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Preface

The theoretical aspects of Time Series Analysis in the Gaussian context have been well
understood since the end of the Second World War, more than 60 years ago. Linear
transformations (or filters) preserve the Gaussian property and hence fit well in that
framework. Norbert Wiener wanted to extend the theory to the non-linear world by
considering non-linear transformations of Gaussian processes, while requesting that
the output of the non-linear filters preserve the finite variance-covariance property,
which is one the hallmarks of Gaussian processes. Kiyoshi Itô attempted to do the
same thing in Japan. This extension is now known as the “Wiener chaos” and the cor-
responding stochastic integrals as “Wiener-Itô stochastic integrals”. The versatility of
the non-linear theory, however, turned out to be more limited than what was hoped
for. It is not easy, for example, to write down the distributions of the random variables
that live in this Wiener chaos. This mathematical challenge led several researchers to
develop ad-hoc graphical devices, known as diagram formulae, allowing to derive mo-
ments and cumulants of chaotic random variables bymeans of combinatorial identities.
Although these tools are not always easy to manipulate, they have been successfully
used in order to develop not only new types of central limit theorems where the limit
is Gaussian but also non-central limit theorems where the limit is non-Gaussian.
This is a book about combinatorial structures in the Wiener chaos. The combina-

torial structures involved in our analysis are those of lattices of partitions of finite sets,
over which we define incidence algebras, Möbius functions and associated inversion
formulae. As discussed in the text, this combinatorial standpoint (which is originally
due to Rota and Wallstrom [132]) provides an ideal framework in order to system-
atically deal with diagram formulae. Several applications are described, in particular
recent limit theorems for chaotic random variables. An explicit computer implemen-
tation into the Mathematica language completes the text.
Chaotic random variables play now a crucial role in several areas of theoretical

and applied probability. For instance, the fact that every functional of a Gaussian pro-
cess or a Poisson measure can be written as a series of multiple integrals (the so-called
“Wiener-Itô chaotic representation property”) is one of the staples of Malliavin calcu-
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lus and of its many applications, for example, to stochastic partial differential equa-
tions or stochastic calculus. In a recent series of papers (that are described and analyzed
in the book), essentially written by Nourdin, Nualart, Peccati and Taqqu, it has been
shown that the properties of chaotic random variables are the key elements for deriving
very general (and strikingly simple) convergence results for non-linear functionals of
Gaussian fields, Poisson measures or Lévy processes.
The goal of this monograph is to render this subject more accessible. We do this

in a number of ways. We provide many examples to illustrate the theory and we also
implement many of the formulas in Mathematica, so that the user can get a concrete
feeling for the various topics. The theoretical exposition is rigorous. We have tried to
fill in many of the steps in the proofs we provide, and when proofs are not given, we
include detailed references. The bibliography, for example, is rather extensive, with
more than 150 references. Our emphasis is on the combinatorial aspect of the subject
because it is through combinatorics that the various objects are related. We start with
describing partitions of a integer, of a set, the relations between them, we continue with
moments and cumulants and cover a number of graphical descriptions of the various
diagram formulae. When considering stochastic integrals, we do not always eliminate
diagonals as is usually done, but we consider integrals where an arbitrary subset of
diagonals has been eliminated, and we specify the explicit relations between them.
The stochastic integrals include not only multiple integrals with respect to a Gaussian
measure but also multiple integrals with respect to Poisson measures.
As anticipated, the subject is very much in flux with new limit theorems being

developed and further applications, for example, to the Malliavin calculus. Although
we do not cover these subjects, we provide an overview of various directions that are
being pursued by researchers. This survey provides a basis for understanding the new
developments.
The readership we have in mind includes researchers, but also graduate students

who are either starting their research or are already working on a doctoral thesis. For
a detailed description of the contents, please refer to the introduction and its subsec-
tion 1.1 “Overview”. The Contents, which include the title of the sections and subsec-
tions, also provide a good overview of the covered topics.
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Marc Yor for a careful reading of an earlier draft of this manuscript, as well as for valu-
able suggestions. Finally we want to thank David Jeffrey Hamrick and Mark Veillette



Preface XIII

who developed the Mathematica code, and without whom the computer applications
would not have existed.

Luxembourg/Boston, August 2010 Giovanni Peccati
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Introduction

1.1 Overview

The aim of this work is to provide a unified treatment of moments and cumulants asso-
ciated with non-linear functionals of completely randommeasures. A “completely ran-
dommeasure” (also called an “independently scattered randommeasure”) is a measure
ϕ with values in a space of random variables, such that ϕ(A) and ϕ(B) are indepen-
dent random variables, whenever A and B are disjoint sets. Examples are Gaussian,
Poisson or Gamma randommeasures. We will specifically focus on multiple stochastic
integrals with respect to the random measure ϕ. These integrals are of the form∫

