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Preface

Recent years have witnessed a growing number of user-centric multimedia applica-
tions, especially with the popularity of web 2.0. Examples include Flickr, YouTube,
Facebook, Twitter, MySpace, etc. The emerging applications on social web and so-
cial networks have produced a new type of multimedia content, termed as “social
media” here, as it is created by people using highly accessible and scalable pub-
lishing technologies for sharing via the web. With social media technology, images,
videos and audios are generally accompanied by rich contextual information, such
as tags, categories, title, metadata, comments, and ratings, etc. Massive emerging so-
cial media data offer new opportunities for solving some long-standing challenges in
multimedia understanding and management, such as the semantic gap issue. These
new media also introduce a number of new and challenging research problems and
many exciting real-world applications.

This book presents recent advances on several aspects of emerging social media
modeling and social media computing research. It is designed for practitioners and
for researchers of all levels of expertise, from novice to expert. It targets various
groups of people who need information on social media modeling and social media
computing. They include:

e People who need a general understanding of social media. They are high-level
managers and professional engineers who are interested in emerging social media
modeling and computing technologies.

e Software developers who apply social media modeling and computing tech-
niques. It also includes practitioners in related disciplines such as multimedia
content management, information retrieval, web search, data mining, and ma-
chine learning.

e Researchers and students who are working on social media, multimedia, web
search, data mining, and machine learning, and related disciplines, as well as
anyone who wants a deep understanding of techniques for social media modeling
and computing.

Regarding the contents and organization, this book consists of 12 chapters that
present a variety of emerging technologies on social media modeling and comput-
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ing. In particular, these book chapters can be summarized in the following three
major aspects:

e Social media content analysis: The first part of the book is related to the ap-
plication of multimedia content analysis techniques to the emerging social me-
dia data. It includes social image tag analysis (chapter “Quantifying Visual-
Representativeness of Social Image Tags using Image Tag Clarity”), social im-
age tag ranking (chapter “Tag-Based Social Image Search: Towards Relevant and
Diverse Results”), and tag-based social image search (chapter “Social Image Tag
Ranking by Two-View Learning”), social media content analysis by combining
multimodal features (chapter “Combining Multimodal Features for Social Media
Analysis”), and multi-label social image annotation by exploring group structures
(chapter “Multi-label Image Annotation by Structural Grouping Sparsity”).

e Social media system design and analysis: The second part of the book is de-
voted to social media system design and analysis. It includes the design of effec-
tive social media mechanism for incentivizing social media contributions (chapter
“Mechanism Design for Incentivizing Social Media Contributions”), the design
of efficient access control for privacy and security issues in multimedia social net-
works (chapter “Efficient Access Control in Multimedia Social Networks”), the
analysis of users and their online behaviors in social video sharing portals (chap-
ter “Call Me Guru: User Categories and Large-Scale Behavior in YouTube”), and
visual analytic tools for social event analysis (chapter “Social Media Visual Ana-
lytics for Events”).

e Social media applications: The last part of the book is related to the development
of emerging social media applications by exploring emerging user-contributed
social media data. It includes the application of social media information to mu-
sic recommendation (chapter “Using Rich Social Media Information for Music
Recommendation via Hypergraph Model”), the application of user-contributed
Geotag information to automatic image annotation (chapter “Using Geotags to
Derive Rich Tagclouds for Image Annotation”), and the application of social me-
dia techniques to analyze and improve real-world photobooks (chapter “Social
Aspects of Photobooks: Improving Photobook Authoring from Large-scale Mul-
timedia Analysis”).

Each of the above book chapters can be considered as a compact, self-contained
mini-book in its own right under its title. They are, however, organized and pre-
sented in relation to the basic principles and practice of social media modeling and
computing. We also note that this book can be used as advanced materials by grad-
uate students of information technology related subjects, such as computer science,
computer engineering, and information systems, either in a classroom or for self-
study.

Finally, this book was first initialized during the organization of the first interna-
tional workshop on social media (WSM2009). It was later developed by soliciting
contributions from a number of international experts on social media modeling and
computing to present their best knowledge and practice on specific social media
related topics. Some chapters of this book were originated from recent studies in in-
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ternational conferences and workshops, including the SIGMM international Work-
shop on Social Media (WSM), and ACM International Conference on Multimedia
(ACM Multimedia), and ACM International conference on Web Search and Data
Mining (WSDM). As co-editors of this book, we would like to thank all the authors
of the book chapters for their great efforts in providing the high quality contents to
this book, and our colleagues who helped us during the organization of the WSM
workshops and the book editing process.

