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Preface

This book is the outgrowth of work done over 30 years by the first author’s group
in the departments of Mechanical Engineering at Kyoto University, Mechanical
Systems Engineering at Toyama Prefectural University, and Mechanical and Space
Engineering at Hokkaido University. The work is concerned with basics of evapora-
tion and condensation at the vapor–liquid interface where the bulk vapor phase and
the bulk liquid phase of the same molecules coexist side by side. It focuses on phys-
ical understanding and mathematical description of interfacial phenomena in length
scales ranging from a molecular size to a usual fluid-dynamic one, such as kinetic
and fluid-dynamic boundary conditions including the evaporation and condensation
coefficients, vapor pressure and surface tension for nanodroplets, and applications
of fluid-dynamic boundary conditions to vapor bubble dynamics.

The meaning and significance of subjects to be discussed in the book are
described in some detail in Chap. 1. It is needless to say that the evaporation and
condensation are of paramount importance in various fields of engineering, physics,
chemistry, meteorology, and oceanography. As examples of current topics related to
the evaporation and condensation, we can refer to flows around aircraft in clouds,
bubble formation in liquid fuels of rockets, vapor explosion in nuclear reactors and
volcanoes, vapor bubble formation in LNG transport process, heterogeneous reac-
tion on droplet and aerosol surfaces in the atmosphere, and so on. The crucial point
in these problems can be attributed to boundary conditions at the interface for both
the Boltzmann equation and the set of Navier–Stokes equations.

It was 2005 when a kinetic boundary condition (KBC) for the Boltzmann equa-
tion was formulated in a physically correct form. However, accurate values of the
evaporation and condensation coefficients for any vapors have not been determined
up to now, and therefore, we can not obtain still now physically correct solutions
to these problems in theoretical and numerical ways. Historically, since the end of
nineteen century, it has been known that the evaporation or condensation process
requires the kinetic theory of gases for its analysis, and numerous investigations
have been made by the kinetic approach, resulting in various fruits. However, in
1990s, it has been recognized that the kinetic theory of gases on the evaporation or
condensation further needs microscopic information of molecules at the interface,
e.g., correct KBC, exact values of the evaporation and condensation coefficients
included in the KBC. Since then, molecular dynamics (MD) has received much
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attention for simulation of the evaporation and condensation, and become a pow-
erful tool to get microscopic information of the interface at atomic and molecular
levels.

The authors have engaged in investigation of the evaporation and condensation
at the interface by using their unique methodology based on MD, molecular gas
dynamics, and shock wave. Using MD, they have made numerical simulations of
molecular motions in domains consisting of the bulk vapor of argon, its liquid, and
the planar interface between them, and thereby formulated the physically correct
KBC. Furthermore, using shock waves, they have made experiments of conden-
sation for methanol and water vapors in nanometer and microsecond scales and
deduced values of the evaporation and condensation coefficients of these materials
by the aid of the polyatomic version of the Gaussian–BGK Boltzmann equation, a
governing equation in molecular gas dynamics.

The authors try to describe contents dealt with in this book as precisely as possi-
ble by restricting them to only their own work and to connect tightly them ranging
from the microscopic to macroscopic scales. The evaporation or condensation phe-
nomenon in the three space domains with utterly different length scales is analyzed
by means of MD, the Gaussian–BGK Boltzmann equation, and the set of Navier–
Stokes equations. Matching methods among the domains or the different governing
equations are presented, and the reasonable matching between the microscopic and
macroscopic scales is carried out to give the closed forms of the boundary condi-
tions for both the Gaussian–BGK Boltzmann equation and the set of Navier–Stokes
equations. A set of boundary conditions for the latter is applied to dynamics of a
single vapor bubble in liquids as an application.

However, the authors must say that they had to restrict the problems on the
boundary conditions and the evaporation and condensation coefficients to only a
single-component vapor–liquid two-phase system and to weak evaporation or con-
densation because of overwhelming difficulties of the problems. A two-phase sys-
tem consisting of a liquid and its vapor-noncondensable gas mixture is of importance
in engineering applications. However, the derivation of physically correct kinetic
and fluid-dynamic boundary conditions have not been accomplished and these are
under development. Problems of such a system as well as strong evaporation or
condensation are left as challenging subjects in the future.

