be interpreted as a Schrödinger Hamiltonian, (in which case � is the reduced
Planck constant) and consequently e−

t
�
H , t > 0, as a Schrödinger semigroup.

In recent years a particular interest has been devoted to the study of the
trace of the heat semigroup and of the Schrödinger group e−

it
�
H , t ∈ R, (related

to the heat semigroup by analytic continuation in the “time variable” t) and their
asymptotics in the “semiclassical limit � ↓ 0” (see also [15] for a related problem).
In particular one is interested in the proof of a trace formula of Gutzwiller’s type,
relating the asymptotics of the trace of the Schrödinger group and the spectrum
of the quantum mechanical energy operator H with the classical periodic orbits of
the system. Gutzwiller’s heuristic trace formula, which is a basis of the theory of
quantum chaotic systems, is the quantum mechanical analogue of Selberg’s trace
formula, relating the spectrum of the Laplace-Beltrami operator on manifolds with
constant negative curvature with the periodic geodesics.

In the case where the potential V is the sum of an harmonic oscillator part
and a bounded perturbation V0 which can be written as the Fourier transform
of a complex bounded variation measure on R

d, some rigorous results on the
asymptotics of the trace of the Schrödinger group and the heat semigroup have
been obtained in [3, 4] by means of an infinite-dimensional version of the stationary
phase method for infinite-dimensional oscillatory integrals (see [9] for a review of
this topic).

In this paper we extend some of the results of [4] concerning the heat semi-
group to the case where the potential has a polynomial growth at infinity, by
proving an infinite-dimensional integral representation of the trace of e−

t
�
H , t > 0,

and by studying its asymptotics when � → 0. This corresponds to exhibiting the
detailed behavior of Tr[e−

t
�
H ] “near the classical limit”. The difficulties present in

the case we handle are twofold. First of all the polynomial growth of the potential
V (x) does not allow a direct application of the classical results on the asymptotic
expansion for infinite-dimensional integrals [9, 31]. Moreover the maximum of the
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phase function is degenerate. To handle the degeneracy we prove a functional in-
tegral representation for Tr[e−

t
�
H ] (formula (4.3) below). Such a representation is

particularly flexible to handle and allows to reduce the study of the degeneracy to
the study of the asymptotics of a finite-dimensional integral.

In Sections 2 and 3 we recall the definitions and the main results on abstract
Wiener spaces, as well as on infinite-dimensional (oscillatory) integrals and the
relations between them. In Section 4 we prove an infinite-dimensional integral
representation for the trace of the heat semigroup Tr[e−

t
�
H ], t > 0, with H given

by (1.2). In Section 5 we study the detailed behavior of Tr[e−
t
�
H ], t > 0, for � ↓ 0.

2. Asymptotics of integrals on abstract Wiener spaces

In this section we recall some classical results on the Laplace method on abstract
Wiener spaces.

Let H be a real separable infinite-dimensional Hilbert space, with inner prod-
uct 〈 , 〉 and norm ‖ ‖. Let ν be the finitely additive cylinder measure on H, defined
by its characteristic functional ν̂(x) = e−

�

2 ‖x‖2 . Let | | be a “measurable” norm
on H in the sense of L. Gross [19, 23], that is | | is such that for every ε > 0 there
exist a finite-dimensional projection Pε : H → H, such that for all P ⊥ Pε one has

ν({x ∈ H| |P (x)| > ε}) < ε,

where P and Pε are called orthogonal (P ⊥ Pε) if their ranges are orthogonal
in (H, 〈 , 〉). One can easily verify that | | is weaker than ‖ ‖. Denoted by B the
completion of H in the | |-norm and by i the continuous inclusion of H in B, one
can prove that µ ≡ ν ◦ i−1 is a countably additive Gaussian measure on the Borel
subsets of B. The triple (i,H,B) is called an abstract Wiener space [19, 23]. Given
y ∈ B∗ one can easily verify that the restriction of y to H is continuous on H, so that
one can identify B∗ as a subset of H. Moreover B∗ is dense in H and we have the
dense continuous inclusions B∗ ⊂ H ⊂ B. Each element y ∈ B∗ can be regarded as
a random variable n(y) on (B, µ). A direct computation shows that n(y) is normally
distributed, with covariance |y|2. More generally, given y1, y2 ∈ B∗, one has∫

B

n(y1)n(y2)dµ = 〈y1, y2〉.

The latter result allows the extension to the map n : H → L2(B, µ), because B∗ is
dense in H. Given an orthogonal projection P in H, with

P (x) =
n∑
i=1

〈ei, x〉ei

for some orthonormal e1, . . . , en ∈ H, the stochastic extension P̃ of P on B is well
defined by

P̃ ( · ) =
n∑
i=1

n(ei)( · )ei.
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Given a function f : H → B1, where (B1, ‖ ‖B1) is another real separable Banach
space, the stochastic extension f̃ of f to B exists if the functions f ◦ P̃ : B → B1

converge to f̃ in probability with respect to µ as P converges strongly to the
identity in H. If g : B → B1 is continuous and f := g|H, then one can prove [19]
that the stochastic extension of f is well defined and it is equal to g µ-a.e.