σ

f(z1, ..., zn)ϕ(dz1) · · · ϕ(dzn) (1.1.1)

and ∫
≥σ

f(z1, ..., zn)ϕ(dz1) · · · ϕ(dzn), (1.1.2)

where f is a symmetric function and ϕ is a completely random measure (for instance,
Poisson or Gaussian) on the real line. The integration is not over all of Rn, but over a
“diagonal” subset ofRn defined by a partition σ of the integers {1, ..., n} as illustrated
below.
We shall mainly adopt a combinatorial point of view. Our main inspiration is a

truly remarkable paper by Rota and Wallstrom [132], building (among many others)
on earlier works by Itô [40], Meyer [76, 77] and, most importantly, Engel [26] (see also
Bitcheler [9], Kussmaul [59], Linde [64], Masani [73], Neveu [79] and Tsilevich and
Vershik [159] for related works). In particular, in [132] the authors point out a crucial
connection between the machinery of multiple stochastic integration and the structure
of the lattice of partitions of a finite set, with specific emphasis on the role played by
the associated Möbius function (see e.g. [2], as well as Chapter 2 below). As we will
see later on, the connection between multiple stochastic integration and partitions is
given by the natural isomorphism between the partitions of the set {1, ..., n} and the
G. Peccati, M.S. Taqqu: Wiener Chaos: Moments, Cumulants and Diagrams –
A survey with computer implementation.
© Springer-Verlag Italia 2011
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diagonal sets associated with the Cartesian product of nmeasurable spaces (a diagonal
set is just a subset of the Cartesian product consisting of points that have two or more
coordinates equal).
For example, going back to (1.1.1), if n = 3 and

σ = {{1, 2}, {3}}

in (1.1.1), then one integrates over z1, z2, z3 ∈ R3 with

z1 = z2, z2 �= z3.

If
σ = {{1}, {2}, {3}},

then the integration is over

z1 �= z2, z1 �= z3, z2 �= z3

(commonly denoted z1 �= z2 �= z3). In (1.1.2), one integrates over “≥ σ ”, that is, over
all partitions that are coarser than σ. For example, if n = 3 and σ = {{1, 2}, {3}},
then “≥ σ ” indicates that one has not only to integrate over z1 = z2, z2 �= z3, but
also on the hyperdiagonal z1 = z2 = z3 (corresponding to the one-block partition
{{1, 2, 3}}). If n ≥ 2, the integrals (1.1.1) and (1.1.2) are non-linear functionals of ϕ,
and thus, even if ϕ is Gaussian, these integrals are non-Gaussian random variables.
As we will see in Chapter 5, a crucial element of our analysis is given by random

variables of the type (1.1.1), where the integration is performed over a setwithout diag-
onals, that is, where all the coordinates zi are different. Random variables of this type
belong to the so-calledWiener chaos associated with the random measure ϕ. Chaotic
random variables play now a crucial role in several areas of theoretical and applied
probability. For instance, we will see that they enjoy several remarkable connections
with orthogonal polynomials, such as Hermite and Charlier polynomials; also, we will
show that every square-integrable functional of a Gaussian process or of a Poisson
measure can be written as a series of multiple integrals over non-diagonal sets (the so-
called “Wiener-Itô chaotic representation property”). This last fact is one of the staples
of Malliavin calculus (see [93, 94, 21]) and of its many applications e.g. to stochastic
partial differential equations or stochastic calculus. In a recent series of papers (that
are described and analyzed in the last chapters of this book), it has been shown that the
properties of chaotic random variables are fundamental in deriving convergence results
for non-linear functionals of Gaussian fields, Poisson measures or Lévy processes.
The best description of the approach to stochastic integration followed in the

present work is still given by the following sentences, taken from [132]:

The basic difficulty of stochastic integration is the following. We are given
a measure ϕ on a set S, and we wish to extend such a measure to the prod-
uct set Sn. There is a well-known and established way of carrying out such
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an extension, namely, taking the product measure. While the product mea-
sure is adequate in most instances dealing with a scalar valued measure, it
turns out to be woefully inadequate when the measure is vector-valued, or,
in the case dealt with presently, random-valued. The product measure of a
nonatomic scalar measure will vanish on sets supported by lower-dimensional
linear subspaces of Sn. This is not the case, however, for random measures.
The problem therefore arises of modifying the definition of product measure
of a random measure in such a way that the resulting measure will vanish on
lower-dimensional subsets of Sn, or diagonal sets, as we call them.

As pointed out in [132], as well as in Chapter 5 below, the combinatorics of parti-
tion lattices provide the correct framework in order to define a satisfactory stochastic
product measure.
As discussed in detail in Chapter 8, part of the results presented in this work extend

to the case of isonormal Gaussian processes, that is, centered Gaussian families whose
covariance structure is isomorphic to some (real or complex) Hilbert space. Note that
isonormal Gaussian processes have gained enormous importance in recent years, for
instance in connection with fractional processes (see e.g. the second edition of Nu-
alart’s book [94]), or as limit objects (known as Gaussian Free Fields) appearing e.g.
in the theory of random matrices and random surfaces (see [129] and [139] for some
general discussions in this direction).
To make the notions we introduce concrete, we have included an Appendix to

this survey. It is devoted to a Mathematica1 implementation of various formulae. We
stress, however, that no knowledge of the Mathematica language is required. This is
because we provide in the Appendix detailed instructions and examples. This unusual
addendum may be welcome, in particular, by graduate students and new researchers
in this area.
As apparent from the title, in the subsequent chapters a prominent role will be

played by moments and cumulants. In particular, the principal aims of our work are
the following:

– Put diagram formulae in a proper algebraic setting. Diagram formulae are
mnemonic devices, allowing to compute moments and cumulants associated with
one or more random variables. These tools have been developed and applied in a
variety of frameworks: see e.g. [141, 151] for diagram formulae associated with
general random variables; see [10, 12, 34, 68] for non-linear functionals of Gaus-
sian fields; see [150] for non-linear functionals of Poisson measures. They can be
quite useful in the obtention of Central Limit Theorems (CLTs) by means of the
so-called method of moments and cumulants (see e.g. [66]). Inspired by the works
by McCullagh [74], Rota and Shen [131] and Speed [145], we shall show that all
diagram formulae quoted above can be put in a unified framework, based on the

1 Mathematica is a computational software program developed by Wolfram Research, which
is used widely in scientific and mathematical fields.
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use of partitions of finite sets. Although somewhat implicit in the previously quoted
references, this clear algebraic interpretation of diagrams is new. In particular, in
Chapter 4 we will show that all diagrams encountered in the probabilistic literature
(such as Gaussian, non-flat and connected diagrams) admit a neat translation in the
combinatorial language of partition lattices.

– Illustrate the Engel-Rota-Wallstrom theory.We shall show that the theory de-
veloped in [26] and [132] allows to recover several crucial results of stochastic
analysis, such as multiplication formulae for multiple Gaussian and Poisson inte-
grals see [49, 94, 150]. This extends the content of [132], which basically dealt
with product measures. See also [28] for other results in this direction.

– Shed light the combinatorial implications of new CLTs. In a recent series of
papers (see [69, 82, 86, 87, 90, 95, 98, 103, 106, 109, 110, 111]), a new set of tools
has been developed, allowing to deduce simple CLTs involving random variables
having the form of multiple stochastic integrals. All these results can be seen as
simplifications of the method of moments and cumulants. In Chapter 11, we will
illustrate these results from a combinatorial standpoint, by providing some neat
interpretations in terms of diagrams and graphs. In particular, we will prove that
in these limit theorems a fundamental role is played by the so-called circular dia-
grams, that is, connected Gaussian diagrams whose edges only connect subsequent
rows.

We will develop the necessary combinatorial tools related to partitions, diagram and
graphs from first principles in Chapter 2 and Chapter 4. Chapter 3 provides a self-
contained treament of moments and cumulants from a combinatorial point of view.
Stochastic integration is introduced in Chapter 5. Chapter 6 and Chapter 7 deal, re-
spectively, with product formulae and diagram formulae. Chapter 8 deals with Gaus-
sian random measures, isonormal Gaussian processes and the relationship between
corresponding multiple integrals and Hermite polynomials. In Chapter 9 we describe
Hermitian random measures and spectral representations and define the Hermite pro-
cesses. In Chapter 10 we introduce Charlier polynomials and relate them to multiple
integrals with respect to a Poisson random measure. Chapter 11 and Chapter 12 deal
with CLTs onWiener and Poisson chaos respectively. There are two appendices2. Ap-
pendix A describes theMathematica commands. These are also listed in the Contents.
Finally, Appendix B contains tables of moments and cumulants.

2 The index does not include the appendices.
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1.2 Some related topics

In this survey, we choose to follow a very precise path, namely starting with the basic
properties of partition lattices and diagrams, and develop from there as many as pos-
sible of the formulae associated with products, moments and cumulants in the theory
of stochastic integration with respect to completely random measures. In order to keep
the length of the present work within bounds, several crucial topics are not included (or
are just mentioned) in the discussion to follow. One remarkable omission is of course
a complete discussion of the connections between multiple stochastic integrals and or-
thogonal polynomials. This topic is partially treated in Chapters 8 and 10 below, in the
particular case of Gaussian and Poisson fields. For recent references on more general
stochastic processes (such as Lévy processes), see e.g. the monograph by Schoutens
[137] and the two papers by Solé and Utzet [143, 144]. Other related (and missing)
topics are detailed in the next list, whose entries are followed by a brief discussion.

– Wick products. Wick products are intimately related to chaotic expansions. A com-
plete treatment of this topic can be found e.g. in Janson’s book [46].

– Malliavin calculus. See the two monographs by Nualart [93, 94] for Malliavin
calculus in a Gaussian setting. The monograph by Di Nunno, Øksendal and Proske
[21] provides an introduction to Malliavin calculus with applications to finance.
A good introduction to Malliavin calculus for Poisson measures is contained in
the classic papers by Nualart and Vives [100], Privault [120] and Privault and Wu
[125], as well as in the recent monograph by Privault [122]. A fundamental con-
nection between Malliavin operators and limit theorems has been first pointed out
in [96]. See [82, 86, 106] for further developments.