The contributions to the chapters of this book are as follows: S. Fujikawa to
Chaps. 1, 3, and 4; T. Yano to Chap. 2, and Appendices A and B; M. Watan-
abe to Chap. 5 and Appendix C. In writing this book, the authors are indebted to
the following colleagues, their former Ph. D students; Prof. T. Ishiyama has con-
tributed to Chap. 2 as his Ph. D work, Prof. K. Kobayashi to Chap. 3 as his Ph. D
work, Dr. H. Yaguchi to Chap. 4 as his Ph. D work, and Drs S. Nakamura and
M. Inaba partly to Chap. 3 as their Ph. D works. Without their contributions, this
book might not have been born. The authors would also like to appreciate helps of
Mr. Y. Nozaki, the technician in the first author’s laboratory, for his fine technique
in making the experimental apparatuses, Miss K. Itagaki for typing the manuscripts,
and Mrs. Y. Fujikawa for making fine figures. Finally, the first author would like
to express his deepest gratitude to Ministry of Education, Culture, Sports, Science
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and Technology-Japan and Japan Society for the Promotion of Science for their
continuous financial supports to his work on the evaporation and condensation over
30 years. Thanks to the financial supports, he could continue to do such a challeng-
ing work and accomplish his mission.

Hokkaido, Japan Shigeo Fujikawa
Osaka, Japan Takeru Yano
Hokkaido, Japan Masao Watanabe
November, 2010
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Chapter 1
Significance of Molecular and Fluid-Dynamic
Approaches to Interface Phenomena

Abstract In this chapter, we introduce the fundamentals of the planar vapor–liquid
interface between the bulk vapor phase and the bulk liquid phase of the same
molecules, stressing some key concepts such as the transition layer between them,
the Knudsen layer near the interface in the vapor region, and the boundary con-
ditions at the interface for the Boltzmann equation and the set of Navier–Stokes
equation. The reason why measurements of the evaporation and condensation coef-
ficients in the boundary conditions have been difficult is clarified in a theoretical
way. The significance of the matching among different governing dynamics, i.e.,
molecular dynamics (MD), molecular gas dynamics, and fluid dynamics for vapor
flows near the interface is discussed to make relations among the following chapters
clear.

1.1 Vapor–Liquid Interface and Kinetic Boundary
Condition (KBC)

In fluid dynamics and molecular gas dynamics, boundary conditions are of
paramount importance because they have relevance to the drag and lift exerted on
bodies, and heat and mass transport across boundaries. Especially, the boundary
conditions for the interface of the bulk vapor phase and the bulk liquid phase, at
which evaporation or condensation occurs, involve some difficult problems [4, 11].
This is because the derivation of the boundary conditions requires detailed informa-
tion of molecular phenomena at the interface, while the governing equations such
as the set of Navier–Stokes equations in fluid dynamics and the Boltzmann equa-
tion in molecular gas dynamics can be derived from macroscopic and microscopic
conservation laws, respectively.1 In fact, recent studies on the boundary conditions
at the interface have made significant progress by molecular dynamics (MD) simu-
lations [8, 12, 16, 18, 24–26].

1 The set of Navier–Stokes equations is summarized in Appendix B at the end of this book, and
the Boltzmann equation is discussed in Sect. 2.3.
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Fig. 1.1 Profiles of averaged density for argon at 85 K for some cases of (a, b). The dashed line
denotes the saturated vapor density (ρV = 4.59 kg/m3) at 85 K

When the evaporation or condensation exists in the interface, the vapor near the
interface is in a nonequilibrium state in the sense that the velocity distribution func-
tion of molecules deviates from the Maxwellian (the Maxwell distribution function)
prescribed by a temperature of the interface,2 as will be discussed in Chap. 2. Let
us first discuss the interface in a molecular level. Figure 1.1 shows profiles of aver-
aged density ρ numerically obtained from MD simulations of argon [18]. As can
be seen, the density continuously varies between the bulk liquid density ρL and the
bulk vapor one ρV . The region where the density changes is called the (density)
transition layer. The parameters a and b in the figure represent the deviation from
the equilibrium state. The equilibrium state corresponds to a = b = 1, where
ρV = 4.59 kg/m3 (the saturated vapor density at 85 K), and ρL = 1410 kg/m3.
The vacuum evaporation state [16] is realized when a = 0. For a = b = 2
and 4, the vapors have higher densities than the saturated vapor density and negative
velocities, which means net condensation states. Note that the compression factor
p/(ρRT ) is confirmed to be nearly unity in all cases, and hence the vapor can be
regarded as an ideal gas. When the net condensation occurs, the interface moves
toward the vapor phase. We therefore introduce a moving coordinate system [16],
z∗ = [z − (Zm − vs t)]/δ and vs = Js/ρL , where Zm and δ are respectively the
center position on a fixed coordinate and the 10–90 thickness (= 0.63 nm) of the
transition layer, vs is the speed of the moving coordinate, t is the time from the
beginning of MD simulations, and Js is the nonaveraged net mass flux across the
interface.