Singapore Steven C.H. Hoi
USA Jiebo Luo
Germany Susanne Boll
Singapore Dong Xu
USA Rong Jin

USA Irwin King
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Part I
Social Media Content Analysis



Quantifying Visual-Representativeness of Social
Image Tags Using Image Tag Clarity

Aixin Sun and Sourav S. Bhowmick

Abstract Tags associated with images in various social media sharing web sites
are valuable information source for superior image retrieval experiences. Due to the
nature of tagging, many tags associated with images are not visually descriptive.
In this chapter, we propose Image Tag Clarity to evaluate the effectiveness of a tag
in describing the visual content of its annotated images, which is also known as
the image tag visual-representativeness. It is measured by computing the zero-mean
normalized distance between the fag language model estimated from the images
annotated by the tag and the collection language model. The tag/collection language
models are derived from the bag of visual-word local content features of the images.
The visual-representative tags that are commonly used to annotate visually similar
images are given high tag clarity scores. Evaluated on a large real-world dataset
containing more than 269K images and their associated tags, we show that the image
tag clarity score can effectively identify the visual-representative tags from all tags
contributed by users. Based on the tag clarity scores, we have made a few interesting
observations that could be used to support many tag-based applications.

1 Introduction

With the advances in digital photography (e.g., digital cameras and mobile phones)
and social media sharing web sites, a huge number of multimedia content is now
available online. Most of these sites enable users to annotate web objects including
images with free tags (e.g., aircraft, lake, sky). For instance, most images
accessible through Flickr! are annotated with tags from their uploaders as well as

Thttp://www.flickr.com.

This chapter is an extended version of the paper [11] presented at the first ACM SIGMM
Workshop on Social Media (WSM), held in conjunction with ACM Multimedia, 2009.

A. Sun (X)) - S.S. Bhowmick
School of Computer Engineering, Nanyang Technological University, Singapore, Singapore
e-mail: axsun@ntu.edu.sg

S.S. Bhowmick
e-mail: assourav@ntu.edu.sg

S.C.H. Hoi et al. (eds.), Social Media Modeling and Computing, 3
DOI 10.1007/978-0-85729-436-4_1, © Springer-Verlag London Limited 2011
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other users. A key consequence of the availability of such tags as meta-data is that it
has significantly facilitated web image search and organization as this rich collection
of tags provides more information than we can possibly extract from content-based
algorithms.

Due to the popularity of tags, there have been increasing research efforts to better
understand and exploit tag usage patterns for information retrieval and other related
tasks. One such effort is to make better use of the tags associated with images for
superior image retrieval experiences. However, this is still a challenging research
problem, as it is well known that tags are noisy and imprecise [1]. As discussed
in [4], tags are created by users more for their personal use than for others’ benefit.
Consequently, two similar images may be associated with significantly different sets
of tags from different users, especially when images can only be annotated by users
with tagging permissions (e.g., in Flickr, only the uploader and his/her contacts can
tag an image). Further, tags associated with an image may describe the image from
significantly different perspectives. For example, consider a photo uploaded by Sally
which she took using her Canon 40D camera at Sentosa when she traveled to Singa-
pore in 2008. This image may be annotated by different tags such as Canon, 40D,
2008, Singapore, travel, beach, Sentosa, and many others. Notice that
tags like 2008 and Canon do not effectively describe the visual content of the im-
age, but more on providing contextual information about the image. Consequently,
these tags maybe considered as noise in many applications (e.g., content-based tag
recommendation). As the presence of such noise may reduce the usefulness of tags
in image retrieval, “de-noising” tags has been recently identified as one of the key
research challenges in [1]. Such de-noising of tags also enables us to build more
effective tag ranking and recommendation services [8].

In this chapter, we take a step toward addressing the above challenge. We focus
on identifying and quantifying visual-representative tags from all tags assigned to
images so that less visually representative tags can be eliminated. Intuitively, a tag
is visual-representative if it effectively describes the visual content of the images.
A visual-representative tag (such as sky, sunset, and tiger) easily suggests the
scene or object that an image may describe even before the image is presented to
a user. On the other hand, tags like 2008 and Asia often fail to suggest anything
meaningful with respect to the visual content of the annotated image as any image
taken in 2008 or in Asia could be annotated by the two tags.

We propose the notion of image tag clarity to identify visual-representative tags.
It is inspired by the clarity score proposed for query performance prediction in ad-
hoc information retrieval for textual documents [2]. Note that clarity score cannot be
directly applied to annotated images as keywords of a query literally appears in the
retrieved text documents whereas the tags associated with an image do not explicitly
appear in it. Informally, the image tag clarity is computed by the Kullback—Leibler
(KL) divergence between the tag language model and collection language model
and further normalized with zero-mean normalization. The tag/collection language
models are derived from the local content features (i.e., bag of visual-words) of the
images. Our experimental study with the NUS-WIDE dataset [1], containing 269,648
images from Flickr, demonstrates that the proposed clarity score measure can effec-
tively identify the visually representative tags.
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Based on the experimental results, we further investigated the relationships be-
tween tag visual-representativeness and tag frequency. Our study revealed that they
are weakly correlated. That is, frequently used tags are more likely to be visually
representative. We also observed that for images having three to 16 tags, the per-
centage of visually representative tags increases with the increase in number of tags.
Furthermore, the visual-representativeness of a tag and its position with respect to
other tags for a given image are correlated. That is, the first few tags assigned to an
image are more likely to be visually representative compared to tags assigned later.
This probably reflects the phenomenon that users tend to first tag an image based on
its visual content and later add other tags to describe it from different perspectives.
Lastly, the visually (resp. non-visually) representative tags have higher chance of
co-occurring strongly with other visually (resp. non-visually) representative tags.
These interesting observations could be very useful in supporting a wide range of
tag-based applications such as tag recommendation and social image retrieval.

