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Preface

Process mining provides a new means to improve processes in a variety of applica-
tion domains. There are two main drivers for this new technology. On the one hand,
more and more events are being recorded thus providing detailed information about
the history of processes. Despite the omnipresence of event data, most organizations
diagnose problems based on fiction rather than facts. On the other hand, vendors of
Business Process Management (BPM) and Business Intelligence (BI) software have
been promising miracles. Although BPM and BI technologies received lots of atten-
tion, they did not live up to the expectations raised by academics, consultants, and
software vendors.

Process mining is an emerging discipline providing comprehensive sets of tools
to provide fact-based insights and to support process improvements. This new disci-
pline builds on process model-driven approaches and data mining. However, process
mining is much more than an amalgamation of existing approaches. For example,
existing data mining techniques are too data-centric to provide a comprehensive un-
derstanding of the end-to-end processes in an organization. BI tools focus on sim-
ple dashboards and reporting rather than clear-cut business process insights. BPM
suites heavily rely on experts modeling idealized to-be processes and do not help
the stakeholders to understand the as-is processes.

This book presents a range of process mining techniques that help organizations
to uncover their actual business processes. Process mining is not limited to pro-
cess discovery. By tightly coupling event data and process models, it is possible to
check conformance, detect deviations, predict delays, support decision making, and
recommend process redesigns. Process mining breathes life into otherwise static
process models and puts today’s massive data volumes in a process context. Hence,
managements trends related to process improvement (e.g., Six Sigma, TQM, CPI,
and CPM) and compliance (SOX, BAM, etc.) can benefit from process mining.

Process mining, as described in this book, emerged in the last decade [102, 106].
However, the roots date back about half a century. For example, Anil Nerode pre-
sented an approach to synthesize finite-state machines from example traces in 1958
[71], Carl Adam Petri introduced the first modeling language adequately capturing
concurrency in 1962 [73], and Mark Gold was the first to systematically explore
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different notions of learnability in 1967 [45]. When data mining started to flour-
ish in the nineties, little attention was given to processes. Moreover, only recently
event logs have become omnipresent thus enabling end-to-end process discovery.
Since the first survey on process mining in 2003 [102], progress has been spectacu-
lar. Process mining techniques have become mature and supported by various tools.
Moreover, whereas initially the primary focus was on process discovery, the pro-
cess mining spectrum has broadened markedly. For instance, conformance check-
ing, multi-perspective process mining, and operational support have become integral
parts of ProM, one of the leading process mining tools.

This is the first book on process mining. Therefore, the intended audience is
quite broad. The book provides a comprehensive overview of the state-of-the-art
in process mining. It is intended as an introduction to the topic for practitioners,
students, and academics. On the one hand, the book is accessible for people that are
new to the topic. On the other hand, the book does not avoid explaining important
concepts on a rigorous manner. The book aims to be self-contained while covering
the entire process mining spectrum from process discovery to operational support.
Therefore, it also serves as a reference handbook for people dealing with BPM or
BI on a day-to-day basis.

The reader can immediately put process mining into practice due to the applica-
bility of the techniques, the availability of (open-source) process mining software,
and the abundance of event data in today’s information systems. I sincerely hope
that you enjoy reading this book and start using some of the amazing process min-
ing techniques available today.

Wil M.P. van der AalstSchleiden, Germany
December 2010
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Chapter 1
Introduction

Information systems are becoming more and more intertwined with the operational
processes they support. As a result, multitudes of events are recorded by today’s
information systems. Nevertheless, organizations have problems extracting value
from these data. The goal of process mining is to use event data to extract process-
related information, e.g., to automatically discover a process model by observing
events recorded by some enterprise system. To show the importance of process min-
ing, this chapter discusses the spectacular growth of event data and links this to the
limitations of classical approaches to business process management. To explain the
basic concepts, a small example is used. Finally, it is shown that process mining can
play an important role in realizing the promises made by contemporary management
trends such as SOX and Six Sigma.