Let us denote the norm of the embedding i : (H, ‖ ‖) → (B, | |) by c > 0. The
following holds [21, 31]:

Theorem 2.1. Let the functions F,G in (1.1) satisfy the following assumptions:
1. ∃L1 ∈ R, ∃L2 ∈ (0, 1/2c2) such that ∀x ∈ B F (x) ≤ L1 + L2|x|2.
2. ∃K1,K2 > 0 such that for µ-a.e. x ∈ B |G(x)| ≤ K1e

K2|x|2 .
3. ∃γ ∈ H such that F (γ) − ‖γ‖2/2 > F (x) − ‖x‖2/2, ∀x ∈ H \ {γ}.
4. F is uniformly continuous on every bounded subset of B.
5. G is continuous at γ (with γ as in (3)).

Then

lim
λ↓0

∫
B e

F (λx)
λ2 G(λx)dµ(x)∫
B e

F(λx)
λ2 dµ(x)

= G(γ).

Remark 2.2. Condition 1 means that the allowed phase functions can have at most
quadratic growth at infinity.

Condition 3 means that the phase function x �→ F (x) − ‖x‖2/2 possess a
maximum which is achieved in one and only one point γ ∈ H.

Remark 2.3. Theorem 2.1 can be extended to the case where the phase function
E(x) = F (x)−‖x‖2/2 has a discrete set of non degenerate local maxima, i.e., if the
function F is two times Fréchet differentiable in a neighborhood of any maximum
γ of the phase function E and the kernel of the second Fréchet derivative of E at γ
is trivial. This is so because one can use a decomposition of the unit to “localize”,
see, e.g., [12, 13, 27, 28].

3. Infinite-dimensional integrals

In the present section we recall some results on analytic continuation of infinite-
dimensional oscillatory integrals and their relations with abstract Wiener spaces.
Let (H, 〈 , 〉, ‖ ‖) be a real separable infinite-dimensional Hilbert space, s a complex
number such that Re(s) ≥ 0, g : H → C a Borel function. The infinite-dimensional
integral

I(s) =
∫̃
H
e−

s
2‖x‖2g(x)dx

is defined in the following way [4, 16]:

Definition 3.1. A Borel measurable function g : H → C is called Fs integrable if
for each sequence {Pn}n∈N of projectors onto n-dimensional subspaces of H, such
that Pn ≤ Pn+1 and Pn → I strongly as n → ∞ (I being the identity operator
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in H), the finite-dimensional approximations of the oscillatory integral of f , with
parameter s,

Fs
Pn

(g) =

∫
PnH e

− s
2 ‖Pnx‖2g(Pnx)d(Pnx)∫

PnH e
− s

2‖Pnx‖2d(Pnx)
(3.1)

are well defined and the limit limn→∞ Fs
Pn

(g) exists and is independent of the
sequence {Pn}.

In this case the limit is called the infinite-dimensional oscillatory integral of
g with parameter s and is denoted by

∫̃
H
e−

s
2‖x‖2g(x)dx.

Strictly speaking I(s) has an oscillatory behavior only for s being a purely
imaginary number. In this case, if g ◦ Pn is not summable on PnH, the finite-
dimensional approximations in equation (3.1) have to be suitably defined as limits
of regularized integrals (see [6, 9, 16, 20]). For the applications we have in mind
we are interested in the case where s is real positive, s = 1/�, � > 0.

Let us recall some well-known results on infinite-dimensional oscillatory in-
tegrals.

Theorem 3.2 (Fubini theorem). Let H = H1 ⊕H2 decompose into the direct sum
of two closed and mutually orthogonal subspaces H1 and H2. Then

∫̃
H
e−

s
2‖x‖2g(x)dx =

∫̃
H1

e−
s
2‖x1‖2

(∫̃
H2

e−
s
2‖x2‖2g(x1 + x2)dx2

)
dx1.

Let H be a Hilbert space with norm | · | and scalar product (·, ·). Let also ‖ · ‖
be an equivalent norm on H with scalar product denoted by 〈·, ·〉. Let us denote
the new Hilbert space by H̃. Let us assume moreover that

〈x1, x2〉 = (x1, x2) + (x1, Lx2), x1, x2 ∈ H̃

‖x‖2 = |x|2 + (x, Lx), x ∈ H̃
where L is a self-adjoint trace class operator on H. The following two theorems
hold (see [4, 5]):

Theorem 3.3. Let f : H → C be a Borel function. f is integrable on H (in the
sense of Definition 3.1) if and only if f is integrable on H̃ and in this case

∫̃
H̃
e−

s
2 |x|2f(x)dx = det(I + L)1/2

∫̃
H
e−

s
2 |x|2f(x)dx. (3.2)

In the case where s ∈ R, s > 0 and the Hilbert space (H, 〈 , 〉, ‖ ‖) is an
element of an abstract Wiener space (i,H,B), it is possible to prove the following
interesting relation between the infinite-dimensional oscillatory integral on H with
parameter s = 1 and the Gaussian integral on the Banach space B:
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Theorem 3.4. Let g : B → C be a continuous bounded function. Let f : H → C be
the restriction of g to the Hilbert space H. Then the stochastic extension of f is
well defined, it is equal to g µ-a.e. and∫̃

H
e−

1
2 ‖x‖2f(x)dx =

∫
B
g̃(x)dµ(x).

