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Preface

V názvu té knihy muśı být slovo struktura.
Petr Vopěnka, 1975.

The title of this book must contain the word structure.

We must distinguish at least four periods – sometimes overlapping – in the history
of investigation of the real numbers.

The first period, devoted to understanding the real numbers system, be-
gan as early as about 2 000 B.C. in Mesopotamia, then in Egypt, India, China,
Greece (Pythagorians showed that

√
2 is an irrational), through Eudoxus, Eu-

clid, Archimedes, Fibonacci, Euler, Bolzano and many others, and continued till
the second half of the nineteenth century. Moris Kline [1972], p. 979 says that
“one of the most surprising facts in the history of mathematics is that the logical
foundation of the real numbers system was not erected until the late nineteenth
century”.

The rigorization of analysis forced the beginning of the second period, con-
centrated in the second half of the nineteenth century, and primarily devoted to
an exact definition of the real numbers system. The investigations showed that
mathematicians needed, as a framework for such a definition, a rigorous theory of
infinity. The Zermelo – Fraenkel set theory ZFC was accepted as the best solu-
tion. Several independent definitions of reals in the framework of set theory turned
out to be equivalent and, as usual in mathematics, that was a strong argument
showing that the exact definition of an intuitive notion was established correctly.

Establishing an exact notion of the real numbers system, mathematicians
began in the third period to intensively study the system. Essentially there were
three possibilities: to study the algebraic structure of the field of reals, to study
the subsets of the reals related to the topological and measure theoretic properties
of reals induced by the order – in this case I speak about the real line instead of
the system of real numbers – and finally, taking into account both the algebraic
and topological (or measure theoretical) properties.

The fourth period started by arousing many open unanswered questions of
the later one. It turned out that they are closely connected to set theoretical
questions which were unanswered in set theory. By the invention of forcing as a
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method for showing the non-provability of a statement in ZFC, mathematicians
obtained a strong tool to show that many questions concerning the topological and
the measure theoretical structure of the real line are undecidable, or at least non-
provable, in the considered set theory. The forcing method concerns essentially
questions connected with infinite sets. Since the algebraic structure (to be an
algebraic number, to be linearly independent over rationals, to be a prime number,
etc.) is usually connected with the properties of finite sets, forcing hardly can
contribute to a solution of an algebraic problem.

Focusing on this historical point of view, in 1975, I began to work on the
Slovak version of a book collecting the main results of the above mentioned second,
third and mainly the fourth period. I had previously presented the design of the
book to participants in the Prague Set Theory Seminar. After my presentation
Petr Vopěnka spontaneously stated the sentence quoted above. And I immediately
accepted this proposal that provided an appropriate emphasis in the title on the
book’s content.

When the book appeared, in 1979, I was pleasantly surprised by the interest it
generated in countries where students understood Slovak (which included the for-
mer Czechoslovakia, Poland, and some other particular locations, e.g., Hungary).
At the end of 1987 I was further surprised to receive permission1 to publish an
English edition abroad. Immediately I began to work on an English version of my
book. After the political events in Czechoslovakia in 1989, I could not refuse the
(at least moral) responsibility to contribute to academic politics and my work on
the English language version of the book was interrupted. When the monograph
by T. Bartoszyński and H. Judah [1995] appeared, I thought my rôle in writing
about the structure of the real line was finished. However, at the beginning of
the 21st Century, several colleagues, mainly Polish, urged me to prepare a new
edition of the Slovak version of “The Structure of the Real Line”. In March 2003,
I was invited to participate in the Boise Extravaganza in Set Theory at Boise
State University in Idaho. After the conference I visited Tomek Bartoszyński in
his office and was surprised to find my Slovak book open on his desk. This started
my reflection, finishing with the conclusion that a book with the intention of my
Slovak edition is not a rival book to Bartoszyński and Judah’s book but rather a
complementary, maybe, useful monograph. This presented a final – convincing –
reason for my decision to prepare a new – significantly revised – edition of “The
Structure of the Real Line”.

I tried to follow the spirit of the Slovak edition. I shall not discuss the his-
tory of the real system. Since I present the main consequences of the Axiom of
Determinacy AD, that contradicts the Axiom of Choice AC, in the basic parts of
the book I try to avoid any use of AC, if possible, or, at least to replace it by the
Weak Axiom of Choice wAC, that is a consequence of AD. Moreover, for some
readers this may be interesting. In Chapter 1, I briefly describe the framework

1Let me remind the reader, that I lived in a country where everything was strongly controlled
by a political party.
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for the mathematical treatment of infinity – the Zermelo-Fraenkel set theory ZF.
Then I sketch the main topological results in the above mentioned way. A precise
definition of the real line is given in Chapter 2. It is shown that the definition leads
to a unique object (up to a mathematical identification) and the set theoretical
framework implies its existence. Chapters 3 to 8 contain mainly the rather classi-
cal theory of the structure of the real line – the study of properties of subsets of
reals, which is important from the point of view of topology and measure theory.
Chapter 7 is devoted to the phenomena of the measure – category duality. Finally,
with overlapping topics, Chapters 7 to 10 deal with reductions of many important
problems of the structure of the real line to the sentences of set theory, which
the forcing method already proved are undecidable, or at least non-provable in set
theory. To make the book self-contained, I wrote an Appendix containing miscella-
neous, in my opinion, necessary material. I here recall all notions and basic facts of
set theory and algebra that I use in the book. Then I present a short introduction
to the metamathematics of set theory. Finally, I present the main results obtained
(mainly) by the forcing method in the last fifty years, which I needed to answer
important questions about the structure of the real line. I tried to attribute each
result to its author. Any new notion or denotation can be found in the very large
Index or Index of notations.

In the introduction of each chapter I try to explain its content and mainly,
whether a reader should read a particular section immediately or before reading
another sections. Especially, I suppose that a reader should start with reading
Section 1.1 and then, she/he can begin to read any chapter and then go to the
results needed for understanding of the presented material with the help of the
indexes. Each section is supplemented by a series of exercises that contains a great
deal of supplementary information concerning the topics of the section.