– Hu-Meyer formulae. Hu-Meyer formulae connect Stratonovich multiple integrals
and multipleWiener-Itô integrals. See [94] for a standard discussion of this topic in
a Gaussian setting. Hu-Meyer formulae for general Lévy processes can be naturally
obtained by means of the theory described in the present book: see the excellent
paper by Farré et al. [28] for a complete treatment of this point.

– Stein’s method. Stein’s method for normal and non-normal approximation can be
a very powerful tool in order to obtain central and non-central limit theorems for
non-linear functionals of random fields. In Chapter 3, we will only scratch the
surface of this topic, by proving two basic results related to Stein’s method, namely
the Stein’s Lemma for the normal distribution, and the Chen-Stein Lemma for the
Poisson distribution. Some further discussion is contained in Chapter 11. See [147]
for a classic reference on the subject and [15] for an exhaustive recent monograph.
See [86, 87, 90] for several limit theorems involving functionals of Gaussian fields,
obtained by means of Stein’s method and Malliavin calculus. See [106, 114] for
applications of Stein’s method to functionals of Poisson measures.

– Free probability. The properties of the lattice of (non-crossing) partitions and the
corresponding Möbius function are crucial in free probability. See the monograph
by Nica and Speicher [80] for a valuable introduction to the combinatorial aspects
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of free probability. See Anshelevich [3, 4] for some instances of a “free” theory of
multiple stochastic integration. The paper [53], by Kemp et al., establishes some
explicit connections between limit theorems in free probability and the topics dis-
cussed in Chapter 11 below.



2

The lattice of partitions of a finite set

In this chapter we recall some combinatorial results concerning the lattice of partitions
of a finite set. These objects play an important role in the obtention of the diagram for-
mulae presented in Chapter 5. The reader is referred to Stanley [146, Ch. 3] and Aigner
[2] for a detailed presentation of (finite) partially ordered sets and Möbius inversion
formulae.

2.1 Partitions of a positive integer

Given an integer n ≥ 1, we define the set Λ (n) of partitions of n as the collection of
all vectors of the type λ = (λ1, ..., λk) (k ≥ 1), where:

(i) λj is an integer for every j = 1, ..., k;
(ii) λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1;
(iii) λ1 + · · ·+ λk = n.

(2.1.1)

We call k the length of λ. It is sometimes convenient to write a partition λ =
(λ1, ..., λk) ∈ Λ (n) in the form

λ = (1r1 2r2 · · · nrn) .

This representation (which encodes all information about λ) simply indicates that, for
every i = 1, ..., n, the vector λ contains exactly ri (≥ 0) components equal to i.
Clearly, if λ = (λ1, ..., λk) = (1r1 2r2 · · · nrn) ∈ Λ (n), then

1r1 + · · ·+ nrn = n (2.1.2)

and r1 + · · ·+ rn = k. We will sometimes use the (more conventional) notation

λ � n instead of λ ∈ Λ (n).

G. Peccati, M.S. Taqqu: Wiener Chaos: Moments, Cumulants and Diagrams –
A survey with computer implementation.
© Springer-Verlag Italia 2011
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Example 2.1.1 (i) If n = 5, one can, for example, have 5 = 4 + 1 or 5 = 1 + 1 +
1 + 1 + 1. In the first case the length is k = 2, with λ1 = 4 and λ2 = 1, and
the partition is λ =

(
1120304150

)
. In the second case, the length is k = 5 with

λ1 = ... = λ5 = 1, and the partition is λ =
(
1520304050

)
.

(ii) One can go easily from one representation to the other. Thus λ =
(
12233042

)
corresponds to

n = (1× 2) + (2× 3) + (3× 0) + (4× 2) = 16,

that is, to the decomposition 16 = 4 + 4 + 2 + 2 + 2 + 1 + 1, and thus to

λ = (λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (4, 4, 2, 2, 2, 1, 1) .

Remark. Fix n ≥ 2 and k ∈ {1, ..., n}. Consider a partition of n of length k, say λ =
(λ1, ..., λk), and write it in the form λ = (1r1 2r2 · · · nrn). Then, one has necessarily
that rj = 0 for every j > n − k + 1 (or, equivalently, n ≤ j + k − 2). Indeed, if
rj > 0 for such a j, then there would exist λa∗ ∈ λ such that n ≤ λa∗ + k − 2. This
contradicts the inequality n = λ1 + · · ·λk ≥ λa∗ + k − 1, which results from the
fact that λ is composed of k strictly positive integers whose sum equals n. This fact
implies that, for fixed n ≥ 2 and k ∈ {1, ..., n}, every partition λ ∈ Λ(n) of length k
has the form

λ =
(
1r1 2r2 · · · (n− k + 1)rn−k+1 (n− k + 2)0 · · · n0

)
, (2.1.3)

thus yielding immediately the following statement.