1.1 Data Explosion

The expanding capabilities of information systems and other systems that depend on
computing, are well characterized by Moore’s law. Gordon Moore, the cofounder of
Intel, predicted in 1965 that the number of components in integrated circuits would
double every year. During the last fifty years, the growth has indeed been expo-
nential, albeit at a slightly slower pace. For example, the number of transistors on
integrated circuits has been doubling every two years. Disk capacity, performance
of computers per unit cost, the number of pixels per dollar, etc. have been growing at
a similar pace. Besides these incredible technological advances, people and organi-
zations depend more and more on computerized devices and information sources on
the Internet. The IDC Digital Universe Study of May 2010 illustrates the spectacular
growth of data [56]. This study estimates that the amount of digital information (cf.
personal computers, digital cameras, servers, sensors) stored exceeds 1 Zettabyte
and predicts that the “digital universe” will to grow to 35 Zettabytes in 2010. The
IDC study characterizes 35 Zettabytes as a “stack of DVDs reaching halfway to
Mars”. This is what we refer to as the data explosion.
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From Bits to Zettabytes
A “bit” is the smallest unit of information possible. One bit has two pos-
sible values: 1 (on) and 0 (off). A “byte” is composed of 8 bits and can
represent 28 = 256 values. To talk about larger amounts of data, multi-
ples of 1000 are used: 1 Kilobyte (KB) equals 1000 bytes, 1 Megabyte
(MB) equals 1000 KB, 1 Gigabyte (GB) equals 1000 MB, 1 Terabyte (TB)
equals 1000 GB, 1 Petabyte (PB) equals 1000 TB, 1 Exabyte (EB) equals
1000 PB, and 1 Zettabyte (ZB) equals 1000 EB. Hence, 1 Zettabyte is
1021 = 1,000,000,000,000,000,000,000 bytes. Note that here we used the In-
ternational System of Units (SI) set of unit prefixes, also known as SI prefixes,
rather than binary prefixes. If we assume binary prefixes, then 1 Kilobyte is
210 = 1024 bytes, 1 Megabyte is 220 = 1,048,576 bytes, and 1 Zettabyte is
270 ≈ 1.18 × 1021 bytes.

Most of the data stored in the digital universe is unstructured and organizations
have problems dealing with such large quantities of data. One of the main challenges
of today’s organizations is to extract information and value from data stored in their
information systems.

The importance of information systems is not only reflected by the spectacular
growth of data, but also by the role that these systems play in today’s business pro-
cesses as the digital universe and the physical universe are becoming more and more
aligned. For example, the “state of a bank” is mainly determined by the data stored
in the bank’s information system. Money has become a predominantly digital entity.
When booking a flight over the Internet, the customer is interacting with many orga-
nizations (airline, travel agency, bank, and various brokers), often without actually
realizing it. If the booking is successful, the customer receives an e-ticket. Note that
an e-ticket is basically a number, thus illustrating the alignment between the digi-
tal and physical universe. When the SAP system of a large manufacturer indicates
that a particular product is out of stock, it is impossible to sell or ship the product
even when it is available in physical form. Technologies such as RFID (Radio Fre-
quency Identification), GPS (Global Positioning System), and sensor networks will
stimulate a further alignment of the digital universe and the physical universe. RFID
tags make it possible to track and trace individual items. Also note that more and
more devices are being monitored. For example, Philips Healthcare is monitoring
its medical equipment (e.g., X-ray machines and CT scanners) all over the world.
This helps Philips to understand the needs of customers, test their systems under
realistic circumstances, anticipate problems, service systems remotely, and learn
from recurring problems. The success of the “App Store” of Apple illustrates that
location-awareness combined with a continuous Internet connection enables new
ways to pervasively intertwine the digital universe and the physical universe.

The growth of a digital universe that is well-aligned with processes in organi-
zations makes it possible to record and analyze events. Events may range from the
withdrawal of cash from an ATM, a doctor setting the dosage of an X-ray machine,
a citizen applying for a driver license, the submission of a tax declaration, and the
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receipt of an e-ticket number by a traveler. The challenge is to exploit event data in
a meaningful way, for example, to provide insights, identify bottlenecks, anticipate
problems, record policy violations, recommend countermeasures, and streamline
processes. This is what process mining is all about!

1.2 Limitations of Modeling

Process mining, i.e., extracting valuable, process-related information from event
logs, complements existing approaches to Business Process Management (BPM).
BPM is the discipline that combines knowledge from information technology and
knowledge from management sciences and applies this to operational business pro-
cesses [93, 127]. It has received considerable attention in recent years due to its
potential for significantly increasing productivity and saving cost. BPM can be seen
as an extension of Workflow Management (WFM). WFM primarily focuses on the
automation of business processes [57, 61, 98], whereas BPM has a broader scope:
from process automation and process analysis to process management and the or-
ganization of work. On the one hand, BPM aims to improve operational business
processes, possibly without the use of new technologies. For example, by modeling
a business process and analyzing it using simulation, management may get ideas
on how to reduce costs while improving service levels. On the other hand, BPM
is often associated with software to manage, control, and support operational pro-
cesses. This was the initial focus of WFM. Traditional WFM technology aims at
the automation of business processes in a rather mechanistic manner without much
attention for human factors and management support.

Process-Aware Information Systems (PAISs) include the traditional WFM sys-
tems, but also include systems that provide more flexibility or support specific tasks
[37]. For example, larger ERP (Enterprise Resource Planning) systems (SAP, Ora-
cle), CRM (Customer Relationship Management) systems, rule-based systems, call
center software, high-end middleware (WebSphere), etc. can be seen as process-
aware, although they do not necessarily control processes through some generic
workflow engine. Instead, these systems have in common that there is an explicit
process notion and that the information system is aware of the processes it supports.
Also a database system or e-mail program may be used to execute steps in some
business process. However, such software tools are not “aware” of the processes
they are used in. Therefore, they are not actively involved in the management and
orchestration of the processes they are used for. Some authors use the term BPMS
(BPM system), or simply PMS (Process Management System), to refer systems that
are “aware” of the processes they support. We use the term PAIS to stress that the
scope is much broader than conventional workflow technology.