I am deeply satisfied that the book is being published in the series Monografie
Matematyczne. For many years in Czechoslovakia we had found it difficult to
obtain scientific information. The main source were the (often illegal) translations
of English language books and articles in Russian and, in the topics of interest to
me, Polish books that were mainly published as Monografie Matematyczne. So I
consider it a great honor to contribute to this most prestigious series.

I would like to thank those who contributed to the preparation of the manu-
script. Mirko Repický advised me as a TEX specialist. Peter Eliaš helped me with
presentation of results related to the thin sets of harmonic analysis. My postgrad-
uate students, former or current, Jozef Haleš, Michal Staš and Jaroslav Šupina,
read the manuscript, discovering and correcting many errors, both typographical
and factual. They contributed significantly to the correctness of the exercises.

I wish to express my gratitude to the Institute of Mathematics of Pavol
Jozef Šafárik University at Košice that created good conditions for me while I was
writing the book. My work was supported by grants 1/3002/06 and 1/0032/09 of
the Slovak Grant Agency VEGA.



xiv Preface

My intention for the book was to survey progress in the study of the real line
over the period encompassing the highly productive end of one century and the
beginning of another. I hope that this effort will prove to be a source of useful and
stimulating information for a wide variety of mathematicians.

Košice, October 1, 2010 Lev Bukovský



Chapter 1

Introduction

Również problematem o dużej donios�lości jest tego rodzaju uj ↪ecie teorii
mnogości, które – odpowiednio zacieśniaj ↪ac poj ↪ecie zbioru – elimino-
wa�loby istnienie zbiorów patologicznych (które jest konsekwencj ↪a – jak
wspomnielísmy – przede wszystkim aksjomatu wyboru), a nie uszczu-
pli�loby przy tym istotnie wartościowych osi ↪agni ↪eć teorii mnogości.

Kazimierz Kuratowski and Andrzej Mostowski [1952].

Equally, there is a problem with strong consequences in establishing a
set theory of the kind that – making adequately precise the notion of
a set – should eliminate the existence of pathological sets (which is a
consequence – as we have already said – mainly of the axiom of choice)
and does not weaken the surely worthy results of set theory.

In spite of the belief that the word around us is essentially finite, mathematics,
physics and some other natural sciences cannot exist without a concept of infinity.
Investigating the notion of a number, mathematicians almost always met an in-
finity. Starting with the Pythagoreans, continuing with Newton and Leibniz, then
Bolzano and Cauchy, finishing with Dedekind and Cantor. As a consequence a ne-
cessity to build an appropriate mathematical theory of infinity and to investigate
the numbers in a framework of such a theory arose. It was B. Bolzano who began
the study of infinity. Then G. Cantor developed an adequate theory, fruitful with
important results. All known attempts to build a theory of infinity convenient for
a study of numbers essentially converge to the set theory as initiated by G. Cantor.
So we have chosen as a framework for investigating numbers the most common
set theory called the Zermelo-Fraenkel axiomatic set theory.

In this chapter we summarize necessary terminology and facts of set theory
and of topology that we shall need later. In presenting our set theory we emphasize
its axiomatization showing the rôle of some of its axioms in our investigations. The
axiom of choice and its weak forms will play an important rôle in our next investi-
gations. For this reason we present some well-known results of the set topology. In
particular, we must identify the results which depend on some form of the axiom
of choice.

1
DOI 10.1007/978-3-0348-0006-8_1, © Springer Basel AG 2011
L. Bukovský, The Structure of the Real Line, Monografie Matematyczne 71,



2 Chapter 1. Introduction

1.1 Set Theory

We assume that the reader is familiar with elementary set theory, say to the extent
of a basic graduate course. Usually a set theory is developed in the framework
of the Zermelo-Fraenkel axiom system, including the axiom of choice. Working
mathematicians often do not notice when they have used the axiom of choice, even
in an essential way. We shall always make it clear. Moreover, we shall try to indicate
that a weaker form of an axiom of choice is sufficient for proving a statement.
“Theorem” is a statement provable in ZF. “Theorem [ϕ]” is a statement provable
in ZF + ϕ, where ϕ is an additional axiom to ZF. Especially, “ Theorem [AC]”
is a statement provable in ZFC and “Theorem [wAC]” is a statement provable in
ZFW. Similarly for Corollaries, Lemmas, and Exercises.

In this section we present necessary facts of set theory. We shall present only
proofs of those which we consider as not standard and/or which are not usually
included in basic courses.

The basic notions of set theory are that of a set, denoted usually by let-
ters a, b, . . . , x, y, z, A,B, . . . , X, Y, Z and others, and that of the membership re-
lation ∈. x ∈ A is read as x is an element of A, or x belongs to A, or x is a member
of A. Actually we assume that any object we shall deal with is a set. When all
members of a considered set are subsets of a given set, we use the word family
instead of set. Another notion is that of the inclusion relation X ⊆ Y , which is
a short denotation for the formula (∀x) (x ∈ X → x ∈ Y ) meaning that X is
a subset of Y . Similarly, ∅ is a constant which denotes the unique set satisfying
(∀x)x /∈ ∅.

An atomic formula of set theory is a formula of the form x = y or x ∈ y,
where x, y are variables (or constants, generally terms). The formulas of set theory
are built from atomic formulas in an obvious way by logical connectives ¬, ∧, ∨,
→, ≡, and quantifiers ∀ and ∃.

Zermelo-Fraenkel set theory ZF consists of the following axioms.