Proposition 2.1.2 There exists a bijection, say β, between the subset of Λ(n) com-
posed of partitions with length k and the collection of all vectors (r1, ..., rn−k+1) of
nonnegative integers such that

r1 + · · ·+ rn−k+1 = k and 1r1 + 2r2 + · · ·+ (n− k + 1) rn−k+1 = n. (2.1.4)

The bijection is obtained as follows: if (r1, ..., rn−k+1) verifies (2.1.4), then β−1

(r1, ..., rn−k+1) is the element of Λ(n) of length k given by (2.1.3).

A vector of nonnegative integers (r1, ..., rm) verifying r1 + · · · + rm = k is
customarily called a weakm-composition of k (see for example Stanley [146, p. 15]).

Example 2.1.3 Consider the case n = 4 and k = 2. Then, there exist only two vectors
(r1, r2, r3) of nonnegative integers satisfying (2.1.4) (that is, such that r1 +r2 +r3 = 2
and r1 + 2r2 + 3r3 = 4), namely (1, 0, 1) and (0, 2, 0). These vectors correspond
respectively to the partitions λ1 = (3, 1) = (11203140) and λ2 = (2, 2) = (10223040).
Proposition 2.1.2 implies that λ1 and λ2 are the only elements of Λ(4) having length 2.
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2.2 Partitions of a set

Let b denote a finite nonempty set and let

P(b) be the set of partitions of b.

By definition, an element π of P (b) is a collection of nonempty and disjoint subsets of
b (called blocks), such that their union equals b. The symbol |π| indicates the number
of blocks (or the size) of the partition π.

Notation. For each pair i, j ∈ b and for each π ∈ P (b), we write

i ∼π j

whenever i and j belong to the same block of π.

We now define a partial ordering on P (b). For every σ, π ∈ P (b), we write

σ ≤ π

if and only if

each block of σ is contained in a block of π.

Thus,

If σ ≤ π, then |σ| ≥ |π|.

Borrowing from the terminology used in topology one also says that π is coarser
than σ. It is clear that≤ is a partial ordering relation, that is,≤ is a binary relation on
P (b), which is also reflexive, transitive and antisymmetric, that is:

(i) σ ≤ σ, for every σ ∈ P(b) (reflexivity);
(ii) if σ ≤ π and π ≤ ρ, then σ ≤ ρ (transitivity);
(iii) if σ ≤ π and π ≤ σ, then σ = π (antisymmetry);

(see also Stanley [146, pp. 97-98]).

Example 2.2.1 (i) If b = {1, 2, 3, 4, 5}, π = {{1, 2, 3} , {4, 5}} and σ = {{1, 2} ,
{3} , {4, 5}}, then, σ ≤ π because each block of σ is contained in a block of π.
We have 3 = |σ| > |π| = 2.

(ii) If π = {{1, 2, 3} , {4, 5}} and σ = {{1, 2} , {3, 4, 5}}, then π and σ are not
ordered.
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Moreover, the relation ≤ induces on P (b) a lattice structure. Recall that a lattice
is a partially ordered set such that each pair of elements has a least upper bound and a
greatest lower bound (see the forthcoming remark for a definition of these two notions,
as well as [146, p. 102]). In particular, the partition

σ ∧ π, σ, π ∈ P (b) ,

called meet of σ and π, is the partition of b such that each block of σ∧π is a nonempty
intersection between one block of σ and one block of π. On the other hand, the partition

σ ∨ π, σ, π ∈ P (b) ,

called join of σ and π, is the element of P (b) whose blocks are constructed by taking
the non-disjoint unions of the blocks of σ and π, that is, by taking the union of those
blocks that have at least one element in common.

Remarks. (a)Whenever π1 ≤ π2, one has |π1| ≥ |π2|. In particular, |σ ∧ π| ≥ |σ ∨ π|.
(b) The partition σ ∧ π is the greatest lower bound associated with the pair (σ, π).

As such, σ∧π is completely characterized by the property of being the unique element
ofP (b) such that: (i) σ∧π ≤ σ, (ii) σ∧π ≤ π, and (iii) ρ ≤ σ∧π for every ρ ∈ P (b)
such that ρ ≤ σ, π.

(c) Analogously, the partition σ ∨ π is the least upper bound associated with the
pair (σ, π). It follows that σ ∨ π is completely characterized by the property of being
the unique element ofP (b) such that: (i) σ ≤ σ∨π, (ii) π ≤ σ∨π, and (iii) σ∨π ≤ ρ

for every ρ ∈ P (b) such that σ, π ≤ ρ.

Example 2.2.2 (i) Take b = {1, 2, 3, 4, 5}. If π = {{1, 2, 3} , {4, 5}} and σ =
{{1, 2} , {3} , {4, 5}}, then, as noted above, σ ≤ π and we have

σ ∧ π = σ and σ ∨ π = π.