BPM and PAIS have in common that they heavily rely on process models.
A plethora of notations exists to model operational business processes (e.g., Petri
nets, BPMN, UML, and EPCs), some of which will be discussed in the next chapter.
These notations have in common that processes are described in terms of activities
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Fig. 1.1 A Petri net modeling the handling of compensation requests

(and possibly subprocesses). The ordering of these activities is modeled by describ-
ing casual dependencies. Moreover, the process model may also describe temporal
properties, specify the creation and use of data, e.g., to model decisions, and stipu-
late the way that resources interact with the process (e.g., roles, allocation rules, and
priorities).

Figure 1.1 shows a process model expressed in terms of a Petri net [35]. The
model describes the handling of a request for compensation within an airline. Cus-
tomers may request compensation for various reasons, e.g., a delayed or canceled
flight. As Fig. 1.1 shows, the process starts by registering the request. This activity
is modeled by transition register request. Each transition is represented by a square.
Transitions are connected through places that model possible states of the process.
Each place is represented by a circle. In a Petri net a transition is enabled, i.e., the
corresponding activity can occur, if all input places hold a token. Transition regis-
ter request has only one input place (start) and this place initially contains a token
to represent the request for compensation. Hence, the corresponding activity is en-
abled and can occur. This is also referred to as firing. When firing, the transition
consumes one token from each of its input places and produces one token for each
of its output places. Hence, the firing of transition register request results in the
removal of the token from input place start and the production of two tokens: one
for output place c1 and one for output place c2. Tokens are shown as black dots.
The configuration of tokens over places—in this case the state of the request—is
referred to as marking. Figure 1.1 shows the initial marking consisting of one token
in place start. The marking after firing transition register request has two tokens:
one in place c1 and one in place c2. After firing transition register request, three
transitions are enabled. The token in place c2 enables transition check ticket. This
transition models an administrative check to see whether the customer is eligible
to issue a request. For example, while executing check ticket it is verified whether
the customer indeed has a ticket issued by the airline. In parallel, the token in c1
enables both examine thoroughly and examine casually. Firing examine thoroughly
will remove the token from c1, thus disabling examine casually. Similarly, the oc-
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Fig. 1.2 The same process modeled in terms of BPMN

currence of examine casually will disable examine thoroughly. In other words, there
is a choice between these two activities. Transition examine thoroughly is executed
for requests that are suspicious or complex. Straightforward requests only need a
casual examination. Firing check ticket does not disable any other transition, i.e.,
it can occur concurrently with examine thoroughly or examine casually. Transition
decide is only enabled if both input places contain a token. The ticket needs to be
checked (token in place c4) and the casual or thorough examination of the request
has been conducted (token in place c3). Hence, the process synchronizes before
making a decision. Transition decide consumes two tokens and produces one token
for c5. Three transitions share c5 as an input place, thus modeling the three pos-
sible outcomes of the decision. The requested compensation is paid (transition pay
compensation fires), the request is declined (transition reject request fires), or fur-
ther processing is needed (transition reinitiate request fires). In the latter case, the
process returns to the state marking places c1 and c2: transition reinitiate request
consumes a token from c5 and produces a token for each of its output places. This
was the marking directly following the occurrence of register request. In principle,
several iterations are possible. The process ends after paying the compensation or
rejecting the request.

Figure 1.1 models the process as a Petri net. There exist many different notations
for process models. Figure 1.2 models the same process in terms of a so-called
BPMN diagram [72, 127]. The Business Process Modeling Notation (BPMN) uses
explicit gateways rather than places to model the control-flow logic. The diamonds
with a “×” sign denote XOR split/join gateways, whereas diamonds with a “+” sign
denote AND split/join gateways. The diamond directly following activity register
request is an XOR-join gateway. This gateway is used to be able to “jump back”
after making the decision to reinitiate the request. After this XOR-join gateway,
there is an AND-split gateway to model that the checking of the ticket can be done
in parallel with the selected examination type (thorough or casual). The remainder
of the BPMN diagram is self explanatory as the behavior is identical to the Petri net
described before.

Figures 1.1 and 1.2 show only the control-flow, i.e., the ordering of activities
for the process described earlier. This is a rather limited view on business processes.
Therefore, most modeling languages offer notations for modeling other perspectives
such as the organizational or resource perspective (“The decision needs to be made
by a manager”), the data perspective (“After four iteration always a decision is made
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unless more than 1 million Euro is claimed”), and the time perspective (“After two
weeks the problem is escalated”). Although there are important differences between
the various process modeling languages, we do not elaborate one these in this book.
Instead, we refer to the systematic comparisons in the context of the Workflow Pat-
terns Initiative [101, 130]. This allows us to focus on the role that process models
play in BPM.

What Are Process Models Used for?