1. Axiom of Extensionality. If X and Y have the same elements, then X = Y .

2. Axiom of Pairing. For any x, y there exists a set X that contains exactly the
elements x and y.

3. Axiom of Union. For any set X there exists a set Y such that x ∈ Y if and only
if x ∈ u for some u ∈ X .

4. Axiom of Power Set. For any set X there exists a set Y that contains all subsets
of X .

5. Axiom Scheme of Separation. For any formula ϕ(x, x1, . . . , xk) of set theory the
following statement is an axiom: for given sets X and x1, . . . , xk there exists a
set Y such that Y contains exactly those elements x ∈ X that have the property
ϕ(x, x1, . . . , xk).
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6. Axiom Scheme of Replacement. For any formula ϕ(x, y, x1, . . . , xk) of set theory
such that

(∀x, y, z, x1, . . . , xk) ((ϕ(x, y, x1, . . . , xk) ∧ ϕ(x, z, x1, . . . , xk)) → y = z)

holds true, the following statement is an axiom: for given sets X and x1, . . . , xk
there exists a set Y such that Y contains all those elements y for which there
exists an x ∈ X such that ϕ(x, y, x1, . . . , xk) holds true.

7. Axiom of Infinity. There exists an infinite set.

8. Axiom of Regularity. Every non-empty set X has an ∈-minimal element, i.e.,
there exists an x ∈ X such that x and X have no common element.

One of the main technical consequences of the Axiom of Regularity is that
there exists no set x such that x ∈ x.

According to the Axiom of Extensionality the sets whose existence is guaran-
teed by axioms 2.–6. are unique. So we can introduce a notation for them. The set
X of the Pairing Axiom will be denoted by {x, y}. The set Y of the Axiom of Union
will be denoted by

⋃
X . Especially, if X = {x, y}, then we write x ∪ y =

⋃
X .

The set Y of the Axiom of Power Set will be denoted by P(X). The set Y of the
Axiom Scheme of Separation will be denoted by

{x ∈ X : ϕ(x, x1, . . . , xk)}.

Finally, the set Y of the Axiom Scheme of Replacement will be denoted by

{y : x ∈ X ∧ ϕ(x, y, x1, . . . , xk)}.

We need to make precise the meaning of the notion of “an infinite set”. The
simplest way is to find a property of a set which implies that it is “an infinite set”.
We can consider a set X as infinite if X is non-empty and for each of its elements
contains a new element different in some sense from all “previous” ones. It turns
out that the following property of a set X is enough1 for being infinite:

(∃x) (x ∈ X) ∧ (∀z ∈ X) (z ∪ {z} ∈ X).

If there exists at least one set, then there exists the empty set ∅. We can specify
that an infinite set contains the empty set, i.e.,

∅ ∈ X ∧ (∀z ∈ X) (z ∪ {z} ∈ X). (1.1)

It is well known that using the Axiom of Replacement the existence of an infinite
set implies the existence of a set with property (1.1). Moreover, the existence of a

1By the Axiom of Regularity z /∈ z and therefore z �= z ∪ {z}.
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set with property (1.1) implies the existence of a “minimal” set with this property,
i.e., the existence of a set with both properties (1.1) and

(∀Y )((∅ ∈ Y ∧ (∀z ∈ Y ) (z ∪ {z} ∈ Y )) → X ⊆ Y ). (1.2)

The set with properties (1.1) and (1.2) is uniquely determined and will be denoted
by ω. By definition, ∅ ∈ ω. We shall write 0 = ∅. If n ∈ ω we write n+1 = n∪{n}.
An element of ω is called a natural number. Note that 1 = {0}, 2 = {0, 1}, . . . , n+
1 = {0, . . . , n}. For our convenience we formulate the Axiom of Infinity as

There exists the set ω.

However if we replace the former Axiom of Infinity by the later formulation, then
we need to assume that there exists the empty set.

The definition of the set ω immediately yields a useful method of proof of
sentences about elements of ω – mathematical induction. Actually we can show
a metatheorem, or for any particular formula ϕ of set theory we have a particular
theorem. So, let ϕ(x, x1, . . . , xk) be a formula of set theory. Then
Theorem 1.1 (Theorem on Mathematical Induction). Let x1, . . . , xk be given. If

(IS1) ϕ(0, x1, . . . , xk),
(IS2) (∀n ∈ ω) (ϕ(n, x1, . . . , xk) → ϕ(n + 1, x1, . . . , xk)), then ϕ(x, x1, . . . , xk)

holds true for any x ∈ ω.

Proof. Set
Y = {x ∈ ω : ϕ(x, x1, . . . , xk)}.

By (IS1) and (IS2) the set Y ⊆ ω satisfies the premise of the implication (1.2).
Thus Y = ω. �

We assume that the reader is familiar with the theory of ordinals. Let us recall
that X is a transitive set if (∀x) (x ∈ X → x ⊆ X). An ordinal is a transitive
set well-ordered by the relation η ∈ ζ ∨ η = ζ. Thus an ordinal is the set of all
smaller ordinals. If ξ, η are different ordinals, then either ξ ∈ η or η ∈ ξ. If ξ is an
ordinal, then ξ + 1 = ξ ∪ {ξ} is the least ordinal greater than ξ – the immediate
successor of ξ. If an ordinal ξ �= ∅ is not an immediate successor of any ordinal,
then ξ = sup{η : η < ξ} =

⋃
ξ is called a limit ordinal. ω is the least limit ordinal.

The ordinal sum ξ + η is defined by transfinite induction. Any ordinal α can be
expressed as α = λ+n, where λ is 0 or a limit ordinal and n ∈ ω. The fundamental
property of ordinals is expressed by
Theorem 1.2. Every well-ordered set 〈X,≤〉 is isomorphic to a unique ordinal.

The unique ordinal ξ is called the order type of the well-ordered set X and
we write ξ = ot(X) = ot(X,≤).

The method of mathematical induction can be extended for well-ordered sets.
So, let ϕ(x, x1, . . . , xk) be a formula of set theory. Then
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Theorem 1.3 (Theorem on Transfinite Induction). Assume that 〈X,≤〉 is a well-
ordered set. Let x1, . . . , xk be given. If for any x ∈ X,

(∀y < x)ϕ(y, x1, . . . , xk) → ϕ(x, x1, . . . , xk)

holds true, then ϕ(x, x1, . . . , xk) holds true for any x ∈ X.