We can see that the profiles are almost flat in the range 2 < z∗ < 4 of width 2δ in
spite of the fact that the vapor is not in a local equilibrium state. This suggests that
molecular collisions rarely happen there. In fact, the Knudsen number estimated by
Kn = �/(2δ) = 1/[√2πd2

m(ρ/m)2δ] is large (dm is the diameter of a molecule, m

2 According to molecular gas dynamics [29], an equilibrium state between the bulk vapor phase
and the bulk liquid phase is defined as the state in which the velocity distribution function f
of vapor molecules is given by the stationary Maxwellian in the coordinate system fixed at the
vapor–liquid interface. Details are discussed in Sect. 2.3.1.
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Fig. 1.2 The figure shows the whole space to be considered in this book. The space consists of
the bulk liquid phase, the transition layer, the planar vapor–liquid interface, the Knudsen layer,
and the bulk vapor phase of the same molecules in turn from the left-hand side. The space can
be classified into three regions as follows: the transition region, the nonequilibrium region, and
the local equilibrium region. The three regions obey different governing equations, i.e., molecular
dynamics (MD) in the transition region, the Boltzmann equation in the nonequilibrium region,
and the set of Navier–Stokes equations in the local equilibrium region. Open circles represent
molecules, but they are not figured in the local equilibrium region because the fluid is assumed
to be there continuum. The figure is symbolically depicted in largely different scales for the three
regions

is the mass of a molecule, and � is the mean free path of vapor molecules);3 if dm

is replaced by the parameter σ (= 0.341 nm for argon) in the Lennard-Jones 12-6
potential,4 Kn = 20.9, 13.5, and 7.3 for a = b = 1, 2, and 4, respectively. Since the
thickness δ of the transition layer is regarded as zero in the kinetic theory and the
change in the vapor condition in the range 2 < z∗ < 4 is negligible, the interface
may be defined at an arbitrary position in this range. That is, the interface locates in
the vapor phase adjacent to the vapor-side edge of the transition layer. We call it the
kinetic interface. Hereafter, the kinetic interface will be called just the interface.

As shown in Fig. 1.2, there exists a nonequilibrium region in the neighbor-
hood of the interface in the vapor region and it is called the Knudsen layer. The
extent of this layer is of the order of the mean free path of vapor molecules. The
nonequilibrium behavior of the vapor in the Knudsen layer plays an important role
in the evaporation or condensation. Vapor flows accompanied with the evaporation
or condensation across the interface should therefore be treated by molecular gas
dynamics based on the Boltzmann equation [4, 28, 29]. The Boltzmann equation
then requires the kinetic boundary condition (KBC) which prescribes the velocity
distribution of molecules leaving the interface for the vapor phase.

When the evaporation or condensation across the interface is weak, the KBC
is expressed by the product of the two-dimensional Gauss distribution with mean
zero and variance RTT for the tangential components of molecular velocity and the
one-dimensional Gauss distribution with mean zero and variance RTL , as will be

3 The mean free path is given by � = m/(
√

2πd2
mρ), Eq. (2.72) in Sect. 2.3.1.

4 See Sect. 2.2.1.
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explained in Chap. 2 [18]; the temperature TT is a linear function of energy flux
across the interface and TL is the temperature of liquid. For the weak evaporation or
condensation, TT can be regarded to be approximately equal to TL . The KBC has
also a factor including the well-defined evaporation coefficient αe and condensation
coefficient αc; αe is identical with αc in the equilibrium state. This KBC reduces
to the conventional KBC in the limit of the equilibrium state, i.e., TT = TL , but it
does not contain any arbitrary parameter unlike the conventional KBC. The authors
should note that any KBC for an arbitrarily strong evaporation or condensation has
not been derived so far and its formulation is a challenging future work.

There has been a long history over αe and αc since pioneering studies of
Hertz [15] and Kundsen [19]. For reference, values of αe and αc of water vapor are
shown in Table 1.1 for the αe-values and Table 1.2 for the αc-values; these tables
are reproduced on the basis of data of αe and αc reported in Marek and Straub’s
paper [23]. The recent MD simulation has succeeded in the determination of

Table 1.1 The evaporation coefficient αe of water

Year Author(s) αe Temperature(◦C)