Remark 3.5. A corresponding result holds for the case of infinite-dimensional os-
cillatory integrals with parameter s > 1.

4. The trace of the heat semigroup

In the present section we prove an infinite-dimensional integral representation for
the trace of the heat semigroup Tr[e−

t
�
H ], t > 0, in the case where H is the

quantum mechanical Hamiltonian given on the vectors φ ∈ S(Rd) by

Hφ(x) = −�
2

2
∆xφ(x) + V (x)φ(x), (4.1)

where V (x) = λ|x|2N , λ > 0, or, more generally, V (x) = λA2N (x, x, . . . , x), where
A2N : ×2N

i=1R
d → R is a completely symmetric, strictly positive 2N -order covariant

tensor on R
d. Below we shall write explicit formulae for the case V (x) = λ|x|2N ,

but all formulae can be easily adapted to the case V (x) = λA2N (x, x, . . . , x).
It is well known that H is an essentially self adjoint operator on C∞0 (Rd)

(see [29], Theorem X.28). H is a positive operator and is the generator of an
analytic semigroup, denoted by e−

t
�
H , t ≥ 0, moreover its trace (see, e.g., [32, 33])

is given, for t > 0 by:

Tr[e−
t
�
H ] =

∫
Rd

dx

(2πt)d/2

∫
C[0,t]

e−
1
�

∫ t
0 V (
√

�α(s)+
√

�x)dsdµ(α)

=
∫

Rd

dx

(2πt)d/2

∫
C[0,t]

e−λ�
N−1 ∫ t

0 |α(s)+x|2Ndsdµ(α) (4.2)

where C[0,t] is the space of continuous paths α : [0, t] → R
d such that α(0) = α(t)

and µ is the Brownian Bridge probability measure on it.
Let us introduce the Hilbert space Y0,t,

Y0,t := {γ ∈ H1(0, t; Rd) : γ(0) = γ(t) = 0}
with norm

|γ|2 =
∫ t

0

γ̇(s)2ds.

(i, Y0,t, C[0,t]) is an abstract Wiener space.
Let us introduce the Hilbert spaces Yp,t and Hp,t, given by

Yp,t := {γ ∈ H1(0, t; Rd) : γ(0) = γ(t) = 0},
Hp,t := {γ ∈ H1(0, t; Rd) : γ(0) = γ(t)},
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both with norm

‖γ‖2 =
∫ t

0

γ̇(s)2ds+
∫ t

0

γ(s)2ds.

The following holds.

Theorem 4.1. The function f : Hp,t → R given by

f(γ) := e
1
2

∫
t
0 γ(s)2ds−λ�

N−1 ∫ t
0 γ(s)2Nds, γ ∈ Hp,t

is F1-integrable on Hp,t in the sense of Definition 3.1. Moreover the trace of the
heat semigroup Tr[e−

t
�
H ], t > 0 for H as in equation (4.1) is given by

Tr[e−
t
�
H ] = (2 cosh t− 2)−d/2

∫̃
Hp,t

e−
1
2‖γ‖2f(γ)dγ

= (2 cosh t− 2)−d/2
∫̃
Hp,t

e−
1
2

∫
t
0 γ̇(s)

2ds−λ�
N−1 ∫ t

0 γ(s)2Ndsdγ. (4.3)

Proof. The proof of (4.3) is divided into 3 steps.

1st Step: First of all, by Theorem 3.4, the integral in (4.2) on C[0,t] with respect to
the Brownian bridge measure can be written in terms on an infinite-dimensional
integral on the Hilbert space Y0,t:
∫
C[0,t]

e−
1
�

∫ t
0 V (
√

�α(s)+
√

�x)dsdµ(α) =
∫̃
Y0,t

e−
1
2 |γ|2e−

1
�

∫ t
0 V (
√

�γ(s)+
√

�x)dsdγ,

so that

Tr[e−
t
�
H ] =

∫
Rd

dx

(2πt)d/2

∫̃
Y0,t

e−
1
2 |γ|2e−

1
�

∫
t
0 V (
√

�γ(s)+
√

�x)dsdγ. (4.4)

2nd Step: By the transformation formula relating infinite-dimensional integrals on
Hilbert spaces with varying norms (Theorem 3.3), we get a relation between the
integral on Y0,t and the integral on Yp,t. Indeed

‖γ‖2 = |γ|2 + (γ, Lγ),

where L is the unique self-adjoint trace class operator on Y0,t defined by the
quadratic form

(γ1, Lγ2) =
∫ t

0

γ1(s)γ2(s)ds.