We shall use without any commentary the following result or its adequate
modification:
Theorem 1.4 (Definition by Transfinite Induction). Let ξ be an ordinal, X being
a non-empty set. Let a ∈ X, f : X −→ X and g :

⋃
η<ξ

ηX −→ X. Then there
exists unique function F : ξ −→ X such that

a) F (0) = a,
b) F (η + 1) = f(F (η)) for any η < ξ,
c) F (η) = g(F |η) for any limit η < ξ.

Sometimes we shall speak about a class of sets. By a class of sets we under-
stand “a collection” of sets satisfying a given formula, for which we do not have
any argument for being a set. E.g., by V we denote the class of all sets. It is easy
to see that V is not a set. The expression x ∈ V simply means “x is a set”. Simi-
larly, we can define the class On of all ordinals. The class On is not a set and the
formula x ∈ On simply means that x is an ordinal. Actually, a class is an object of
metamathematics (a formula of the language of ZF). We shall often speak about
the class of all topological spaces or about the class of all Polish spaces, see Section
5.2. However, we must deal with the notion of a class very carefully, e.g., saying
“for all classes . . . holds true” is not a formula of set theory.

We say that two sets A, B have the same cardinality, written |A| = |B|, if
there exists a one-to-one mapping of A onto B. The relation |A| = |B| is reflexive,
symmetric and transitive. We customarily say that |A| is the cardinality of the
set A. However, we do not know what it is. A cardinality has sense only in an
interrelation with some other cardinality. The set A has cardinality not greater
than the set B, written |A| ≤ |B|, if there exists a one-to-one mapping of A into B.
Finally, the set A has cardinality smaller than the set B, written |A| < |B|, if
|A| ≤ |B| and not |A| = |B|. The relation |A| ≤ |B| is reflexive and transitive. In
ZF one can prove that it is antisymmetric:
Theorem 1.5 (G. Cantor – F. Bernstein). For any sets A, B, if |A| ≤ |B| and
|B| ≤ |A|, then |A| = |B|.

We define another relation between cardinalities of sets as

|X | � |Y | ≡ (∃f) (f : Y onto−→ X). (1.3)

The relation � is reflexive and transitive. Evidently |X | ≤ |Y | implies |X | � |Y |,
provided X �= ∅. As we shall see in Section 9.4 we have no chance to prove in ZF
that the relation � is antisymmetric. One can easily see that

|A| � |B| → |P(A)| ≤ |P(B)|. (1.4)
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Generally the relation |A| ≤ |B| is not dichotomous, i.e., one cannot prove
in ZF that

|A| ≤ |B| ∨ |B| ≤ |A|

for any sets A, B.
The arithmetic operations on cardinalities are defined as follows:

|A|+ |B| = |A ∪B| provided that A ∩B = ∅,
|A| · |B| = |A×B| for any sets A, B,

|A||B| = |BA| for any sets A, B,

where BA denotes the set of all mappings from B into A. The operations satisfy
the obvious laws of arithmetics.

Theorem 1.6 (G. Cantor). There exists no mapping of X onto P(X). Therefore
|X | < |P(X)|. Moreover, if A,X are sets such that |A| � |X |, then ¬(2|X| � |A|)
and |A| < 2|X|.

Proof. The former statement follows from the later one.

So assume that f : X onto−→ A. Since the mapping F (x) = f−1({x}) is an
injection F : A 1−1−→ P(X), we obtain |A| ≤ 2|X|.

To obtain a contradiction, we shall suppose that there exists a mapping
h : A onto−→ P(X). Set g = f ◦ h : X onto−→ P(X). Let E = {x ∈ X : x /∈ g(x)}. Then
there exists an e ∈ X such that g(e) = E. Thus

e ∈ E ≡ e /∈ g(e) = E,

which is a contradiction. �

A set A is called finite if |A| < |ω|. A set A is called countable if |A| ≤ |ω|.
A set that is not finite is infinite and a set that is not countable is uncountable. If
n ∈ ω and |A| = |n| we write |A| = n. We shall use without reference the following
result.

Theorem 1.7. A set A is finite if and only if |A| = n for some n ∈ ω. Thus ω is
the set of all finite ordinals.

An ordinal α is called a cardinal number or simply cardinal if |α| �= |ξ| for
every ξ < α. Thus every finite ordinal is a cardinal, ω is a cardinal. The infinite
cardinal numbers can be enumerated by ordinals

ω = ℵ0 < ℵ1 < · · · < ℵξ < · · · .

That is why an infinite cardinal number is also called an aleph. Sometimes we
write ωξ instead ℵξ, i.e., ωξ = ℵξ. A cardinal ℵξ is a limit cardinal or a successor
cardinal if ξ is a limit or successor ordinal, respectively.
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ℵ1 is the least uncountable cardinal and also the least uncountable ordinal.
Instead of |A| = |ℵξ| we write simply |A| = ℵξ and in such a case ℵξ is called
the cardinality of the set A. Similarly for inequalities. Generally we shall denote
a cardinality by Fraktur letters a, b, m, n etc.2 When we want to emphasize that
the considered cardinality is the cardinality of a well-ordered set, we shall use
Greek letters κ, λ, µ etc. The smallest cardinality greater than m (if it does exist!)
we denote by m+.

A set A can be well ordered if there exists a well-ordering with the field A. If
an infinite set A can be well ordered, then its cardinality is an aleph. Thus instead
of saying that A can be well ordered we shall say also that |A| is an aleph.

For addition and multiplication of alephs the simple Hessenberg Theorem
holds true:

ℵξ + ℵη = ℵξ · ℵη = ℵmax{ξ,η}. (1.5)

Let η < ξ be two ordinals. The ordinal ξ is said to be cofinal with η if there
exists an increasing function f : η −→ ξ such that sup{f(ζ) : ζ < η} = ξ, i.e.,
if the set {f(ζ) : ζ < η} is cofinal in ξ. By cf(ξ) we denote the least ordinal η
such that ξ is cofinal with η. An infinite ordinal ξ is called regular if cf(ξ) = ξ.
Otherwise ξ is singular. The ordinal cf(ξ) is always regular. A regular limit ordinal
is always a cardinal. Not vice versa. There exist singular cardinals, e.g., ℵω for
which cf(ℵω) = ω.