A graphical representation of π, σ, σ ∧ π and σ ∨ π is:

π = 1 2 3 4 5

σ = 1 2 3 4 5

σ ∧ π = 1 2 3 4 5

σ ∨ π = 1 2 3 4 5

(ii) If π = {{1, 2, 3} , {4, 5}} and σ = {{1, 2} , {3, 4, 5}}, then π and σ are not
ordered and

σ ∧ π = {{1, 2} , {3} , {4, 5}} and σ ∨ π = {b} = {{1, 2, 3, 4, 5}} .
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A graphical representation of π, σ, σ ∧ π and σ ∨ π is:

π = 1 2 3 4 5

σ = 1 2 3 4 5

σ ∧ π = 1 2 3 4 5

σ ∨ π = 1 2 3 4 5

(iii) A convenient way to build σ∨π is to do it in successive steps. Take the union of
two blocks with a common element and look at it as a new block of π. See if it
shares an element with another block of σ. If yes, repeat. For instance, suppose
that π = {{1, 2}, {3}, {4}} and σ = {{1, 3}, {2, 4}}. Then, π and σ are not
ordered and

σ ∧ π = {{1} , {2} , {3} , {4}} and σ ∨ π = {{1, 2, 3, 4}} .
One now obtains σ ∨ π by noting that the element 2 is common to {1, 2} ∈ π

and {2, 4} ∈ σ, and the “merged” block {1, 2, 4} shares the element 1 with the
block {1, 3} ∈ σ, thus implying the conclusion. A graphical representation of π,
σ, σ ∧ π and σ ∨ π is:

π = 1 2 3 4

σ = 1 3 2 4

σ ∧ π = 1 2 3 4

σ ∨ π = 1 2 3 4

Notation.When displaying a partition π of {1, ..., n} (n ≥ 1), the blocks b1, ..., bk ∈ π
will always be listed in the following way: b1 will always contain the element 1, and

min {i : i ∈ bj} < min {i : i ∈ bj+1} , j = 1, ..., k − 1.

Also, the elements within each block will be always listed in increasing order. For
instance, if n = 6 and the partition π involves the blocks {2} , {4} , {1, 6} and {3, 5},
we will write π = {{1, 6} , {2} , {3, 5} , {4}}.

Definition 2.2.3 The maximal element of P (b) is the trivial partition

1̂ = {b} .
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The minimal element of P (b) is

the partition 0̂, such that each block of 0̂ contains exactly one element of b.

Observe that
∣∣∣1̂∣∣∣ = 1 and

∣∣∣0̂∣∣∣ = |b|, and also 0̂ ≤ 1̂. Thus if b = {1, 2, 3}, then

0̂ = {{1}, {2}, {3}} and 1̂ = {1, 2, 3}.

Definition 2.2.4 The partition segment (or interval) [σ, π] inP (b), with σ ≤ π, is the
following subset of partitions of b:

[σ, π] = {ρ ∈ P (b) : σ ≤ ρ ≤ π} .

Plainly,

P (b) =
[
0̂, 1̂

]
.

2.3 Partitions of a set and partitions of an integer

We now focus on the notion of class, which associates to a segment of partitions a
partition of an integer.

Definition 2.3.1 The class of a segment [σ, π] (σ ≤ π), denoted λ (σ, π), is defined as
the partition of the integer |σ| given by

λ (σ, π) = (1r1 2r2 · · · |σ|r|σ|) , (2.3.5)

where ri, i = 1, ..., |σ|, indicates the number of blocks of π that contain exactly i
blocks of σ. We stress that necessarily |σ| ≥ |π|, and also

|σ| = 1r1 + 2r2 + · · ·+ |σ| r|σ| and |π| = r1 + · · ·+ r|σ|.

The lenght of λ (σ, π) equals |π|.

Example 2.3.2 (i) If π = {{1, 2, 3} , {4, 5}} and σ = {{1, 2} , {3} , {4, 5}}, then
since {1, 2} and {3} are contained in {1, 2, 3} and {4, 5} in {4, 5}, we have 1
block of π (namely {4, 5}) containing 1 block of σ and 1 block of π (namely
{1, 2, 3}) containing 2 blocks of σ. Thus r1 = 1, r2 = 1, r3 = 0, that is,
λ (σ, π) =

(
112130

)
, corresponding to the partition of the integer 3 = 2 + 1.

(ii) In view of (2.1.1), one may suppress the terms ri = 0 in (2.3.5), and write for
instance λ (σ, π) =

(
112032

)
=
(
1132

)
for the class of the segment [σ, π], as-

sociated with the two partitions σ = {{1} , {2} , {3} , {4} , {5} , {6} , {7}} and
π = {{1} , {2, 3, 4} , {5, 6, 7}}.
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From now on, we let

[n] = {1, · · · , n} , n ≥ 1. (2.3.6)

With this notation, the maximal and minimal element of the set P ([n]) are given,
respectively, by

1̂ = {[n]} = {{1, ..., n}} and 0̂ = {{1} , ..., {n}} . (2.3.7)

Now fix a set b, say b = [n] = {1, · · · , n} with n ≥ 1 and consider the partition
0̂ = {{1} , ..., {n}} . Then, for a fixed λ = (1r1 2r2 · · · nrn) � n, the number of

partitions π ∈ P (b) such that λ
(

0̂, π
)

= λ is given by

[ n
λ

]
�
[ n

r1, ..., rn

]
=

n!
(1!)r1 r1! (2!)r2 r2! · · · (n!)rn rn!