The rest of the chapter is organized as follows. In Sect. 2, we review the related
work with emphasis on clarity score for query performance prediction as well as
image tagging. Section 3 discusses the notion of image tag clarity. The details of
the dataset and experimental results are reported in Sect. 4. The observations are
presented in Sect. 5 and we conclude this chapter in Sect. 6.

2 Related Work

Recall that our proposed image tag clarity measure is inspired by the notion of
clarity score proposed for query performance prediction in ad-hoc retrieval. Hence,
we begin by reviewing the clarity score measure. Next, we discuss relevant research
efforts in annotating web objects with tags.

2.1 Clarity Score

Query performance prediction is to predict the effectiveness of a keyword query in
retrieving relevance documents from a document collection [2]. The prediction en-
ables a search engine to answer poorly performing queries more effectively through
alternative retrieval strategies (e.g., query expansion) [5, 15, 19, 20]. Depending on
whether documents need to be retrieved for the query, the query performance pre-
diction algorithms can be classified into two types: pre-retrieval and post-retrieval
algorithms. Pre-retrieval algorithms rely on the statistics of the words in both the
query and the collection. For instance, queries consisting of words with low docu-
ment frequencies in the collection tend to perform better than queries with high doc-
ument frequency words. Post-retrieval algorithms predict query performance based
on the properties of the retrieved documents from the collection using the query.
Among various post-retrieval algorithms, one significant contribution is the clarity
score [2].
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The clarity score of a query is computed as the distance between the query lan-
guage model and the collection language model. If a query is effective in retrieving
topically cohesive documents, then the query language model contains unusually
large probabilities of words specific to the topic covered by the retrieved documents.
Consequently, the distance between the query and the collection language models
is large. If a query is ambiguous, then the documents covering various topics are
likely to be retrieved. That is, the retrieved set of documents is similar to a set of
documents through random sampling. As the word distribution in the retrieved doc-
uments is similar to that in the collection, the distance between them is small.

Formally, let Q be a query consisting of one or more query words {g|g € Q} and
R be the set of top-K documents retrieved by Q from the collection 2. The value of
K is predefined and set to 500 in [2]. Let w be an arbitrary word in the vocabulary.
Then, the query language model P (w]|Q) is estimated by Eq. (1), where P(d|Q) is
estimated using Bayes’ theorem as shown in Eq. (2).

P(w|Q) =) P(wld)P(d|Q), )
deR

PQld) =[] P@ld). ©))
qeQ

Observe that in both Eqgs. (1) and (2), P(w|d) (resp. P(gql|d)) is the relative fre-
quency of word w (resp. ¢) in the document d linearly smoothed by w’s relative
frequency in the collection. The collection language model, P(w|2), is estimated
by the relative frequency of w in 2. Then, the clarity score of Q is the Kullback—
Leibler (KL) divergence between P(w|Q) and P(w|2), and is given by the follow-
ing equation.
P(w|Q)
KL(QI1Z) = Z P(w|Q)logy m—— P(w|7) 3)
Tagging is a popular technique for annotating objects on the web. In our previous
work [13], we introduced the notion of tag clarity in the context of user behavior
study in self-tagging systems, i.e., blogs. The clarity score of a tag is defined by the
KL divergence between the tag language model (estimated from the blog posts asso-
ciated with the tag) and the collection language model estimated from all blog posts.
As blogs are self-tagging, i.e., only the blogger could annotate his/her blog posts,
the tag clarity was proposed to study whether users implicitly develop consensus on
the semantic of the tags. We observed that frequently used tags are topic discrim-
inative. This finding is partially consistent with the findings in this proposed work
although the object (text vs. image) of annotation and tagging rights (self-tagging
vs. permission-based tagging) are different.