We shall use the following result.

Theorem 1.8 (A. Tarski). If |X | ≥ ℵ0, then 2|X| + |X | = 2|X| and for any set Y
such that |Y |+ |X | = 2|X| we have |Y | = 2|X|.

The statement of this theorem may be expressed as follows: if m ≥ ℵ0 is
a cardinality, then 2m + m = 2m and for any cardinality n such that n + m = 2m

we have n = 2m. A proof may be found in Exercise 1.6.
Let us recall that if an axiom of ZF assures the existence of a set, then the

set is uniquely determined (and we have usually denoted it by some symbol). We
shall sometimes need such an axiom, which assures the existence of a set with a
property that does not determine the set uniquely.

If F is a family of non-empty sets, then a function f : F −→
⋃
F is called

a choice function or a selector for F if f(A) ∈ A for every A ∈ F . The Axiom
of Choice AC says that, for every family of non-empty sets, there exists a choice
function. Evidently AC is equivalent to the statement: a Cartesian product of
a family of non-empty sets is a non-empty set. The theory ZF+AC will be denoted
by ZFC. By results of K. Gödel (11.11) and P.J. Cohen (11.17), the axiom AC is
undecidable in ZF.

Using Theorem 1.7 one can easily prove by mathematical induction that, for
every finite family of non-empty sets, there exists a selector. As a consequence we
obtain
2Note that in Sections 5.3, 5.4 and later on, the letters a, b, d, m, pdenote particular cardinalities.
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Theorem 1.9 (Dirichlet Pigeonhole Principle). Let m be a cardinality (i.e., m = |B|
for some set B). Let f : X −→ Y , Y being finite. If |Y | ·m < |X |, then there exists
a y ∈ Y such that the cardinality of the inverse image f−1({y}) is not smaller than
or equal to m. Equivalently: if A is a finite partition of the set X and m · |A| < |X |,
then there exists a set A ∈ A such that ¬|A| ≤ m.

The following theorem is a basic result.
Theorem 1.10 (E. Zermelo – M. Zorn). The following are equivalent:

a) Axiom of Choice AC.
b) Zermelo’s Theorem: Every set can be well ordered.
c) Zorn’s Lemma: If every chain in a poset 〈X,≤〉 is bounded from above, then

for any x ∈ X there exists a maximal element a ≥ x.3

Corollary 1.11. If AC holds true, then any set A is either finite or there exists
an ordinal ξ such that |A| = ℵξ. In other words, AC implies that any cardinality
is a cardinal number.

Thus if AC holds true, then the class of cardinalities is equal to the class of
all cardinal numbers and therefore is well ordered, i.e., there exists the smallest
cardinality (=cardinal number) with given property (if there exists any such). In
what follows we shall use this fact without any commentary.
Theorem 1.12. If AC holds true, then any ℵξ+1 is a regular cardinal.

However, as we shall see later, the Axiom of Choice must be essentially used
in a proof of Theorem 1.12.

By Theorem 1.6 and Corollary 1.11, assuming AC, for any infinite set X the
cardinality of the power set P(X) is an aleph greater than |X |. The assumption
that this cardinality is the smallest possible is called the Generalized Continuum
Hypothesis and is denoted as GCH. Thus GCH says that (∀ξ) 2ℵξ = ℵξ+1. The
Continuum Hypothesis CH says that 2ℵ0 = ℵ1. Thus CH follows from GCH.
By results of K. Gödel (11.11) and P.J. Cohen (11.17), both CH and GCH are
undecidable in ZFC.

A limit regular cardinal κ is called a weakly inaccessible cardinal. If moreover,
for any λ < κ we have 2λ < κ, then κ is called strongly inaccessible. Note that
if ℵξ is weakly inaccessible, then ℵξ = ξ. By Metatheorem 11.3 the existence of
a strongly inaccessible cardinal cannot be proved in ZF. Neither is the existence
of a weakly inaccessible cardinal provable in ZFC.

For sake of brevity we denote by IC the statement “there exists a strongly
inaccessible cardinal”.

In our reasoning we do not always need the full AC. We formulate some
weak forms of the axiom of choice. The Countable Axiom of Choice ACω says
that for every countable family of non-empty sets there exists a choice function.
In several investigations we shall need even weaker forms. The Weak Axiom of
Choice wAC says that for any countable family of non-empty subsets of a given set
3For the notions used in the formulation of Zorn’s Lemma, see Section 11.1.
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of cardinality 2ℵ0 there exists a choice function. Finally, the Axiom of Dependent
Choice DC says that for any binary relation R on a non-empty set A such that
for every a ∈ A there exists a b ∈ A such that aRb, for every a ∈ A there exists a
function f : ω −→ A satisfying f(n)Rf(n+ 1) for any n ∈ ω and f(0) = a. One
can easily show that

AC → DC, DC → ACω, ACω → wAC.

It is well known that no implication can be reversed. We denote by ZFW the
theory ZF+wAC.

We shall often need the following simple result.
Theorem 1.13. The following are equivalent:

a) The Weak Axiom of Choice wAC.
b) For any countable family of non-empty subsets of ω2 there exists a choice

function.
c) For every X such that |X | � 2ℵ0 and every sequence {An}∞n=0 of non-empty

subsets of X there exists a selector for {An}∞n=0.
d) For every sequence 〈An : n ∈ ω〉 of non-empty subsets ω2 there exists an

infinite E ⊆ ω and a function f : E −→ ω2 such that f(n) ∈ An for every
n ∈ E.