• Insight: while making a model, the modeler is triggered to view the process
from various angles.

• Discussion: the stakeholders use models to structure discussions.
• Documentation: processes are documented for instructing people or certi-

fication purposes (cf. ISO 9000 quality management).
• Verification: process models are analyzed to find errors in systems or pro-

cedures (e.g., potential deadlocks).
• Performance analysis: techniques like simulation can be used to understand

the factors influencing response times, service levels, etc.
• Animation: models enable end users to “play out” different scenarios and

thus provide feedback to the designer.
• Specification: models can be used to describe a PAIS before it is imple-

mented and can hence serve as a “contract” between the developer and the
end user/management.

• Configuration: models can be used to configure a system.

Clearly, process models play an important role in larger organizations. When re-
designing processes and introducing new information systems, process models are
used for a variety of reasons. Typically, two types of models are used: (a) informal
models and (b) formal models (also referred to as “executable” models). Informal
models are used for discussion and documentation whereas formal models are used
for analysis or enactment (i.e., the actual execution of process). On the one end of the
spectrum there are “PowerPoint diagrams” showing high-level processes whereas on
the other end of the spectrum there are process models captured in executable code.
Whereas informal models are typically ambiguous and vague, formal models tend
to have a rather narrow focus or are too detailed to be understandable by the stake-
holders. The lack of alignment between both types of models has been discussed
extensively in BPM literature [37, 53, 90, 93, 100, 127, 131]. Here, we would like
to provide another view on the matter. Independent of the kind of model—informal
or formal—one can reflect on the alignment between model and reality. A process
model used to configure a workflow management system is probably well-aligned
with reality as the model is used to force people to work in a particular way. Unfor-
tunately, most hand-made models are disconnected from reality and provide only an
idealized view on the processes at hand. Moreover, also formal models that allow
for rigorous analysis techniques may have little to do with the actual process.
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The value of models is limited if too little attention is paid to the alignment of
model and reality. Process models become “paper tigers” when the people involved
cannot trust them. For example, it makes no sense to conduct simulation experi-
ments while using a model that assumes an idealized version of the real process.
It is likely that—based on such an idealized model—incorrect redesign decisions
are made. It is also precarious to start a new implementation project guided by
process models that hide reality. A system implemented on the basis of idealized
models is likely to be disruptive and unacceptable for end users. A nice illustra-
tion is the limited quality of most reference models. Reference models are used in
the context of large enterprise systems such as SAP [25] but also to document pro-
cesses for particular branches, cf. the NVVB (Nederlandse Vereniging Voor Burg-
erzaken) models describing the core processes in Dutch municipalities. The idea is
that “best practices” are shared among different organizations. Unfortunately, the
quality of such models leaves much to be desired. For example, the SAP reference
model has very little to do with the processes actually supported by SAP. In fact,
more than 20 percent of the SAP models contain serious flaws (deadlocks, live-
locks, etc.) [66]. Such models are not aligned with reality and, thus, have little value
for end users.

Given (a) the interest in process models, (b) the abundance of event data, and
(c) the limited quality of hand-made models, it seems worthwhile to relate event
data to process models. This way the actual processes can be discovered and exist-
ing process models can be evaluated and enhanced. This is precisely what process
mining aims to achieve.

1.3 Process Mining

To position process mining, we first describe the so-called BPM life-cycle using
Fig. 1.3. The life-cycle describes the different phases of managing a particular busi-
ness process. In the design phase, a process is designed. This model is transformed
into a running system in the configuration/implementation phase. If the model is
already in executable form and a WFM or BPM system is already running, this
phase may be very short. However, if the model is informal and needs to be hard-
coded in conventional software, this phase may take substantial time. After the sys-
tem supports the designed processes, the enactment/monitoring phase starts. In this
phase, the processes are running while being monitored by management to see if
any changes are needed. Some of these changes are handled in the adjustment phase
shown in Fig. 1.3. In this phase, the process is not redesigned and no new software
is created; only predefined controls are used to adapt or reconfigure the process. The
diagnosis/requirements phase evaluates the process and monitors emerging require-
ments due to changes in the environment of the process (e.g., changing policies,
laws, competition). Poor performance (e.g., inability to meet service levels) or new
demands imposed by the environment may trigger a new iteration of the BPM life-
cycle starting with the redesign phase.
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Fig. 1.3 The BPM life-cycle showing the different uses of process models

As Fig. 1.3 shows, process models play a dominant role in the (re)design and
configuration/implementation phases, whereas data plays a dominant role in the
enactment/monitoring and diagnosis/requirements phases. The figure also lists the
different ways in which process models are used (as identified in Sect. 1.2). Until
recently, there were few connections between the data produced while executing
the process and the actual process design. In fact, in most organizations the diag-
nosis/requirements phase is not supported in a systematic and continuous manner.
Only severe problems or major external changes will trigger another iteration of the
life-cycle, and factual information about the current process is not actively used in
redesign decisions. Process mining offers the possibility to truly “close” the BPM
life-cycle. Data recorded by information systems can be used to provide a better
view on the actual processes, i.e., deviations can be analyzed and the quality of
models can be improved.