Indeed (see [4] for details) η = Lγ, γ ∈ Y0,t if and only if



η̈(s) + γ(s) = 0, s ∈ [0, t]
η̇(0) = 0
η̇(t) = 0
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and det(I + L) =
(

sinh t
t

)d
. By inserting this into equation (3.2) we obtain:

∫̃
Y0,t

e−
1
2 |γ|2e−

1
�

∫ t
0 V (
√

�γ(s)+
√

�x)dsdγ

=
( t

sinh t

)d/2∫̃
Yp,t

e−
1
2 |γ|2e−

1
�

∫
t
0 V (
√

�γ(s)+
√

�x)dsdγ

and by equation (4.4)

Tr[e−
t
�
H ] =

∫
Rd

dx

(2π sinh t)d/2

∫̃
Yp,t

e−
1
2 |γ|2e−

1
�

∫ t
0 V (
√

�γ(s)+
√

�x)dsdγ.

3rd Step: The final step is a transformation of variable formula for integrals on
the Hilbert space Hp,t. Yp,t can be regarded as a subspace of Hp,t and any vector
γ ∈ Hp,t can be written as a sum of a vector η ∈ Yp,t and a constant in the
following way:

γ(s) = η(s) + x, s ∈ [0, t], γ ∈ Hp,t, η ∈ Yp,t, x = γ(0).

We have to compute a constant Ct such that for integrable functions f

∫̃
Hp,t

e−
1
2 ‖γ‖2f(γ)dγ = Ct

∫
Rd

dx

∫̃
Yp,t

e−
1
2‖η+x‖2f(η + x)dη.

By the Fubini theorem 3.2

∫̃
Hp,t

e−
1
2‖γ‖2f(γ)dγ =

∫̃
Y ⊥

p,t

(∫̃
Yp,t

e−
1
2 ‖η+ξ‖2f(η + ξ)dη

)
dξ (4.5)

where Y ⊥p,t is the space orthogonal to Yp,t in Hp,t. One can easily verify that
Y ⊥p,t is d-dimensional and it is generated by the vectors {vi}i=1,...,d, with vi(s) =

êi

(
es(1−e−t)+e−s(et−1)

2
√

2
√

sinh t(cosh t−1)

)
, s ∈ [0, t], êi being the ith vector of the canonical basis in

R
d. The right-hand side of (4.5) is equal to

∫
Rd

1
(2π)d/2

(∫̃
Yp,t

e−
1
2 ‖η+

∑
i yivi‖2f(η +

∑
i

yivi)dη
)
dy,

where ξ(s) =
∑

i yivi(s), i = 1, . . . , d. By writing the finite-dimensional approxi-

mation of
∫̃
Yp,t

e−
1
2‖η+

∑
i yivi‖2f(η +

∑
i yiv1)dη, by the formula for the change of

variables in finite-dimensional integrals and by noticing that

〈uj, vi〉Hp,t = δji

√
2 cosh t− 2√

sinh t
,
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where uj ∈ Hp,t is the vector given by uj(s) = êj, s ∈ [0, t], we get

∫
Rd

1
(2π)d/2

(∫̃
Yp,t

e−
1
2‖η+

∑
i yivi‖2f(η +

∑
i

yivi)dη
)
dy

=
(√2 cosh t− 2√

sinh t

)d ∫
Rd

1
(2π)d/2

(∫̃
Yp,t

e−
1
2‖η+

∑
i xiui‖2f(η +

∑
i

xiui)dη
)
dx

so that the constant Ct is equal to
(√

2 cosh t−2√
2π sinh t

)d
.

By combining these results we get equation (4.3). �

Remark 4.2. In [4, 7] the equality (4.3) is proved for the case where V is a qua-
dratic function plus a bounded perturbation (which is Fourier transform of a com-
plex measure) by means of a different technique (a Fubini theorem for infinite-
dimensional oscillatory integrals with respect to non-degenerate quadratic forms),
that cannot be applied in the case of our Hamiltonian with potential V having
polynomial growth. Indeed the quadratic part of the phase function appearing in
the integral on the right-hand side of (4.3) can be written as

∫ t

0

γ̇2(s)ds = 〈γ, Tγ〉,

with T : Hp,t → Hp,t a self-adjoint operator. One can verify (see the next section)
that T is not invertible and detT = 0. This fact forbids the application of the
Fubini theorem as stated in [4, 7] and a direct application of the methods of [4, 7].

5. The detailed behavior of Tr[e− t
�
H] for � ↓ 0

The present section is devoted to the study of the asymptotic behavior of the
integral

I(�) :=
∫̃
Hp,t

e−
1
2

∫
t
0 γ̇(s)2ds−λ

�

∫
t
0 |
√

�γ(s)|2Ndsdγ (5.1)

in the limit � ↓ 0 (for t > 0, λ > 0).

Integral (5.1) can be written as
∫̃
Hp,t

e−
1
�
Φ(γ)dγ, where the phase function

Φ : Hp,t → R is given by

Φ(γ) =
1
2

∫ t

0

γ̇(s)2ds+ λ

∫ t

0

|γ(s)|2Nds.