The proof is easy. The implication a) → b), b) → d), and c) → a) are trivial.
Assume b). We show that c) holds true. If |X | � 2ℵ0 , then there exists

a surjection f : ω2 onto−→ X . Hence {f−1(An)}∞n=0 is a sequence of non-empty
subsets of ω2. By b), there exists a selector 〈an ∈ f−1(An) : n ∈ ω〉 for this
sequence. Then {f(an)}∞n=0 is a selector for {An}∞n=0.

Assume d). To show b), consider the sequence 〈Bn = Πk≤nAk : n ∈ ω〉. If
E ⊆ ω is infinite and g : E −→

⋃
n
n+1(ω2) is such that g(n) ∈ Bn for every

n ∈ E, we define

f(n) = g(m)(n), where m = min{k ∈ E : n ≤ k}. �

The Axiom of Choice implies that the relation |A| ≤ |B| is dichotomous, i.e.,
for any sets A, B, we have |A| ≤ |B| ∨ |B| ≤ |A|. As we have already remarked,
one cannot prove this statement if ZF. See, e.g., Theorem 9.28. However, wAC
implies a similar statement at least in the most important case.
Theorem [wAC] 1.14. If A ⊂ X, |X | � 2ℵ0 , then either A is countable or |A| > ℵ0.

Proof. If A is not finite, then using Theorem 1.7 one can easily show by mathe-
matical induction that the sets 〈Ψn = {f ∈ nA : f is an injection} : n ∈ ω〉 are
non-empty. Let 〈fn : n ∈ ω〉 be a choice function. We define

f(n) =

{
f1(0) if n = 0,
fn+1(k) where k = min{l ∈ ω : (∀i < n) fn+1(l) �= f(i)} otherwise.
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Evidently f : ω 1−1−→ A and therefore ℵ0 ≤ |A|. Thus if A is not countable, then
ℵ0 < |A|. �

A set I ⊆ P(X) is called an ideal on X if

1) ∅ ∈ I, X /∈ I,
2) if A ∈ I, B ⊆ A, then B ∈ I,
3) if A,B ∈ I, then A ∪B ∈ I.

For simplicity we usually assume that

4) {x} ∈ I for every x ∈ X .

Let κ be an uncountable regular cardinal. An ideal I is said to be κ-additive
if
⋃
A ∈ I for any set A ⊆ I, |A| < κ. An ℵ1-additive ideal is simply called

σ-additive. A set I0 ⊆ I is a base of the ideal I if every element A of I is a subset
of some B ∈ I0.

The dual notion to the notion of an ideal is the notion of a filter. A set
F ⊆ P(X) is called a filteron X if

1) ∅ /∈ F , X ∈ F ,
2) if A ∈ F , A ⊆ B, then B ∈ F ,
3) if A,B ∈ F , then A ∩B ∈ F .

Similarly as above, we usually assume that

4) X \ {x} ∈ F for every x ∈ X .

F is a filter if and only if the family {X \ A : A ∈ F} is an ideal. A filter F is
called an ultrafilter if for every A ⊆ X , either A ∈ F or X \ A ∈ F . It is easy
to see that a filter F is an ultrafilter if and only if F is maximal with respect to
ordering by inclusion. A set F0 ⊆ F is a base of the filter F if for every A ∈ F
there exists a B ∈ F0 such that B ⊆ A.

For any x ∈ X the set {A ⊆ X : x ∈ A} is an ultrafilter on X . An ultrafilter
of this form is called trivial. A filter F on X is called a free filter if F does not
contain any finite set. Thus, an ultrafilter is free if and only if it is not a trivial
ultrafilter. The Boolean Prime Ideal Theorem BPI says that every filter on any set
can be extended to an ultrafilter. Equivalently, any ideal is contained in a maximal
ideal. Similarly as in the case of an ultrafilter, one can show that a maximal ideal
I on a set X is a prime ideal, i.e., for any subset A ⊆ X we have either A ∈ I or
X \A ∈ I.
Theorem 1.15. AC implies BPI.

The proof is based on an application of the Zermelo Theorem. It is known
that the converse implication is not true, see J.D. Halpern and A. Lévy [1971].

An ultrafilter G on an infinite set X is called uniform provided that every
element of G has cardinality |X |.

Assume AC. Then for any infinite set X , the set

F = {A ⊆ X : |X \A| < |X |}
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is a filter4. If G is an ultrafilter extending F , then every element of G has cardinality
|X |. Thus, (assuming AC) there exists a uniform ultrafilter on any infinite set5.

If A ⊆ ω is infinite, then there is a unique increasing enumeration eA of A.
The nth element of A is eA(n). Thus the enumeration eA is uniquely determined
by

eA(0) < eA(1) < · · · < eA(n) < eA(n+ 1) < · · · (1.6)

and
A = {eA(n) : n ∈ ω}. (1.7)

A bijection π from ω×ω onto ω is called a pairing function. It is well known
that there exists a pairing function, e.g.,

π(n,m) =
1
2

(n+m)(n+m+ 1) +m. (1.8)

Note that π(n,m) ≥ n,m for any n,m. We denote by λ and ρ the left inverse and
right inverse functions of π, respectively, i.e.,

π(λ(n), ρ(n)) = n, λ(π(n,m)) = n, ρ(π(n,m)) = m (1.9)

for any n,m ∈ ω. Note also that λ(n) ≤ n and ρ(n) < n for any n > 0.
Using a pairing function we can “identify” the sets ωX and ω(ωX). Actually,

to a ϕ ∈ ω(ωX) we assign a ψ ∈ ωX by setting ψ(n) = ϕ(λ(n))(ρ(n)). A projection
of ωX onto ωX considered as the nth factor of the product ω(ωX) is defined by

Projn(ϕ) = ψ, where ψ(m) = ϕ(π(n,m)). (1.10)

Similarly we can identify ωX with ωX × ωX using the mapping ΠX defined as
ΠX(α, β) = γ, where

γ(n) =
{
α(n/2) if n is even,
β((n − 1)/2) if n is odd. (1.11)

The left inverse ΛX and right inverse RX of ΠX from ωX into ωX are defined as

ΛX(α) = {α(2n)}∞n=0, RX(α) = {α(2n+ 1)}∞n=0. (1.12)

Thus, for any α, β, γ ∈ ωX we have

ΛX(ΠX(α, β)) = α, RX(ΠX(α, β)) = β, ΠX(ΛX(γ), RX(γ)) = γ. (1.13)

If the set X is understood we simply write Π, Λ, R.
We shall use many natural modifications of pairing functions.