Process mining is a relative young research discipline that sits between machine
learning and data mining on the one hand and process modeling and analysis on
the other hand. The idea of process mining is to discover, monitor and improve real
processes (i.e., not assumed processes) by extracting knowledge from event logs
readily available in today’s systems.

Figure 1.4 shows that process mining establishes links between the actual pro-
cesses and their data on the one hand and process models on the other hand.
As explained in Sect. 1.1, the digital universe and the physical universe become
more and more aligned. Today’s information systems log enormous amounts of
events. Classical WFM systems (e.g., Staffware and COSA), BPM systems (e.g.,
BPM|one by Pallas Athena, SmartBPM by Pegasystems, FileNet, Global 360, and
Teamwork by Lombardi Software), ERP systems (e.g., SAP Business Suite, Ora-
cle E-Business Suite, and Microsoft Dynamics NAV), PDM systems (e.g., Wind-
chill), CRM systems (e.g., Microsoft Dynamics CRM and SalesForce), middleware
(e.g., IBM’s WebSphere and Cordys Business Operations Platform), and hospital
information systems (e.g., Chipsoft and Siemens Soarian) provide detailed infor-
mation about the activities that have been executed. Figure 1.4 refers to such data
as event logs. All of the PAISs just mentioned directly provide such event logs.
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Fig. 1.4 Positioning of the three main types of process mining: discovery, conformance, and en-
hancement

However, most information systems store such information in unstructured form,
e.g., event data is scattered over many tables or needs to be tapped off from sub-
systems exchanging messages. In such cases, event data exist but some efforts are
needed to extract them. Data extraction is an integral part of any process mining
effort.

Let us assume that it is possible to sequentially record events such that each
event refers to an activity (i.e., a well-defined step in the process) and is related to
a particular case (i.e., a process instance). Consider, for example, the handling of
requests for compensation modeled in Fig. 1.1. The cases are individual requests
and per case a trace of events can be recorded. An example of a possible trace
is 〈register request, examine casually, check ticket, decide, reinitiate request, check
ticket, examine thoroughly, decide, pay compensation〉. Here activity names are used
to identify events. However, there are two decide events that occurred at different
times (the fourth and eighth event of the trace), produced different results, and may
have been conducted by different people. Obviously, it is important to distinguish
these two decisions. Therefore, most event logs store additional information about
events. In fact, whenever possible, process mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the activity, the
timestamp of the event, or data elements recorded with the event (e.g., the size of an
order).

Event logs can be used to conduct three types of process mining as shown in
Fig. 1.4.
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The first type of process mining is discovery. A discovery technique takes an
event log and produces a model without using any a-priori information. An example
is the α-algorithm [103] that will be described in Chap. 5. This algorithm takes
an event log and produces a Petri net explaining the behavior recorded in the log.
For example, given sufficient example executions of the process shown in Fig. 1.1,
the α-algorithm is able to automatically construct the Petri net without using any
additional knowledge. If the event log contains information about resources, one can
also discover resource-related models, e.g., a social network showing how people
work together in an organization.

The second type of process mining is conformance. Here, an existing process
model is compared with an event log of the same process. Conformance check-
ing can be used to check if reality, as recorded in the log, conforms to the model
and vice versa. For instance, there may be a process model indicating that purchase
orders of more than one million Euro require two checks. Analysis of the event
log will show whether this rule is followed or not. Another example is the check-
ing of the so-called “four-eyes” principle stating that particular activities should
not be executed by one and the same person. By scanning the event log using a
model specifying these requirements, one can discover potential cases of fraud.
Hence, conformance checking may be used to detect, locate and explain devia-
tions, and to measure the severity of these deviations. An example is the confor-
mance checking algorithm described in [80]. Given the model shown in Fig. 1.1
and a corresponding event log, this algorithm can quantify and diagnose devia-
tions.

The third type of process mining is enhancement. Here, the idea is to extend
or improve an existing process model using information about the actual process
recorded in some event log. Whereas conformance checking measures the alignment
between model and reality, this third type of process mining aims at changing or
extending the a-priori model. One type of enhancement is repair, i.e., modifying the
model to better reflect reality. For example, if two activities are modeled sequentially
but in reality can happen in any order, then the model may be corrected to reflect
this. Another type of enhancement is extension, i.e., adding a new perspective to
the process model by cross-correlating it with the log. An example is the extension
of a process model with performance data. For instance, by using timestamps in
the event log of the “request for compensation” process, one can extend Fig. 1.1
to show bottlenecks, service levels, throughput times, and frequencies. Similarly,
Fig. 1.1 can be extended with information about resources, decision rules, quality
metrics, etc.