2.2 Tagging Images

Recent years have witnessed increasing research efforts to study images annotated
with tags in social media sharing web sites like Flickr. Tag recommendation, tag
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ranking, and tag-based classification are identified as key research tasks in this con-
text [1]. Only few works exploit the relationship between a tag to the content of its
annotated images. For a given image and its annotated tags, the relevance between
the image and each tag is estimated through kernel density estimation in [8] and
through k-nearest neighbor voting in [7]. In simple words, a tag is relevant to an
image [ if the tag has been used to annotate many images similar to /. The rele-
vance score for a tag is therefore image-specific, whereas in our case the tag clarity
score is global. For a given tag, the score reflects its effectiveness in visually de-
scribing all its annotated images. In this context, our work is also related to [10]
where the main focus is on searching for high-level concepts (e.g., sunset) with
little semantic gaps with respect to image representation in visual space. In [10], for
a given image /, its confidence score is derived based on the coherence degree of its
nearest neighbors in both visual and textual spaces, assuming that each image is sur-
rounded by textual descriptions. The high-level concepts are then derived through
clustering those images with high confidence scores. In contrast, our work differs
in the following ways: (i) the computation of clarity score of a tag is purely based
on its annotated images represented in visual space only; (ii) our task is to measure
the visual-representativeness of a tag (i.e., a given concept) and not to mine con-
cepts from textual descriptions; and (iii) our work does not rely on neighborhood
relationships between images.

Very recently, Flickr distance was proposed to model two tags’ similarity based
on their annotated images [17]. For each tag, a visual language model is constructed
from 1000 images annotated with the tag and the Flickr distance between the two
tags is computed using the Jensen—Shannon divergence. Our work is significantly
different from [17] in three aspects. First, our main research objective is to mea-
sure the visual-representativeness of a single tag and not the relationship between
tag pairs. Second, the language models are estimated from different image repre-
sentations. Our language models are estimated on top of the widely adopted bag of
visual-words representation [9] while visual language model has its own definition
in [17]. Third, we analyze the impact of tag frequency on its language modeling.
In their work, a fixed number (i.e., 1000) of images for each tag were sampled for
estimating its language model.

In [16], a probabilistic framework was proposed to resolve tag ambiguity in
Flickr by suggesting semantic-orthogonal tags from those tags that co-occurred with
the given set of tags. Although tag ambiguity is highly related to tag clarity, the
approach in [16] was purely based on tag co-occurrence without considering the
content of annotated images.

3 Image Tag Clarity

Intuitively, a tag is visually representative if all the images annotated with the tag
are visually similar to each other. In this sense, we heuristically consider the as-
signment of a tag ¢ to an image / as a sampling process. We assume that a user
samples images from a large collection and decides whether ¢ shall be assigned to
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some images. Based on this setting, if all users have an implicit common under-
standing on the sampling process with respect to the visual content of the images,
then the assignment of the visual-representative tags is a biased sampling process
such that only those images that contain certain visual concepts (e.g., sunset scene)
will be assigned as a visual-representative tag (e.g. sunset). On the other hand,
the assignment of a non-visually representative tag is an unbiased sampling pro-
cess to images regardless of their visual content. Most contextual tags describing
the time and location in general (e.g., the country where the photo was taken) be-
long to the latter case. For instance, any image taken in Singapore during year 2008
can be tagged by Singapore and 2008 and either tag hardly describes the vi-
sual content of the tagged images. Based on this heuristic, for a given tag ¢, we can
consider the set of images /; annotated by ¢ and compare this set to a randomly
drawn set of images of similar size, denoted by I/ (|I;| ~ |I/|), where ¢’ denotes a
dummy tag randomly assigned to images. If I; is similar to any I/, randomly drawn
from a large collection of images in terms of visual content, then ¢ is unlikely to
describe any specific visual concepts. Otherwise, if /; is significantly different from
I,’ , demonstrating common visual content features, then we consider ¢ to be visually
representative. In the following, we present image tag clarity measure to quantify
tag visual-representativeness.

The image tag clarity score is based on the following framework. We consider
a tag to be a keyword query and the set of images annotated with the tag are the
retrieved documents based on a boolean retrieval model (returns an image as long
as the image is annotated with the tag with equal relevance score). Then the clarity
score proposed for query performance prediction can be adopted to measure tag
clarity if the visual content of the images can be represented by “word” vectors
similar to that for representing textual documents. That is, if all images associated
with the tag are visually similar, then the language model estimated from the set
of retrieved images (or the tag language model) shall contain some “words” with
unusually high probabilities specific to the tag making the distance between the tag
and the collection language models large. Among the various low-level features that
are commonly used to represent images, the bag of visual-words feature represents
images very much like textual documents [9]. In the sequel, we assume that a bag
of visual-words has been extracted to represent each image.> We also use “image”
and “document” interchangeably due to this representation.