Theorem 1.16. There exists a function f : P(ω) onto−→ ω1, i.e., ℵ1 � 2ℵ0 .
4Actually, this statement is equivalent to AC. See Exercise 1.4.
5Again, this assertion is equivalent to AC, see Exercise 1.4.
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Proof. Let π be a pairing function. If A ⊆ ω, then π−1(A) ⊆ ω × ω, i.e., π−1(A)
is a binary relation. We define a function f as

f(A) =






ξ if π−1(A) is a well-ordering of ω in the ordinal type ξ,
n if |π−1(A)| = n,
0 otherwise.

Since for every infinite ordinal ξ < ω1 there exists a well-ordering of ω in the
ordinal type ξ, the function f is a surjection of P(ω) onto ω1. �

Corollary 1.17. There exists a decomposition of P(ω) in ω1 non-empty pairwise
disjoint sets

P(ω) =
⋃

ξ<ω1

f−1({ξ}), (1.14)

where |f−1({ξ})| = c for every ξ ≥ ω.

Proof. If 〈ω,R〉 is a well-ordered set of an infinite type ξ and g : ω 1−1−→
onto

ω, then

〈ω, {〈n,m〉 : 〈g(n), g(m)〉 ∈ R}〉 is a well-ordered set of the type ξ as well. For
different g’s the sets {〈n,m〉 : 〈g(n), g(m)〉 ∈ R} are different. Hence for any ξ ≥ ω
we have |f−1({ξ})| = c. �

The decomposition of (1.14) is called the Lebesgue decomposition. In Section
6.4 we describe a related decomposition of the set of dyadic numbers.

The famous fact, that a union of countably many countable sets is a countable
set, is usually proved by using some weak form of the axiom of choice.
Theorem 1.18. Assuming ACω, a countable union of countable sets is a count-
able set. Assuming wAC, a countable union of countable subsets of a given set of
cardinality � 2ℵ0 is a countable set.

The theorem cannot be proved in ZF, since S. Feferman and A. Lévy (11.19)
have constructed a model of ZF, in which the following holds true:

P(ω) is a countable union of countable sets. (1.15)

We show that in a proof of Theorem 1.12 we need a form of the axiom of
choice even in the case of ω1.
Theorem 1.19. If (1.15) holds true, then cf(ω1) = ω.

Proof. Assume that

P(ω) =
⋃

n∈ω
An, An is countable for any n. (1.16)

Let f : P(ω) onto−→ ω1 be the function constructed in the proof of Theorem 1.16.
Set ηn = sup{f(A) : A ∈ An}. If some ηn = ω1, then we are ready. If not, then
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every ηn is a countable ordinal. If ξ < ω1, then there exists a set A ∈ P(ω) such
that f(A) = ξ. By (1.16) there exists an n such that A ∈ An. Then ξ ≤ ηn. Thus
sup{ηn : n ∈ ω} = ω1. �

Theorem 1.20. The Weak Axiom of Choice wAC implies that ω1 is a regular
cardinal.

Proof. Let A ⊆ ω1 be countable, i.e., A = {ξn : n ∈ ω}. We can assume that
ξn > ω for each n. We have to show that A is bounded in ω1.

Let f be the function of Theorem 1.16. We denote Φn = {A ⊆ ω : f(A) = ξn}.
Then by wAC there exists a choice function 〈Bn ∈ Φn : n ∈ ω〉. Thus 〈ω, π−1(Bn)〉
is a well-ordered set of order type ξn. We define a well-ordering R on ω × ω of
order type equal to ξ0 + · · ·+ ξn + · · · as follows:

〈n1,m1〉R〈n2,m2〉 ≡ (n1 < n2 ∨ (n1 = n2 ∧ 〈m1,m2〉 ∈ π−1(Bn1))).

Let η be the order type of 〈ω × ω,R〉. Since |ω × ω| = ℵ0, we obtain η < ω1. On
the other hand every 〈ω, π−1(Bn)〉 can be naturally embedded into 〈ω × ω,R〉,
therefore ξn ≤ η. Thus η is an upper bound of A. �

We close with a technical result that will be useful in some investigation. Let
us consider the following property COF(ξ) of an ordinal ξ ≤ ω1:

there exists a function F : ξ −→ ωω1 such that for any limit η < ξ, F (η)
is an increasing sequence of ordinals {ηn}∞n=0 and η = sup{ηn : n ∈ ω}.

Of course, the Axiom of Choice implies that COF(ξ) holds true for any ξ ≤ ω1.
However, we want to avoid a use of AC.

Theorem 1.21. COF(ξ) holds true for any ξ < ω1.

Proof. If ξ < ω1, then there is a well-ordering R (we suppose that R is antire-
flexive) on ω such that ot(ω,R) = ξ. If η < ξ is a limit ordinal, then there exists
a natural number k such that η is the order type of the set {n ∈ ω : nRk}. We set
by induction

ηn = max{η0, . . . , ηn−1, ot({m ∈ ω : mRn ∧mRk})}+ 1.

If ζ < η, then there exists an l ∈ ω such that lRk and ζ is the order type of the
set {n ∈ ω : nRl}. Then ηl > ζ. Set F (η) = {ηn}∞n=0. �

Exercises

1.1 The Cumulative Hierarchy

The smallest transitive set containing a given set x as a subset is called the transitive
closure of x.
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a) Set x0 = x, xn+1 =
⋃
xn for any n. Show that TC(x) =

⋃
n xn is the transitive

closure of x.