As indicated earlier, process models such as depicted in Figs. 1.1 and 1.2 show
only the control-flow. However, when extending process models, additional perspec-
tives are added. Moreover, discovery and conformance techniques are not limited to
control-flow. For example, one can discover a social network and check the validity
of some organizational model using an event log. Hence, orthogonal to the three
types of mining (discovery, conformance, and enhancement), different perspectives
can be identified.
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In the remainder, we consider the following perspectives.

• The control-flow perspective focuses on the control-flow, i.e., the ordering
of activities. The goal of mining this perspective is to find a good character-
ization of all possible paths, e.g., expressed in terms of a Petri net or some
other notation (e.g., EPCs, BPMN, and UML ADs).

• The organizational perspective focuses on information about resources hid-
den in the log, i.e., which actors (e.g., people, systems, roles, and depart-
ments) are involved and how are they related. The goal is to either structure
the organization by classifying people in terms of roles and organizational
units or to show the social network.

• The case perspective focuses on properties of cases. Obviously, a case can
be characterized by its path in the process or by the originators working
on it. However, cases can also be characterized by the values of the corre-
sponding data elements. For example, if a case represents a replenishment
order, it may be interesting to know the supplier or the number of products
ordered.

• The time perspective is concerned with the timing and frequency of events.
When events bear timestamps it is possible to discover bottlenecks, mea-
sure service levels, monitor the utilization of resources, and predict the re-
maining processing time of running cases.

Note that the different perspectives are partially overlapping and non-exhaustive.
Nevertheless, they provide a good characterization of the aspects that process min-
ing aims to analyze.

In most examples given thus far it is assumed that process mining is done off-line,
i.e., processes are analyzed afterward to see how they can be improved or better un-
derstood. However, more and more process mining techniques can also be used in
an online setting. We refer to this as operational support. An example is the detec-
tion of nonconformance at the moment the deviation actually takes place. Another
example is time prediction for running cases, i.e., given a partially executed case
the remaining processing time is estimated based on historic information of similar
cases. This illustrates that the “process mining spectrum” is broad and not limited
to process discovery. In fact, today’s process mining techniques are indeed able to
support the whole BPM life-cycle shown in Fig. 1.3. Process mining is not only
relevant for the design and diagnosis/requirements phases, but also for the enact-
ment/monitoring and adjustment phases.

1.4 Analyzing an Example Log

After providing an overview of process mining and positioning it in the broader
BPM discipline, we use the event log shown in Table 1.1 to clarify some of the foun-
dational concepts. The table shows just a fragment of a possible log corresponding
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to the handling of requests for compensation. Each line presents one event. Note
that events are already grouped per case. Case 1 has five associated events. The first
event of Case 1 is the execution of activity register request by Pete on December
30th, 2010. Table 1.1 also shows a unique id for this event: 35654423. This is merely
used for the identification of the event, e.g., to distinguish it from event 35654483
that also corresponds to the execution of activity register request (first event of sec-
ond case). Table 1.1 shows a date and a timestamp for each event. In some event
logs, this information is more coarse-grained and only a date or partial ordering of
events is given. In other logs, there may be more elaborate timing information also
showing when the activity was started, when it was completed, and sometimes even
when it was offered to the resource. The times shown in Table 1.1 should be inter-
preted as completion times. In this particular event log, activities are considered to
be atomic and the table does not reveal the duration of activities. In the table, each
event is associated to a resource. In some event logs, this information will be miss-
ing. In other logs, more detailed information about resources may be stored, e.g., the
role a resource has or elaborate authorization data. The table also shows the costs as-
sociated to events. This is an example of a data attribute. There may be many other
data attributes. For example, in this particular example it would be interesting to
record the outcome of the different types of examinations and checks. Another data
element that could be useful for analysis is the amount of compensation requested.
This could be an attribute of the whole case or stored as an attribute of the register
request event.

Table 1.1 illustrates the typical information present in an event log. Depending
on the process mining technique used and the questions at hand, only part of this in-
formation is used. The minimal requirements for process mining are that any event
can be related to both a case and an activity and that events within a case are or-
dered. Hence, the “case id” and “activity” columns in Table 1.1 represent the bare
minimum for process mining. By projecting the information in these two columns,
we obtain the more compact representation shown in Table 1.2. In this table, each
case is represented by a sequence of activities also referred to as trace. For clarity,
the activity names have been transformed into single-letter labels, e.g., a denotes
activity register request.

Process mining algorithms for process discovery can transform the information
shown in Table 1.2 into process models. For instance, the basic α-algorithm [103]
discovers the Petri net described earlier when providing it with the input data in
Table 1.2. Figure 1.5 shows the resulting model with the compact labels just intro-
duced. It is easy to check that all six traces in Table 1.2 are possible in the model.
Let us replay the trace of the first case—〈a, b, d, e,h〉—to show that the trace “fits”
(i.e., conforms to) the model. In the initial marking shown in Fig. 1.5, a is indeed
enabled because of the token in start. After firing a places c1 and c2 are marked,
i.e., both places contain a token. b is enabled at this marking and its execution re-
sults in the marking with tokens in c2 and c3. Now we have executed 〈a, b〉 and
the sequence 〈d, e,h〉 remains. The next event d is indeed enabled and its execution
results in the marking enabling e (tokens in places c3 and c4). Firing e results in the
marking with one token in c5. This marking enables the final event h in the trace.
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Table 1.1 A fragment of some event log: each line corresponds to an event

Case id Event id Properties

Timestamp Activity Resource Cost . . .