1925 Rideal 0.0037–0.0042 25–30
1931 Alty 0.0083–0.0155 5.9–32
1931 Alty and Nicoll 0.0156 12.1
1933 Alty 0.0289–0.0584 −7.5–25
1935 Alty and Mackay 0.0061–0.0392 10.3–32.6
1939 Baranaev 0.033–0.034 10–50
1940 Prüger 0.02 100
1953 Hammecke and Kappler 0.045 20
1954 Hickman 0.254–0.532 5.9–7.3
1954 Hickman and Torpey 0.0047 1.2
1955 Kappler 0.0992–0.1015 3.8–20.2
1959 Fuchs 0.03–0.034 20
1964 Campbell 0.0014–0.0122 44.6–83.0
1964 Delaney et al. 0.0336–0.0545 −0.8–4.1
1965 Mendelson and Yerazunis 0.0008–0.0038 38.9–78.3
1967 Maa 1 0.05
1969 Maa 1 0.8
1971 Cammenga et al. 0.002 24–30
1971 Cammenga et al. 0.248–0.380 18
1971 Duguid and Stampfer 0.5–1 25–35
1971 Tamir and Hasson 0.10–0.30 42–50
1973 Levine 1 20–28
1975 Davies et al. 1 4–19.5
1975 Kochurova et al. 0.050–0.065 25.5–34.5
1975 Narusawa and Springer 0.038 18–27
1975 Narusawa and Springer 0.19 18–27
1976 Bonacci et al. 0.065–0.665 2.1–8.7

(avg.0.54)
1978 Barnes 0.0002 25
1987 C̆ukanov 0.008–0.034 39.8
1989 Hagen et al. 0.13 16
2005 Ishiyama et al. (MD) � 1 ≈ 36
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Table 1.2 The condensation coefficient αc of water vapor

Year Author(s) αc Temperature(◦C)

1961 Berman 1 10
1963 Nabavian and Bromley 0.35–1 7–50
1963 Wakeshima and Takata 0.015–0.020 −16.1–5.1
1964 Goldstein ≈ 0.1 25–30
1964 Jamieson 0.305 0–70
1965 Jamieson 0.35 –
1965 Tanner et al. > 0.08 100
1967 Mills and Seban 0.45–1 7.6–10.2
1968 Tanner et al. > 0.1 22–46
1969 Maa 1 0.8–8.2
1969 Wenzel 1.0 22–46
1971 Magal 0.040–0.044 25.9–82.8
1971 Tamir and Hasson 0.09–0.35 48.5–105.5
1973 Vietti and Schuster 0.21 –
1974 Chodes et al. 0.031–0.037 23.9–24.9
1974 Gollub et al. 0.010–0.012 11.4–17.5
1975 Sinnarwalla et al. 0.021–0.032 22.5–25.7
1975 Vietti and Fastook 1 20.8–23.2
1976 Vietti and Fastook 0.1–1 20
1976 Bonacci et al. 0.417–0.693 5.5–7.0
1976 Finkelstein and Tamir 0.006–0.060 60–99
1978 Neizvestnyj et al. 0.3–1 20
1986 Hatamiya and Tanaka 0.2–0.6 6.9–26.9
1987 Garnier et al. 0.01 ≈ 20–25
1989 Hagen et al. 0.01 16
2010 Fujikawa et al. � 1 17–20

αe-values for water [17] as shown in Table 1.1, although the simulation result is not
yet verified by experiments. Concerning αc, it had not been determined accurately
before the authors’ values in Table 1.2.5 We can see that the values of αe and αc

largely scatter in the range of more than one hundred times. In the next section, we
will consider theoretically the reason why the determination of the values of αe and
αc has been so difficult. Without reliable αe and αc-values, the KBC remains open
for ever.

The establishment of the KBC allows us to derive a set of boundary conditions
for the set of Navier–Stokes equations, i.e., a set of continuity, momentum, and
energy equations in the local equilibrium region, fluid-dynamics region outside the
Knudsen layer, by theoretical analysis of the Knudsen layer based on the Gaussian–
BGK Boltzmann equation [1], as will be discussed in Chap. 2. The Gaussian–BGK
Boltzmann equation is the only polyatomic version of the Boltzmann equation sat-
isfying the H-theorem. For resolving the above-mentioned problems of αe, αc, and
the boundary conditions for the set of Navier–Stokes equations, we have at present
no any consistent law or any consistent system of governing equation. We have

5 Fujikawa et al.’s experimental values are given in Fig. 3.24 in Sect. 3.6.5.
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the only theoretical method and two kinds of governing equations, i.e., MD, the
Gaussian–BGK Boltzmann equation, and the set of Navier–Stokes equations. In
this book, matching among MD, the Gaussian–BGK Boltzmann equation, and the
set of Navier–Stokes equations will be consistently done.