Hint: If y ∈ xn, then y ⊆ xn+1.

b) We define the Cumulative Hierarchy 〈Vξ, ξ ∈ On〉 by transfinite induction:

V0 = ∅,

Vξ =
⋃

η<ξ

Vη, if ξ is a limit ordinal,

Vξ+1 = P(Vξ).

Show that every Vξ is a transitive set.

c) Show that x ∈ Vξ if and only if TC(x) ∈ Vξ.

d) For every set x there exists an ordinal ξ such that x ∈ Vξ, i.e., V =
⋃

ξ∈On Vξ.

Hint: Assume that there exists a transitive set x which does not belong to any Vξ. By
the Axiom of Regularity there exists ∈-minimal element y ∈ x which does not belong
to any Vξ. Thus every z ∈ y belongs to some Vη. By suitable use of an instance of
the Scheme of Replacement we obtain y ⊆ Vζ for some ζ, a contradiction.

e) The rank of a set x is rank(x) = min{ξ : x ∈ Vξ+1}. Show that x ∈ y → rank(x) <
rank(y).

f) rank(x) = sup{rank(y) : y ∈ x}+ 1.

g) An uncountable regular cardinal κ is a strongly inaccessible cardinal if and only if
|Vκ| = κ.

1.2 Cardinal Arithmetics without AC

a) ℵ0 ≤ |X| if and only if there exists a set Y ⊆ X, |X| = |Y |, Y 	= X.

Hint: If f : X
1−1−→
onto

Y , a ∈ X \ Y , then |{f−n(a) : n ∈ ω}| = ℵ0.

b) If a set X is non-empty and |X|+ |X| = |X|, then ℵ0 ≤ |X|.
c) If |X| > 1 and |X| · |X| = |X|, then ℵ0 ≤ |X|.
d) If the cardinalities |X| and |Y | are incomparable (i.e., neither |X| ≤ |Y | nor |Y | ≤
|X|), then |X| < |X|+ |Y | and |X| < |X| · |Y |.

e) If ℵ1 and 2ℵ0 are incomparable, then 2ℵ0 < 2ℵ1 .

f) If ℵ0 ≤ |X|, then ℵ0 + |X| = |X|.
g) Show that for any set X the following are equivalent:

1) |X| ≥ ℵ0;

2) |X|+ 1 = |X|;
3) |X|+ ℵ0 = |X|.

1.3 Hartogs’ Function

Hartogs’ function ℵ is defined as follows: for any set X the value ℵ(X) is the first ordinal

ξ such that there is no injection f : ξ
1−1−→ X.

a) For every set X there exists an ordinal ξ such that |ξ| ≤ |P(X×X)| and |ξ| � |X|.
Hint: Consider the set W of all well-orderings of subsets of X. To each element
R ∈ W assign its ordinal type h(R). Show that ξ = {h(R) : R ∈ W} is the desired
ordinal.
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b) Hartogs’ function ℵ(X) is well defined.

c) ℵ(X) � |X| for any infinite set X.

d) If the set X is infinite, then ℵ(X) is an aleph.

e) A set X can be well ordered if and only if ℵ(X) > |X|.
f) ℵ1 and 2ℵ0 are incomparable if and only if ℵ(P(ω)) = ℵ1.

Hint: ℵ(P(ω)) ≥ ℵ(ω) = ℵ1, since every infinite ξ < ω1 is the order type of a well-
ordering of ω.

1.4 Addition of cardinals and AC

a) If |X|+ ℵ(X) = |X| · ℵ(X), then X can be well ordered.

Hint: Let |Y | = ℵ(X), X ∩ Y = ∅. Assume that X × Y = A ∪ B, where |A| = |X|
and |B| = ℵ(X). Since ℵ(X) � |X|, for every a ∈ X there exists a b ∈ Y such that
〈a, b〉 ∈ B. Since Y can be well ordered, one define an injection of X into Y .

b) |X|+ |Y | ≤ |X| · |Y | for any infinite X,Y .

c) The following are equivalent:

(1) (∀m, n infinite) (m + n = m ∨m + n = n).

(2) (∀m, n infinite) (m ≤ n ∨ n ≤ m).

(3) (∀m, n infinite) (m · n = m ∨ m · n = n).

(4) (∀m infinite) (m2 = m).

(5) (∀m, n infinite) (m2 = n2 → m = n).

(6) AC.

Hint: AC → (1) → (2), AC → (3) → (4) → (5). (2) implies AC, since |X| ≤ ℵ(X)
for any infinite X.

Assume (5). If X is infinite, set p = |X|ℵ0 , m = p + ℵ(p), n = p · ℵ(p). Evidently
p = p +1 = 2 · p = p2. Similarly one has ℵ(p) = ℵ(p)+1 = 2 · ℵ(p) = (ℵ(p))2. Then
by simple calculation one obtains m2 = n2. Thus m = n and by part a) any set of
cardinality p can be well ordered. Note that |X| ≤ p.

d) If for any infinite X the family {A ⊆ X : |A| < |X|} is an ideal, then AC holds
true.

Hint: If AC fails, then there exist disjoint infinite sets X, Y such that |X| < |X|+|Y |
and |Y | < |X|+ |Y |.

e) If on every infinite set there exists a uniform ultrafilter, then AC holds true.

Hint: Let X, Y be as in d). If F were a uniform ultrafilter on X ∪ Y , then either
X ∈ F or Y ∈ F.

1.5 Tarski’s Lemma

Assume that M, P, Q are pairwise disjoint sets, A = M∪P , B = M∪Q and f : A
1−1−→
onto

B.

We set P1 = {x ∈ P : (∀n > 0) fn(x) ∈ M}, Q1 = {x ∈ Q : (∀n > 0) f−n(x) ∈ M},
P2 = P \ P1, Q2 = Q \Q1.

a) Show that |P2| = |Q2|.
Hint: Set

Cn = {x ∈ P : (∀k < n, k > 0) fk(x) ∈M ∧ fn(x) /∈M},
Dn = {x ∈ Q : (∀k < n, k > 0) f−k(x) ∈M ∧ f−n(x) /∈M}.