. (2.3.8)

This is the number of partitions π containing exactly r1 blocks of size 1, r2 blocks of
size 2, ..., rn blocks of size n. Equation (2.3.8) follows from the following fact. Fix
i = 1, ..., n. If π contains ri blocks of size i, then the elements in each block can be
permuted within the block, yielding (i!)ri possibilities and, in addition, the posiiton
of the ri blocks can be permuted as well, yielding ri! possiblities (see, for example,
[146] for more details). The requirement that λ

(
0̂, π

)
= λ = (1r1 2r2 · · · nrn) simply

means that, for each i = 1, ..., n, the partition πmust have exactly ri blocks containing
i elements of b. Recall that the integers r1, ..., rn must satisfy (2.1.2), namely 1r1 +
· · ·+ nrn = n.

Example 2.3.3 (i) For any finite set b, one has always that

λ
(

0̂, 1̂
)

=
(

1020 · · · |b|1
)
,

because 1̂ has only one block, namely b, and that block contains |b| blocks of 0̂.
(ii) Fix k ≥ 1 and let b be such that |b| = n ≥ k+1. Consider λ = (1r1 2r2 · · · nrn) �

n be such that rk = rn−k = 1 and rj = 0 for every j �= k, n− k. For instance,
if n = 5 and k = 2, then λ =

(
1021314050

)
. Then, each partition π ∈ P (b)

such that λ
(

0̂, π
)

= λ has only one block of k elements and one block of n− k
elements. To construct such a partition, it is sufficient to specify the block of k
elements. This implies that there exists a bijection between the set of partitions

π ∈ P (b) such that λ
(

0̂, π
)

= λ and the collection of the subsets of b having

exactly k elements. In particular, (2.3.8) gives[ n
λ

]
=
(
n

k

)
=

n!
k! (n− k)! .
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(iii) Let b = [7] = {1, ..., 7} and λ =
(
11233040506070

)
. Then, (2.3.8) im-

plies that there are exactly 7!
3!(2!)3 = 105 partitions π ∈ P (b), such that

λ
(

0̂, π
)

= λ. One of these partitions is {{1} , {2, 3} , {4, 5} , {6, 7}}. Another
is {{1, 7} , {2} , {3, 4} , {5, 6}} .

(iv) Let b = [5] = {1, ..., 5}, σ = {{1} , {2} , {3} , {4, 5}} and π = {{1, 2, 3} ,
{4, 5}}. Then, σ ≤ π and the set of partitions defined by the interval [σ, π] is
{σ, π, ρ1, ρ2, ρ3}, where

ρ1 = {{1, 2} , {3} , {4, 5}}
ρ2 = {{1, 3} , {2} , {4, 5}}
ρ3 = {{1} , {2, 3} , {4, 5}} .

The partitions ρ1, ρ2 and ρ3 are not ordered (i.e., for every 1 ≤ i �= j ≤ 3, one
cannot write ρi ≤ ρj), and are built by taking unions of blocks of σ in such a
way that they are contained in blocks of π. Moreover, λ (σ, π) =

(
1120314050

)
,

since there is exactly one block of π containing one block of σ, and one block of
π containing three blocks of σ.

(v) This example is related to the techniques developed in Chapter 6. Fix n ≥ 2, as
well as a partition γ = (γ1, ..., γk) ∈ Λ (n) such that γk ≥ 1. Recall that, by
definition, one has that γ1 ≥ γ2 ≥ ·· · ≥ γk and γ1 + · · ·+γk = n. Now consider

the segment
[
0̂, π

]
, where

0̂ = {{1} , {2} , ..., {n}} , and
π = {{1, ..., γ1} , {γ1 + 1, ..., γ1 + γ2} , ..., {γ1 + · · ·+ γk−1 + 1, ..., n}} .

Then, the jth block of π contains exactly γj blocks of 0̂, for every j = 1, ..., k,
implying that the class of the segment [0̂, π] coincides with (γ1, ..., γk). For in-
stance, when γ1 > γ2 > ... > γk (that is, all the γi’s are different), one has that

the class λ
(

0̂, π
)
is such that λ

(
0̂, π

)
=
(
γ1

kγ
1
k−1 · · · γ1

1

)
= γ, after suppress-

ing the indicators of the type r0.

The following statement is a consequence of (2.3.8) and of Proposition 2.1.2.

Proposition 2.3.4 Let n ≥ 1 and k ∈ {1, ..., n}. Then, the number of partitions of [n]
having exactly k blocks is given by

S(n, k) �
∑

r1,...,rn−k+1

n!
(1!)r1 r1! (2!)r2 r2! · · · (n− k + 1)!rn−k+1rn−k+1!