According to the inspiration coming from the finite-dimensional Laplace method,
the asymptotic behavior of I(�) should be determined by the stationary points of
the phase functional Φ, i.e., the points such that

Φ′(γ)(φ) = 0, ∀φ ∈ Hp,t,
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Φ′ being the Fréchet derivative. For γ, φ ∈ Hp,t we have

Φ′(γ)(φ) =
∫ t

0

γ̇(s)φ̇(s)ds+ 2Nλ
∫ t

0

|γ(s)|2N−2γ(s)φ(s)ds. (5.2)

A function γ ∈ Hp,t is a stationary point of Φ iff γ is a solution of the following
boundary value problem:


γ̈(s) − 2Nλ|γ(s)|2N−2γ(s) = 0, s ∈ [0, t]
γ(0) = γ(t)
γ̇(0) = γ̇(t)

(5.3)

that is a solution of the equation η̈ = ∇V (η) with period t. (We remark that (5.3)
is the equation of motion of a classical particle moving in a potential −V .) Indeed
if γ satisfies (5.3), then by the regularity of the solutions of elliptic equations, we
have γ ∈ H2([0, t],Rd), and integrating by parts in formula (5.2), it is easy to see
that Φ′(γ) = 0. Conversely, if Φ′(γ) = 0, then for any φ ∈ C∞0 ([0, t],Rd), one has:

−
∫ t

0

γ(s)φ̈(s)ds+ 2Nλ
∫ t

0

|γ(s)|2N−2γ(s)φ(s)ds = 0

and γ is a weak solution of

γ̈(s) − 2Nλ|γ(s)|2N−2γ(s) = 0. (5.4)

As γ ∈ H1([0, t],Rd), the regularity theory implies that γ ∈ H2([0, t],Rd) and
equation (5.4) is satisfied in the strong sense. By taking φ ∈ C1([0, t],Rd), with
φ(0) �= 0, and integrating by parts (exploiting the regularity of γ) one obtains that

(γ̇(t) − γ̇(0))φ(0) = 0.

As it is easily seen, the trivial path 0 (i.e., η(s) = 0, ∀s ∈ [0, t]) is a solution of
(5.3) and the function γ �→ Φ(γ) has a minimum which is achieved only in 0 (i.e.,
the minimum is the constant path γ(s) = 0 for all s ∈ [0, t]).

Analogously as we computed for (5.2) we obtain

〈Φ′′(γ)(φ), ψ〉 =
∫ t

0

φ̇(s)ψ̇(s)ds+ 2N(2N − 1)λ
∫ t

0

|γ(s)|2N−2φ(s)ψ(s)ds,

in particular

〈Φ′′(0)(φ), ψ〉 =
∫ t

0

φ̇(s)ψ̇(s)ds. (5.5)

Let
〈Φ′′(0)(φ), ψ〉 = 〈φ, (I + L)ψ〉,

where L is the unique self-adjoint operator on Hp,t defined by the quadratic form

〈φ,Lψ〉 = −
∫ t

0

φ(s)ψ(s)ds.
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We easily see that L for any ψ ∈ Hp,t is given by:

Lψ(s) =
∫ s

0

sinh(s− u)ψ(u)du − 1
(1 − et)(1 − e−t)

∫ t

0

sinh(s− u)ψ(u)du

+
1

(1 − et)(1 − e−t)

∫ t

0

sinh(t+ s− u)ψ(u)du.

The kernel of I + L is given by the solution of the equation

ψ(s) +
1

(1 − et)(1 − e−t)

∫ t

0

(sinh(t+ s− u) − sinh(s− u))ψ(u)du

+
∫ s

0

sinh(s− u)ψ(u)du = 0 (5.6)

with the periodic condition ψ(0) = ψ(t). By differentiating (5.6) twice, it is easy
to see that if ψ satisfies (5.6) then

ψ̈(s) = 0, ∀s ∈ [0, t],

so that the only solutions of (5.6) satisfying the periodic condition ψ(0) = ψ(t) are
the constant paths. From (5.5) the kernel of Φ′′(0) is the d-dimensional subspace:

Ker[Φ′′(0)] = {γ ∈ Hp,t : γ(s) = x ∀s ∈ [0, t], x ∈ R
d}.

As the stationary point η ≡ 0 of the phase functional is degenerate, the classical
theorem for asymptotic expansions of Gaussian integrals on abstract Wiener spaces
(see Theorem 2.1) cannot be directly applied to the integral occurring in (5.1) and
we have to study the asymptotic behavior of I(�) for � ↓ 0 by using a different
method.

Let us decompose the Hilbert space Hp,t into the direct sum Hp,t = H1⊕H2,
where H1 = Ker[Φ′′(0)] and H2 = Ker[Φ′′(0)]⊥. In particular

H2 =
{
γ ∈ Hp,t :

∫ t

0

γ(s)ds = 0
}
.