1 35654423 30-12-2010:11.02 Register request Pete 50 . . .

35654424 31-12-2010:10.06 Examine thoroughly Sue 400 . . .

35654425 05-01-2011:15.12 Check ticket Mike 100 . . .

35654426 06-01-2011:11.18 Decide Sara 200 . . .

35654427 07-01-2011:14.24 Reject request Pete 200 . . .

2 35654483 30-12-2010:11.32 Register request Mike 50 . . .

35654485 30-12-2010:12.12 Check ticket Mike 100 . . .

35654487 30-12-2010:14.16 Examine casually Pete 400 . . .

35654488 05-01-2011:11.22 Decide Sara 200 . . .

35654489 08-01-2011:12.05 Pay compensation Ellen 200 . . .

3 35654521 30-12-2010:14.32 Register request Pete 50 . . .

35654522 30-12-2010:15.06 Examine casually Mike 400 . . .

35654524 30-12-2010:16.34 Check ticket Ellen 100 . . .

35654525 06-01-2011:09.18 Decide Sara 200 . . .

35654526 06-01-2011:12.18 Reinitiate request Sara 200 . . .

35654527 06-01-2011:13.06 Examine thoroughly Sean 400 . . .

35654530 08-01-2011:11.43 Check ticket Pete 100 . . .

35654531 09-01-2011:09.55 Decide Sara 200 . . .

35654533 15-01-2011:10.45 Pay compensation Ellen 200 . . .

4 35654641 06-01-2011:15.02 Register request Pete 50 . . .

35654643 07-01-2011:12.06 Check ticket Mike 100 . . .

35654644 08-01-2011:14.43 Examine thoroughly Sean 400 . . .

35654645 09-01-2011:12.02 Decide Sara 200 . . .

35654647 12-01-2011:15.44 Reject request Ellen 200 . . .

5 35654711 06-01-2011:09.02 Register request Ellen 50 . . .

35654712 07-01-2011:10.16 Examine casually Mike 400 . . .

35654714 08-01-2011:11.22 Check ticket Pete 100 . . .

35654715 10-01-2011:13.28 Decide Sara 200 . . .

35654716 11-01-2011:16.18 Reinitiate request Sara 200 . . .

35654718 14-01-2011:14.33 Check ticket Ellen 100 . . .

35654719 16-01-2011:15.50 Examine casually Mike 400 . . .

35654720 19-01-2011:11.18 Decide Sara 200 . . .

35654721 20-01-2011:12.48 Reinitiate request Sara 200 . . .

35654722 21-01-2011:09.06 Examine casually Sue 400 . . .

35654724 21-01-2011:11.34 Check ticket Pete 100 . . .

35654725 23-01-2011:13.12 Decide Sara 200 . . .

35654726 24-01-2011:14.56 Reject request Mike 200 . . .
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Table 1.1 (Continued)

Case id Event id Properties

Timestamp Activity Resource Cost . . .

6 35654871 06-01-2011:15.02 Register request Mike 50 . . .

35654873 06-01-2011:16.06 Examine casually Ellen 400 . . .

35654874 07-01-2011:16.22 Check ticket Mike 100 . . .

35654875 07-01-2011:16.52 Decide Sara 200 . . .

35654877 16-01-2011:11.47 Pay compensation Mike 200 . . .

. . . . . . . . . . . . . . . . . . . . .

Table 1.2 A more compact
representation of log shown
in Table 1.1: a = register
request, b = examine
thoroughly, c = examine
casually, d = check ticket,
e = decide, f = reinitiate
request, g = pay
compensation, and h = reject
request

Case id Trace

1 〈a, b, d, e,h〉
2 〈a, d, c, e, g〉
3 〈a, c, d, e, f, b, d, e, g〉
4 〈a, d, b, e,h〉
5 〈a, c, d, e, f, d, c, e, f, c, d, e,h〉
6 〈a, c, d, e, g〉
. . . . . .