, (2.3.9)

where the sum runs over all vectors on nonnegative integers (r1, ..., rn−k+1) satisfying
r1 + · · ·+ rn−k+1 = k and 1r1 + 2r2 · · ·+(n− k + 1) rn−k+1 = n.
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Proof. By Definition 2.3.1, a partition π ∈ P([n]) has k blocks if and only if λ
(

0̂, π
)

has length k. Since λ
(

0̂, π
)
is a partition of the integer n, then using Proposition 2.1.2

one deduces that π ∈ P([n]) has k blocks if and only if λ
(

0̂, π
)
has the form of the

right-hand side of (2.1.3), for some vector on nonnegative integers (r1, ..., rn−k+1)
satisfying r1 + · · ·+ rn−k+1 = k and 1r1 + 2r2 · · ·+(n− k + 1) rn−k+1 = n. The
proof is concluded by using (2.3.8).

Remark.One defines customarily S(0, 0) = 1 and, forn ≥ 1,S(n, 0) = S(n, k) = 0,
for every k > n. The integers

S(n, k), n, k ≥ 0, (2.3.10)

defined by these conventions and by (2.3.9), are called the Stirling numbers of the
second kind. See, for example, [158, Ch.8] and [146, p.33] for some exhaustive pre-
sentations of the properties of Stirling numbers. See Section 2.4 for a connection with
Bell and Touchard polynomials.

Example 2.3.5 (i) For every n ≥ 1, one has thatS(n, 1) = 1, that is, there exists only
one partition of [n] containing exactly one block (i.e., the trivial partition {[n]}).
To see that this is consistent with (2.3.9) in the case k = 1, observe that the only
integer solution to the system

r1 + · · ·+ rn = 1, and 1r1 + 2r2 · · ·+n rn = n,

is given by r1 = · · · = rn−1 = 0 and rn = 1, and in this case

n!
(1!)r1 r1! (2!)r2 r2! · · · (n!)rnrn!

= 1.

By a similar route, one also checks that S(n, n) = 1.
(ii) Fix n ≥ 3. Wewant to compute S(n, 2), that is, the number of partitions of [n] con-
taining exactly two blocks. This case corresponds to k = 2, and one has therefore
to consider the system

r1 + · · ·+ rn−1 = 2, and 1r1 + 2r2 · · ·+(n− 1) rn−1 = n.

When n is even, this system has exactly n/2 solutions, obtained by choosing either
rn/2 = 2 and rl = 0 elsewhere, or rj = rn−j = 1 and rl = 0 elsewhere, for some
j = 1, ..., n/2 − 1. On the other hand, when n is odd the system has exactly
(n − 1)/2 solutions, obtained by choosing rj = rn−j = 1 and rl = 0 elsewhere,
for some j = 1, ..., (n− 1)/2. Using (2.3.9), we therefore deduce that

S(n, 2) =
(n/2)−1∑

j=1

(
n

j

)
+

1
2

(
n

n/2

)
, if n is even,

S(n, 2) =
(n−1)/2∑

j=1

(
n

j

)
, if n is odd.
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For instance S(3, 2) =
(3

1

)
= 3, S(4, 2) =

(4
1

)
+ 1

2

(4
2

)
= 4 + 3 = 7, and

S(5, 2) =
(

5
1

)
+
(

5
2

)
= 5 + 10 = 15.

The following statement contains a useful identity.

Proposition 2.3.6 Fix n ≥ 1. Let f be a function on P([n]) such that there exists a
function h on Λ(n) (the set of the partitions of n) verifying f(π) = h(λ(0̂, π)) (that
is, f only depends on the class λ(0̂, π)), one has

∑
π={b1,...,bk}∈P([n])

f(π) =
∑

λ=(1r1 2r2 ···nrn )�n

[ n
λ

]
h(λ).

The proof of Proposition 2.3.6 is elementary and left to the reader.

2.4 Bell polynomials, Stirling numbers and Touchard
polynomials

We will now connect some of the objects presented in the previous sections (in partic-
ular, the Stirling numbers of the second kind introduced in (2.3.9)) to the remarkable
classes of Bell and Touchard polynomials. These polynomials will appear later in the
book, as they often provide a neat way to express combinatorial relations between
moment and cumulants of random variables. See, for example, [13, Ch. 11] for an ex-
haustive discussion of these objects, as well as [119, Ch. 1] and [146, p. 33] and the
references therein.

Definition 2.4.1 Fix n ≥ 1. For every k ∈ {1, ..., n}, the partial Bell polynomial of
index (n, k) is the polynomial in n− k + 1 variables given by

Bn,k(x1, ..., xn−k+1) =
∑

r1,...,rn−k+1

n!
r1!r2! · · · rn−k+1!

(x1

1!

)r1 · · ·
(

xn−k+1

(n− k + 1)!

)rn−k+1

(2.4.11)

=
∑

λ=(1r1 2r2 ···nrn )�n
λ has length k

[ n
λ

]
xr1

1 × · · · × xrn−k+1

n−k+1, (2.4.12)

where the first sum runs over all vectors on nonnegative integers (r1, ..., rn−k+1) sat-
isfying r1 + · · ·+ rn−k+1 = k and 1r1 + 2r2 · · ·+(n− k + 1) rn−k+1 = n, and the

symbol
[ n
λ

]
is defined in (2.3.8). The nth complete Bell polynomial is the polynomial