By Theorem 3.2
∫̃
Hp,t

e−
1
2

∫
t
0 γ̇(s)

2ds−λ
�

∫
t
0 |
√

�γ(s)|2Ndsdγ

=
∫̃
H1

∫̃
H2

e−
1
2

∫
t
0 γ̇2(s)2ds−λ

�

∫
t
0 |
√

�(γ1(s)+γ2(s)|2Ndsdγ2dγ1

where γ(s) = γ1(s) + γ2(s), γ1(s) = t−1
∫ t
0 γ(s)ds, γ2(s) = γ(s) − γ1(s).

By putting x :=
√

�γ1 and expanding the term |
√

�γ2(s) + x|2N we have

I(�) =
(2π�

t

)−d/2 ∫
Rd

e−
tλ
�
|x|2N

f(x, �)dx,
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where

f(x, �) =
∫̃
H2

e−( 1
2

∫ t
0 γ̇2(s)

2ds+ λ
�

∫ t
0 |
√

�γ2(s)+x|2Nds−λt
�
|x|2N )dγ2.

The asymptotic behavior of f(x, �) as � ↓ 0 can be simply determined by expanding
the integrand in powers of �. Indeed

f(x, �) =
∫
H2

e−
1
2 (〈γ2,(I+Lx)γ2〉e−

λ
�
P2N (x,

√
�γ2)dγ2,

where Lx : H2 → H2 is the unique bounded self-adjoint operator determined by
the quadratic form

〈φ, (I + Lx)ψ〉 =
∫ t

0

φ̇(s)ψ̇(s)ds+ 2Nλ|x|2N−2

∫ t

0

φ(s)ψ(s)ds

+ 4N(N − 1)λ|x|2N−4

∫ t

0

xφ(s)xψ(s)ds, φ, ψ ∈ H2,

and one can easily see that Lx is given by

Lxψ(s) = B

∫ s

0

sinh(u− s)ψ(u)du +
B

(1 − et)(1 − e−t)

∫ t

0

sinh(s− u)ψ(u)du

− B

(1 − et)(1 − e−t)

∫ t

0

sinh(t+ s− u)ψ(u)du,

where B is the d× d matrix defined by B := A2(x) − 1d×d and

A2(x)i,j = 2Nλ|x|2N−2δji + 4N(N − 1)λ|x|2N−4xixj , i, j = 1, . . . , d.

Moreover

P2N (x,
√

�γ2) =
∫ t

0

|
√

�γ2(s) + x|2Nds− t|x|2N − 2N |x|2N−2

∫ t

0

√
�xγ2(s)ds

− �N |x|2N−2

∫ t

0

|γ(s)|2ds− 2N(N − 1)�|x|2N−4

∫ t

0

(xγ(s))2ds

:= �
3/2g(x, �, γ2) (5.7)

(we have used the fact that
∫ t
0
γ2(s)ds = 0 as γ2 ∈ H2), and for any x, γ2 we have

lim
�↓0

g(x, �, γ2) =
N !

(N − 3)!3!
8|x|2N−6

∫ t

0

(xγ2(s))3ds

+ 2N(N − 1)|x|2N−4

∫ t

0

xγ2(s)|γ2(s)|2ds.

By expanding e−λ�
1/2g(x,�,γ2) around � = 0 we have:

f(x, �) =
∫̃
H2

e−
1
2 (〈γ2,(I+Lx)γ2〉e−λ�

1/2g(x,�,γ2)dγ2

= f1(x, �) − λ�
1/2f2(x, �), (5.8)
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where

f1(x, �) =
∫̃
H2

e−
1
2 (〈γ2,(I+Lx)γ2〉 = det(I + Lx)−1/2

and

f2(x, �) =
∫̃
H2

g(x, �, γ2)e−
1
2 (〈γ2,(I+Lx)γ2〉e−uλ�

1/2g(x,�,γ2)dγ2 (5.9)

with u ∈ (0, 1).
For the calculation of the spectrum σ(Lx) of Lx, it is convenient to replace

the standard basis of R
d by an orthonormal basis which diagonalizes the symmetric

matrix A2(x). Denoting its eigenvalues a2
i , i = 1, . . . , d, it is easy to verify that the

spectrum of Lx is given by σ(Lx) = {λi,n, i = 1, . . . , d, n = 1, 2, . . . }, where

λi,n =
a2
i − 1

1 + 4π2n2

t2

, i = 1, . . . , d, n = 1, 2, . . .

are eigenvalues of multiplicity 2. By applying Lidskij’s theorem [33] and the Hada-
mard factorization theorem (see [34], Theorem 8.24) one gets

det(I + Lx) =

{
det
(

cosh(A(x)t)−1
A2(x)(cosh t−1)

)
, for x �= 0

(2 cosh t− 2)−d, for x = 0

The next result follows easily by the integral representation (5.9) of the function f2.