3.1 Image Tag Clarity Score

Let I; be the set of images annotated by a tag ¢ and .# be the image collection. Based
on the clarity score definition in Eq. (3), the image tag clarity score of ¢, denoted
by t(¢), is defined as the KL divergence between the tag language model (P (w|1;))

ZNevertheless, we believe that the image tag clarity score is generic and can be computed using
other feature representations.
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and the collection language model (p(w|.¥)), where w denotes a visual-word. It is
expressed by the following equation.
P(wl|]
T(t)ZKL(It”j)=§P(w|1t)10g2#||u;))' “)

As a collection language model is often estimated by the relative word frequency
in the collection, our main focus in this section is to estimate the tag language model
P(w|I;). This is a challenging issue for the following reason. In textual documents,
keywords in a query Q literally appear in the retrieved documents. Hence, the degree
of relevance between a document d and query Q (i.e., P(d|Q)) can be estimated
using Eq. (2). However, in a bag of visual-words representation, the tag and the
words are from two different feature spaces. As a tag does not literally appear in
images, the degree of relevance of an image to a tag is unknown. That is, P(d|Q) in
Eq. (1) (or P(I|1I;) in our setting) has to be estimated differently, as Eq. (2) cannot
be directly applied.

Intuitively, there are at least two approaches to estimate the tag language model.
First, we can simply treat all images equally representative of a tag ¢, so all the
images annotated with ¢ have uniform probability to be sampled. Second, we can
estimate the representativeness of images based on their distances to /;’s centroid.
Images that are more close to the centroid of /; are considered more representative
and shall contribute more to the estimation of the tag language model.

e The first approach estimates the tag language model as the average relative visual-
word frequency in the images with equal importance | . Hence, the tag language
model, denoted by Pg(w|I;), is given by the followmg equatlon

1
Ps(wll) =Y — Pu(w|I). 5)

Iel, i

Observe that it is consistent with the small document model used in [3] for blog
feed search. Similar approach has also been used in modeling blog tag clarity in
our earlier work [13].

e In the second approach, also known as the centrality document model, the tag
language model P.(w|l;) is estimated using Eq. (6), where P (I|l;) reflects the
relative closeness of the image I to I;’s centroid defined in Eq. (7).

P.(wl|ly) =ZPm1(w|I)P(1|1,)’ ©
lel;
et
it = Zle],‘p(l, L)’ )
(p(la It)z l_[PX(w|It)Pml(w|I)_ (8)
wel

In Eq. (7), ¢(1, I}) is a centrality function which defines the similarity between
an image [ to the tagged collection I;. Let Ps(w|I;) be the tag language model
estimated with small document model in Eq. (5) and P,;(w|I) be the relative
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visual-word frequency of w in image /. Then based on [3], ¢(/, I;) is defined to
be the weighted geometric mean of word generation probabilities in I; as shown
in Eq. (8). The weight of each visual-word is its likelihood in image /.

The estimated tag language model is further smoothed using the Jelinek—Mercer
smoothing with A = 0.99.

Pamoothed (W] 1) = AP.(w]l;) + (1 — L) P(w|.5). &)

Intuitively the centrality document model better simulates the clarity score com-
pared to the small document model. However, the distance between an image [/ to
the tagged collection /; is an estimation which may not necessarily reflect the rel-
evance between the image / and the tag ¢. Our experimental study revealed that
the two models deliver nearly identical results. Hence in this chapter, we report the
results based on the small document model due to its simplicity.

Figure 1 illustrates four example tag language models against the collection lan-
guage model derived from the NUS-WIDE dataset (see Sect. 4). The x-axis is the
visual-words ordered according to P(w|-#) in descending order; and the y-axis
shows the P(w|l;) and P(w|.%), respectively. Clearly, the tag language models
for Sunset and Zebra are significantly different from the collection language
model, while the models for Asia and 2008 are very similar to that of the col-
lection model. That is, the images tagged by either Asia or 2008 are similar to a
randomly sampled set of images from the collection. For either Sunset or Zebra,
one may expect the annotated image contains or describes the scene or object ex-
pressed by the semantic of the tag, making these images similar to each other and
distinctive from the entire collection. Table 1 reports the tag clarity scores of these
four tags. Observe that 7 (Sunser) and t(Zebra) are much larger than t(Asia) and
7(2008).
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Table 1 Clarity scores, normalized clarity scores and tag frequencies for the four example tags

Tag Tag clarity t(t) Normalized tag clarity 7, () Tag frequency |/;|
Sunset 0.294 285.3 10962
Zebra 0.412 97.9 627
Asia 0.004 -2.5 3878
2008 0.005 -1.9 4388

3.2 Normalized Image Tag Clarity Score

The aforementioned example demonstrates that Sunset and Zebra are more visu-
ally representative than Asia and 2008. However, it is hard to determine a thresh-
old for tag clarity t(¢) such that if a tag ¢ has its clarity score above the threshold
value then it is considered visually representative. Recall from Sect. 2.1, the query
language model is estimated from a fix number of top-K documents (e.g., K = 500
in [2]). The clarity scores for all queries are therefore computed based on the same
number of documents. However in tagging, the tag distribution follows power-law
distribution where a small set of tags are much more frequently used than other tags
(see Sect. 4). The sizes of the I; for different tags can therefore be significantly
different. We address this issue by normalizing the image tag clarity score.