Fig. 1.5 The process model discovered by the α-algorithm [103] based on the set of traces
{〈a, b, d, e,h〉, 〈a, d, c, e, g〉, 〈a, c, d, e, f, b, d, e, g〉, 〈a, d, b, e,h〉, 〈a, c, d, e, f, d, c, e, f, c, d,

e,h〉, 〈a, c, d, e, g〉}

After executing h, the case ends in the desired final marking with just a token in
place end. Similarly, it can be checked that the other five traces shown in Table 1.2
are also possible in the model and that all of these traces result in the marking with
just a token in place end.
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Fig. 1.6 The process model discovered by the α-algorithm based on Cases 1 and 4, i.e., the set of
traces {〈a, b, d, e,h〉, 〈a, d, b, e,h〉}

The Petri net shown in Fig. 1.5 also allows for traces not present in Table 1.2. For
example, the traces 〈a, d, c, e, f, b, d, e, g〉 and 〈a, c, d, e, f, c, d, e, f, c, d, e, f, c,

d, e, f, b, d, e, g〉 are also possible. This is a desired phenomenon as the goal is
not to represent just the particular set of example traces in the event log. Process
mining algorithms need to generalize the behavior contained in the log to show the
most likely underlying model that is not invalidated by the next set of observations.
One of the challenges of process mining is to balance between “overfitting” (the
model is too specific and only allows for the “accidental behavior” observed) and
“underfitting” (the model is too general and allows for behavior unrelated to the
behavior observed).

When comparing the event log and the model, there seems to be a good balance
between “overfitting” and “underfitting”. All cases start with a and end with either
g or h. Every e is preceded by d and one of the examination activities (b or c).
Moreover, e is followed by f , g, or h. The repeated execution of b or c, d , and e

suggests the presence of a loop. These characteristics are adequately captured by
the net of Fig. 1.5.

Let us now consider an event log consisting of only two traces 〈a, b, d, e,h〉 and
〈a, d, b, e,h〉, i.e., Cases 1 and 4 of the original log. For this log, the α-algorithm
constructs the Petri net shown in Fig. 1.6. This model only allows for two traces
and these are exactly the ones in the small event log. b and d are modeled as being
concurrent because they can be executed in any order. For larger and more complex
models, it is important to discover concurrency. Not modeling concurrency typi-
cally results in large “Spaghetti-like” models in which the same activity needs to be
duplicated.1

The α-algorithm is just one of many possible process discovery algorithms. For
real-life logs, more advanced algorithms are needed to better balance between “over-
fitting” and “underfitting” and to deal with “incompleteness” (i.e., logs containing
only a small fraction of the possible behavior due to the large number of alternatives)
and “noise” (i.e., logs containing exceptional/infrequent behavior that should not au-
tomatically be incorporated in the model). This book will describe several of such
algorithms and guide the reader in selecting one. In this section, we used Petri nets

1See, for example, Figs.12.1 and 12.10 to understand why we use the term “Spaghetti” to refer to
models that are difficult to comprehend.
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Table 1.3 Another event log:
Cases 7, 8, and 10 are not
possible according to Fig. 1.5

Case id Trace

1 〈a, b, d, e,h〉
2 〈a, d, c, e, g〉
3 〈a, c, d, e, f, b, d, e, g〉
4 〈a, d, b, e,h〉
5 〈a, c, d, e, f, d, c, e, f, c, d, e,h〉
6 〈a, c, d, e, g〉
7 〈a,b, e,g〉
8 〈a,b,d, e〉
9 〈a, d, c, e, f, d, c, e, f, b, d, e,h〉

10 〈a, c,d, e, f,b,d,g〉

to represent the discovered process models, because Petri nets are a succinct way
of representing processes and have unambiguous and simple semantics. However,
most mining techniques are independent of the desired representation. For instance,
the discovered Petri net model shown in Fig. 1.5 can be (automatically) transformed
into the BPMN model shown in Fig. 1.2.

As explained in Sect. 1.3, process mining is not limited to process discovery.
Event logs can be used to check conformance and enhance existing models. More-
over, different perspectives may be taken into account. To illustrate this, let us first
consider the event log shown in Table 1.3. The first six cases are as before. It is easy
to see that Case 7 with trace 〈a, b, e, g〉 is not possible according to the model in
Fig. 1.5. The model requires the execution of d before e, but d did not occur. This
means that the ticket was not checked at all before making a decision and paying
compensation. Conformance checking techniques aim at discovering such discrep-
ancies [80]. When checking the conformance of the remainder of the event log, it
can also be noted that Cases 8 and 10 do not conform either. Case 9 conforms al-
though it is not identical to one of the earlier traces. Trace 〈a, b, d, e〉 (i.e., Case 8)
has the problem that no concluding action was taken (rejection or payment). Trace
〈a, c, d, e, f, b, d, g〉 (Case 10) has the problem that the airline paid compensation
without making a final decision. Note that conformance can be viewed from two
angles: (a) the model does not capture the real behavior (“the model is wrong”)
and (b) reality deviates from the desired model (“the event log is wrong”). The first
viewpoint is taken when the model is supposed to be descriptive, i.e., capture or pre-
dict reality. The second viewpoint is taken when the model is normative, i.e., used
to influence or control reality.

The original event log shown in Table 1.1 also contains information about re-
sources, timestamps and costs. Such information can be used to discover other per-
spectives, check the conformance of models that are not pure control-flow models,
and to extend models with additional information. For example, one could derive
a social network based on the interaction patterns between individuals. The social
network can be based on the “handover of work” metric, i.e., the more frequent in-