Lemma 5.1. f2(x, ε) is a C∞ function of both x ∈ R
d and ε :=

√
� ∈ R

+. Moreover
for any x ∈ R

d, f2(x, 0) = 0 and lim�↓0
f2(x,�)−f2(x,0)

�1/2 = C, where C is a positive
constant (depending on x ∈ R

d).

Proof. First of all we have

f2(x, �) =
∫̃
H2

e
uλt|x|2N

� g(x, �, γ2)e−
1
2

∫ t
0 γ̇

2
2(s)dse−

uλ
�

∫ t
0 |
√

�γ2(s)+x|2Nds

e
− 1−u

2

(
2N |x|2N−2 ∫ t

0 |γ(s)|2ds+4N(N−1)|x|2N−4 ∫ t
0 (xγ(s))2ds

)
dγ2.

By expressing the infinite-dimensional integral on the Hilbert space H2 as an
integral on the abstract Wiener space (i,H2,B2) associated with H2 one gets:

f2(x, �) = e
uλt|x|2N

�

∫
B2

g̃(x, �, ω2)e
1
2 〈ω2,L0ω2〉e−

uλ
�

∫
t
0 |
√

�ω2(s)+x|2Nds

e
− 1−u

2

(
2N |x|2N−2 ∫ t

0 |ω2(s)|2ds+4N(N−1)|x|2N−4 ∫ t
0 (xω2(s))

2ds

)
dµ(ω2), (5.10)

where the functions
ω2 �→ g̃(x, �, ω2)
ω2 �→ 〈ω2, L0ω2〉

ω2 �→
∫ t

0

|
√

�ω2(s) + x|2Nds
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ω2 �→ 2N |x|2N−2

∫ t

0

|ω2(s)|2ds+ 4N(N − 1)|x|2N−4

∫ t

0

(xω2(s))2ds

represent the stochastic extensions to B2 of the corresponding functions on H2.
The stochastic extensions are well defined because of the regularity of the functions
involved (see Section 2). Analogously

f2(x, �) =
∫
B2

g̃(x, �, ω2)e−
1
2 (〈ω2,Lxω2〉e−uλ�

1/2g̃(x,�,ω2)dµ(ω2). (5.11)

Representation (5.10) shows the absolute convergence of the integrals involved,
while representation (5.11) shows the regularity of f2 as a function of ε =

√
�.

By a direct computation we get

f2(x, 0) =
∫
B2

g̃(x, 0, ω2)e−
1
2 (〈ω2,Lxω2〉dµ(ω2),

where

g̃(x, 0, ω2) =




N !
(N−3)!3!8|x|2N−6

∫ t
0
(xω2(s))3ds

+2N(N − 1)|x|2N−4
∫ t
0
xω2(s)|ω2(s)|2ds, 2N ≥ 6

4
∫ t
0 xω2(s)|ω2(s)|2ds, 2N = 4

(5.12)

and

lim
�↓0

f2(x, �) − f2(x, 0)
�1/2

=
∫
B2

g4(ω2, x)e−
1
2 (〈ω2,Lxω2〉dµ(ω2) <∞ (5.13)

with

g4(ω2, x) =




∫ t
0 |ω2(s)|4ds, 2N = 4

3|x|2
∫ t
0
|ω2(s)|4ds+ 12

∫ t
0
(xω2(s))2|ω2(s)|2ds, 2N = 6(

N
2

)
|x|2N−4

∫ t
0
|ω2(s)|4ds

+ 4
(
N
2

)(
N−2

1

)
|x|2N−6

∫ t
0
(xω2(s))2|ω2(s)|2ds

+ 16
(
N
4

)
|x|2N−8

∫ t
0
(xω2(s))4ds, 2N ≥ 8.

(5.14)
�

By equation (5.8), the integral I(�) can be represented as the sum
∫̃
Hp,t

e−
1
2

∫ t
0 γ̇(s)2ds−λ

�

∫ t
0 |
√

�γ(s)|2Ndsdγ = I1(�) + I2(�),

where

I1(�) = (2π�)−d/2
∫

Rd

e−
tλ
�
|x|2N

f1(x, �)dx,

I2(�) = −λ�
1/2(2π�)−d/2

∫
Rd

e−
tλ
�
|x|2N

f2(x, �)dx.
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Lemma 5.2. I2(�) = O(�
4−d
2 − 4−d

2N ), as � ↓ 0.

Proof. By scaling we get

I2(�) = −λ�
1/2
(2π
t

)−d/2
�
d/2N−d/2

∫
Rd

e−tλ|x|
2N

f2(�1/2Nx, �)dx

= −λ
(2π
t

)−d/2
�
d/2N−d/2+1/2

∫
Rd

e−tλ(1−u)|x|2N

∫
B2

g̃(�1/2Nx, �, ω2)

e
− 1−u

2

(
2N |�1/2Nx|2N−2 ∫ t

0 |ω2(s)|2ds+4N(N−1)|�1/2Nx|2N−4 ∫ t
0 (�1/2Nxω2(s))

2ds

)

e−
uλ
�

∫ t
0 |
√

�ω2(s)+�
1/2Nx|2Ndse

1
2 〈ω2,L0ω2〉dµ(ω2)dx.