Reconsider the task of assigning a tag to an image as a sampling process of
picking up images from a large collection (i.e., .#). If the sampling is unbiased
(i.e., uniform sampling), then the language model of the sampled images P(w|;)
naturally gets closer to P(w|.¥) as I, gets larger. Hence, the distance KL(/;||.¥)
becomes smaller. Therefore, KL(I;||.#) may not accurately reflect the clarity of a
tag as it is expected that KL(I;1||.#) < KL(I;2||.¥) if |I;1| > |I;2| when both ¢; and
to are uniformly sampled, i.e., not visually representative.

To determine whether a tag ¢ is visually representative, its tag clarity score t(t)
is compared with the clarity score of a dummy tag ¢ which is randomly assigned
to images in .# such that ¢ and ¢’ have the same tag frequency. That is, if a tag
t is visually representative, then its image tag clarity score 7(¢) is expected to be
significantly larger than 7(z") where ¢ is a dummy tag randomly assigned to the
same number of images as of t (or |I;/| = |I; ).3 In our experiments, we observed that
7(¢") follows a normal distribution for all dummy tags having the same tag frequency
|I;/|. Hence we apply zero-mean normalization and the normalized image tag clarity
score T, (¢) is given in Eq. (10), where w(¢") and o (¢') are the expected tag clarity
score and its standard deviation derived from multiple dummy tags, respectively.

(@) —p@)

TZ(t)ZT. (10

3Recall that both 7(7) and 7(¢') are computed purely from visual content features of their tagged
images.
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The normalized image tag clarity score is the number of standard deviations a
tag is observed with respect to a randomly assigned dummy tag with the same tag
frequency. Note that tag frequency is an important measure here as both w(¢") and
o (t) are heavily affected by it. As discussed earlier, the larger is |I,/| the closer
its language model to the collection model. This is illustrated by Fig. 2, which re-
ports the expected tag clarity scores and their standard deviations derived from 500
dummy tags with respect to the tag frequencies on the x-axis. The four example
tags are also plotted with their frequencies and clarity scores. Observe that although
T (Sunset) < t(Zebra), t,(Sunset) > t,(Zebra) after the normalization process (Ta-
ble 1).

3.3 Time Complexity

The proposed tag language model can be estimated in O (N) time for a tag associ-
ated with N images. Note that the expected tag clarity scores and standard deviation
need to be computed only once for all tags with tag frequency N in a given dataset.
Moreover, the computation of expected tag clarity scores and standard deviation can
be further reduced by binning the tag frequencies and computing the expected tag
clarity scores and standard deviations for each frequency bin.

In our experiments, we are interested in the tags that have been used to tag at least
100 images. We set our first frequency bin to cover tag frequency from by = 100 to
b1 = 110. Subsequently, we set b, 11 = (1 + 10%) x b, (n > 0) until the last bin
covers the tag with highest tag frequency in our dataset. For each bin starting with
by, 500 dummy tags with tag frequency randomly generated within [b,,, b,,4+1) are
used to derive the expected tag clarity and standard deviation (shown in Fig. 2).
A given tag clarity score is then normalized by w(b,,) and o (b,) where b, is the bin
|1;] belongs to. Observe that in this setting every tag is normalized using dummy
tags generated with frequencies within 10% of its frequency.*

4Note that the way we bin the tag frequencies and the number of dummy tags used for estimation
of the expected tag clarity scores and their standard deviations are different from that in [11]. This
leads to differences in the normalized tag clarity scores reported in Sects. 4 and 5.
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4 Performance Evaluation

Evaluation of the techniques for quantifying tag visual-representativeness is a chal-
lenging research issue for two reasons. Firstly, there is a lack of widely adopted met-
ric for the performance evaluation. Secondly, there is a lack of benchmark data for
the evaluation. In the following, we present a summary of the evaluations conducted
in our earlier work [12] and then report the observations from the experimental re-
sults. The technical details of the evaluation can be found in [12].

We used the NUS-WIDE dataset’ containing 269,648 images from Flickr [1].
The images are assigned with zero, one or more categories (or concepts) from a
pre-defined list of 81 categories. The dataset provides six types of low-level fea-
tures including both global features (e.g., color histogram, edge direction histogram,
wavelet texture features and others) and local features (500-D bag of visual-words).
The normalized image tag clarity score discussed in this chapter is also known as
SClarL method in [12] and the method is compared against another six methods
for quantifying image tag visual-representativeness using either global features or
local features. In our evaluation, we formulate the task of quantifying tag visual-
representativeness as a classification task to distinguish visual-representative tags
(i.e., positive tags) from non-visual-representative tags (i.e., negative tags).

Two sets of labeled tags were used in the experiments. In the first set of labeled
tags, the 81 categories (which also appear as tags) in the NUS-WIDE dataset were
used as positive tags and another 78 frequently used tags in the dataset were identi-
fied as negative tags. These 78 tags include 17 tags related to time (e.g., 2004—-2008,
January—December) and 61 location tags related to continent and country names
(e.g., Europe, Japan). In the second set of labeled tags, 1576 frequently used tags
were manually labeled including 814 positive tags (for object, scene, activity, color,
and picture type) and 762 negative tags (for location, self-reference, opinion, camera
model, and time).

The experimental evaluation adopted three performance metrics, namely, Aver-
age Precision, Precision@N, and Coverage@N. Among the seven methods eval-
uated, image tag clarity performed very well, with very good precision and fairly
good coverage. In particular, the average precisions for the first and second sets
of labeled tags were 0.89 and 0.74, respectively. The detailed results are reported
in [12].

5 Observations Related to Image Tag Clarity Scores

In the NUS-WIDE dataset, there are more than 420K distinct tags that appear at
least once. The tag distribution is reported in Fig. 3. Similar to statistics related
to many studies on user-generated content, the tag frequency distribution follows a
power-law distribution. Among the 420K distinct tags, 5981 tags have been used

Shttp://Ims.comp.nus.edu.sg/research/NUS-WIDE.htm Accessed June 2009.
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to annotate at least 100 images each.® We consider these tags as popular tags and
report the observations made on their image tag clarity scores. In the sequel, all tag
clarity scores refer to the normalized scores.

5.1 Image Tag Clarity Score Distribution

We first report the image tag clarity score distribution as well as the top-25 most and
least visual-representative tags identified through our experiments.

The relationship between the number of tags (tags are binned by floor(z,(t)))
with their image tag clarity scores is shown in Fig. 4. Observe that among 5981
popular tags, 2950 tags (or about 49.3%) have tag clarity scores greater than 3. Re-
call that the normalized image tag clarity score is the number of standard deviations
a tag is observed with respect to a randomly assigned dummy tag with the same tag
frequency. If 7(¢) > u(r’) + 30 (¢'), then the chance of ¢ being randomly assigned

The number reported here is slightly different from that reported in [1] probably due to different
pre-processing. Nevertheless, the tag distribution remains similar.
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Table 2 The top-25 most
and least visual-representative Tag w(t)  Pr(t) Tag (1) Pr@)
tags with their image tag

clarity scores 7, (¢) and 1 sunset 285.3 100 people —2.8 100
frequency percentile Py (f). 2 fog 2154 97  brown -27 97
E;Z;f; izstegj‘fgléhe 3 sky 206.4 100  asia 25 98
NUS-WIDE dataset are shown 4  silhouette 178.5 98  japan —-24 98
in bold 5  sunrise 160.3 98  france —-2.1 98
6 charts 153.4 78  washington =21 97

7 sun 1383 99 2008 -19 99

8  mist 137.4 95  china -1.8 97

9 sea 134.2 100 photograph —-1.6 89

10 clouds 122.3 100 july -1.6 86

11 lightning 118.4 74 picture —-1.5 92

12 beach 118.3 99 virginia -1.5 87

13 landscape 114.7 100  religion —1.3 95

14  minimalism 111.4 78  india -13 97

15  dunes 110.0 83  ohio -13 87

16  blue 109.9 100  august -1.2 80

17 dawn 108.8 91 photographers —1.2 86

18  horizon 102.0 92  royal —-12 73

19 moon 99.1 95 finepix —-1.2 65

20 ocean 98.7 99  pic —-1.2 59

21 zebra 979 82  smorgasbord —1.2 61

22 storm 97.5 96  world -1.2 95

23 sketches 957 82  may —-12 84

24 lake 944 99  global —1.1 66

25  windmills 93.7 76 2005 —-1.1 96

to the images (independent of their visual content) is less than 0.1%, and we con-
sider ¢ to be visually representative. Here, we use three standard deviations as the
threshold as it is often used as threshold to determine outliers statistically for normal
distributions [6]. Nevertheless, this threshold value is only used in this chapter for
analysis and can be adjusted according to a specific application. For brevity, we refer
to tags that are visually representative (e.g., 7, (t) > 3) as visual tags and others as
non-visual tags. There are 2950 visual tags and 3031 non-visual tags, respectively.
The top-25 most and least visual-representative tags are listed in Table 2 together
with their normalized tag clarity score 7,(¢) and frequency percentiles (denoted by
Py(t)). Observe that many of the top-25 most visual-representative tags describe
common scenes (e.g., sunset, lightning, sea, and sky) or objects (e.g., ze-
bra and moon). As these are commonly used words, most users could easily use
them to describe images containing the scenes or objects. Consequently, it creates
strong connection between the user-specified tags and the images demonstrating the
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(a) Images for tag search: people (least visual-representative tag)
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Fig. 5 Images returned by Flickr for search tags people and sunset

aforementioned scenes and objects, making these tags highly visual-representative.
Further, the frequency percentile values associated with the tags suggest that a large
user group indeed develops consensus implicitly to use a relatively small set of com-
mon tags to describe a large number of images. Specifically, among the top 25 most
visually representative tags, 18 tags have frequency percentile above 90, indicating
that these are extremely popular tags.