By dominated convergence theorem, the definition (5.7) of the function g, and by
Lemma 5.1 and equation (5.13) we get:

lim
�↓0

I2(�)

�
3−d
2 − 3−d

2N

= −λ
(2π
t

)−d/2 ∫
Rd

e−tλ(1−u)|x|2N

∫
B2

g̃(x, 0, ω2)e
1
2 〈ω2,L0ω2〉dµ(ω2)dx = 0,

where g(x, 0, ω2) is equal to (5.12), and

lim
�↓0

I2(�)

�
4−d
2 − 4−d

2N

= −λ
(2π
t

)−d/2 ∫
Rd

e−tλ(1−u)|x|2N

∫
B2

g4(ω2, x)e
1
2 〈ω2,L0ω2〉dµ(ω2)dx <∞,

with g4(ω2, x) given by (5.14) �

Lemma 5.3. I1(�) = �
−dN−1

2N

(
cosh t−1

2π

)d/2
2d/2t−d(1/2+1/2N)λ−d/2N

∫
Rd e

−|x|2N

dx+

O(�(2−d) N−1
2N ) as � ↓ 0.

Proof.

I1(�) =
(2π�

t

)−d/2 ∫
Rd

e−
λt
�
|x|2N

det(I + Lx)−1/2dx

=
(2π�

t

)−d/2 ∫
Rd

e−
λt
�
|x|2N

det
( cosh(A(x)t) − 1
A2(x)(cosh t− 1)

)−1/2

dx

=
(cosh t− 1

2π�/t

)d/2 ∫
Rd

e−
λt
�
|x|2N

det
(cosh(A(x)t) − 1

A2(x)

)−1/2

dx.

By scaling

I1(�) = Ct�
d

2N− d
2

∫
Rd

e−λt|x|
2N

det
(cosh(A(�1/2Nx)t) − 1

A2(�1/2Nx)

)−1/2

dx

= Ct�
d

2N− d
2

∫
Rd

e−λt|x|
2N

det
(cosh(�(N−1)/2NA(x)t) − 1

�(N−1)/NA2(x)

)−1/2

dx
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with Ct =
(

cosh t−1
2π/t

)d/2
. Let a2

i (x), i = 1, . . . , d be the eigenvalues of the matrix

A2(x). Then

I1(�) = Ct�
d

2N− d
2

∫
Rd

e−λt|x|
2N �

d(N−1)
2N

∏
i ai(x)∏

i

√
cosh(�(N−1)/2Nai(x)t) − 1

dx

= Ct�
d

2N−d
2

∫
Rd

e−λt|x|
2N 2d/2t−d
∏
i

√
1 + cosh(θi)

12 �(N−1)/Na2
i (x)t2

dx

= Ct�
d

2N−d
2 2d/2t−d

∫
Rd

e−λt|x|
2N ∏

i

(
1 −

cosh(θi)
24 �

(N−1)/Na2
i (x)t

2

(1 + ξi cosh(θi)
12 �(N−1)/Na2

i (x)t2)3/2

)
dx

with θi ∈ (0, �(N−1)/2Nai(x)t) and ξi ∈ (0, 1). We have

I1(�) = I1,1(�) + I1,2(�),

where the first term is equal to

I1,1(�) = �
−dN−1

2N

(cosh t− 1
2π

)d/2
2d/2t−d/2

∫
Rd

e−λt|x|
2N

dx

= �
−dN−1

2N

(cosh t− 1
2π

)d/2
2d/2t−d(1/2+1/2N)λ−d/2N

∫
Rd

e−|x|
2N

dx,

and the second term is equal to

I1,2(�) =
(cosh t− 1

2π�

)d/2
�
d/2N2d/2t−d/2

∫
Rd

e−λt|x|
2N

(∏
i

(
1 −

cosh(θi�
(N−1)/2Nai(x)t)

24 �
(N−1)/Na2

i (x)t
2

(1 + ξi cosh(θi�(N−1)/2Nai(x)t)
12 �(N−1)/Na2

i (x)t2)3/2

)
− 1
)
dx

and it satisfies the following relation

lim
�↓0

I1,2(�)

�
−dN−1

2N + N−1
N

= − t2

24

(cosh t− 1
2π

)d/2
2d/2t−d/2

∫
Rd

e−λt|x|
2N ∑

i

a2
i (x)dx <∞.

�

By combining Lemma 5.2 and 5.3 we get:

Theorem 5.4. Let H be the quantum mechanical Hamiltonian given on the vectors
φ ∈ C∞0 (Rd) by

Hφ(x) = −�
2

2
∆φ(x) + V (x)φ(x),

where V (x) = λ|x|2N , λ > 0.
Then the trace Tr[e−

t
�
H ] of the evolution semigroup e−

t
�
H , t > 0, in L2(Rd),

is given by

Tr[e−
t
�
H ] = (2 cosh t− 2)−d/2

∫
Hp,t

e−
1
�
Φ(γ)dγ (5.15)