Observe that most of the least visual-representative tags are locations (e.g.,
asia, washington, japan, france, china), or temporal such as 2008,
july, august, may, or high-level descriptions including pic, photograph,
picture. All these tags do not convey much information related to the visual con-
tent of the images. For instance, images accompanied with the asia tag are very
diverse and can range from the busy street scenes in Bangkok to images of Gobi
desert in Mongolia. Such results show that the proposed image clarity score seems
to be a good measure reflecting the semantic relationship of an assigned tag to the
visual content of the image.

An interesting observation is that people is rated as a least visually representa-
tive tag. A tag search of people on Flickr showed that most of the returned images
indeed contained people in their visual content (see Fig. 5(a)). However, the im-
ages demonstrated a great variety especially with respect to the background settings.
Hence the proposed technique may wrongly identify the tags that are indeed related
to some visual content as non-visual tags when the visual pattern is not clear from
the feature representation. That is, such visual pattern may require a certain high-
level recognition. This calls for further study on how to detect visual tags related
to complicated visual patterns like people. On the other hand, images returned in
response to the tag sunset indeed show similar visual scenes (see Fig. 5(b)).

5.2 Tag Usage Pattern

5.2.1 Tag Visual-Representativeness vs. Tag Frequency

It is often assumed that extremely popular tags, like stop-words in textual docu-
ments, contain little information in image tagging [18]. However, as demonstrated
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in our empirical study, many of the highly representative tags (e.g., the top-25 most
representative tags) have frequency percentile above 90. One example is sky which
is the third most popular tag in the dataset. It is also the third most visually repre-
sentative tag and been used as a category label in the NUS-WIDE dataset. Using the
notion of image tag clarity, we aim to have a deeper understanding on the relation-
ship between tag clarity and its frequency.

Our study showed that the 2950 visual tags are used 2,225,239 times to annotate
images in the dataset’; while the 3031 non-visual tags are used 997,014 times only.
That is, the visual tags are 2.23 times more frequently used than the non-visual tags.
In other words, users are more likely to annotate images using tags related to the
visual content of the images.

To further study the relationship between tag visual-representativeness and tag
frequency, we sorted 5981 tags of interests according to their tag frequency in de-
scending order. Figure 6 plots the ratio of visual tags among the top N % most fre-
quent tags (1 < N < 100). The figure clearly indicates that the highly frequently
used tags are more likely to be visual tags. For instance, more than 90% of the 60-
most frequently used tags (or 1% of the 5981 tags) are visual tags. This is consistent
with that listed in Table 2, where many of the most visually representative tags have
high frequency percentiles. The Pearson’s correlation coefficient between tag fre-
quency and tag clarity score is 0.35. That is, they are weakly correlated and more
frequent tags are in general more likely to be visually representative. This is not
surprising as tags are in general considered resource annotations and the resource
in this setting is images. The aforementioned observation also supports tag-based
approach for social image retrieval as most frequently used tags are indeed visual
tags.

5.2.2 Visual Tags vs. Non-visual Tags

In this section, we study the distribution of visual and non-visual tags with respect
to the number of tags associated with images as well as their positions. We first plot
the tag distribution among images in the dataset in Fig. 7(a). In this plot, the x-axis
is the number of tags per image and y-axis plots the number of images having that

7One image may be annotated by multiple visual or non-visual tags, respectively.
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number of tags. Among the 269K images in the dataset, nearly 74% of images are
associated with three to 16 tags (from the domain of 5981 tags of interest). Fewer
than 5% of images have more than 30 tags each. Hence, we only focus on those
images with no more than 30 tags for the study of tag position distribution.

Figure 7(b) plots the average ratio of visual tags among each image having K tags
(1 < K <30). The ratio of visual tags gradually increases from 0.64 to 0.72 with
the increase of the number of tags from three to 16. Subsequently, the ratio remains
relatively stable for images having 17 to 25 tags each. Figure 7(b) shows that the
chance of an image being annotated by visual tags increases with the number of
tags received. As many tags are received from the contacts of the image uploader in
Flickr, these users may not know much about the image other than its visual content.
The tags contributed by these users are more likely to be visual tags. Overall, the
results also show that in general more visual tags are associated with images than
non-visual tags with the ratio of visual tags well above 0.6. This is consistent with