1.2 Why Are Measurements of αe and αc So Difficult?

In this section, we demonstrate that the difficulty in the measurement of αe and αc

lies in the existence of different time scales essential for the phase change phenom-
ena. This difficulty can be overcome by conducting the measurement of the con-
densation induced by an abrupt pressure elevation caused by the reflection of shock
wave at the interface. We therefore start with the discussion of a shock reflection
phenomenon.

1.2.1 Unsteady Nonequilibrium Condensation Induced by Shock
Wave Reflection

As mentioned in Sect. 1.1, the αe and αc-values measured in the past largely scatter
in the range of more than one hundred times. We will here discuss the reason why
these values are so different in such a wide range. The determination of αe or αc

must be made through the measurement of a small amount of net mass flux of the
evaporation or condensation at the interface in a nonequilibrium state; the measure-
ment is not feasible at the equilibrium state. Such a nonequilibrium state can be
realized by the following way. Let us consider the situation where the half-infinite
extent of a vapor is in contact with the half-infinite extent of the liquid phase of
the vapor, and these are facing each other with the plane interface between and in an
equilibrium state. As shown in Fig. 1.3, a shock wave advancing from the right-hand
side in the vapor collides with the interface and it is reflected, and propagating in
the right-hand direction as the time elapses; the time is running upward.

Just at the instant when the shock wave is reflected at the interface, the pressure,
temperature, and density of the vapor increase stepwise from the initially low state
to a high one. The temperature of the vapor at the interface changes little because of
the large difference in heat capacities of the vapor and liquid. The Knudsen layer is
formed near the interface in the vapor, and the thermal boundary layer also develops
outside the Knudsen layer with the lapse of time. The vapor pressure at the inter-
face then becomes higher than the saturated vapor pressure at the interfacial liquid
temperature.

As a result, the vapor becomes supersaturated at the interface, consequently con-
densing, and the interface moves toward right-hand side with time. The net mass
flux of condensation at the interface, which we need, can be obtained from the
measurement of interface movement. This problem has been solved by Fujikawa
et al. [10] for the system of shock tube endwall, liquid film, and vapor on the basis of
the method of matched asymptotic expansions, as will be mentioned in Sect. 3.2.2;



1.2 Why Are Measurements of αe and αc So Difficult? 7

Vapor Flow

Thermal Boundary Layer

Interface

Liquid

Vapor

Particle Path

O

T
im

e

Trajectory of 
Reflected Shock Wave

Trajectory of 
Incident Shock Wave

Fig. 1.3 The propagation process of the shock wave in the vapor advancing toward and reflecting
from the liquid surface. The time is running upward

the reflection of a shock wave at the shock tube endwall in a noncondensable gas has
been analyzed by Clarke [5]. The problem shown in Fig. 1.3 is a simplified version
of Ref. [10] and the result of its analysis can be summarized as follows.

For simplicity, we will assume α = αe = αc and adopt a set of fluid-dynamic
boundary conditions at the interface for the set of Navier–Stokes equations as fol-
lows [1, 28, 29]6:

u√
2RTL

= p − p∗

p∗
1

C∗
4 − 2

√
π 1−α

α

, (1.1)

T − TL

TL
= d∗

4
u√

2RTL
, (1.2)

where TL is the liquid temperature at the interface, T is the vapor temperature at
the interface, p∗ is the saturated vapor pressure at TL , p is the vapor pressure at
the interface, u is the vapor velocity at the interface, R is the gas constant per unit
mass, and C∗

4 = −2.13204 and d∗
4 = −0.44675 for Boltzmann–Krook–Welander

(BKW) model; C∗
4 and d∗

4 are slightly different among models such as BKW and

6 This assumption holds for the weak evaporation or condensation which takes place near the
equilibrium state, as will be discussed in Chaps. 2 and 3. Equations (1.1) and (1.2) are respectively
Eqs. (2.138) and (2.139) in Sect. 2.5.3 for the case that the vapor flow is one-dimensional and the
flow velocity is much larger than the moving velocity of the interface. And, also see Footnote 20
in Sect. 2.5.3.
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hard-sphere models.7 The more general boundary conditions for polyatomic gases
will be given in Chap. 2 in this book, but Eqs. (1.1) and (1.2) suffice for the present
purpose. Fujikawa et al. have solved the set of one-dimensional Navier–Stokes equa-
tions of vapor and the heat conduction equation of lquid together with Eqs. (1.1) and
(1.2) by the method of matched asymptotic expansions [9, 10]. The time-dependent
position δ(t) of the interface from its initial one is then described at the level of the
first approximation by

dδ(t)

dt
=

√
2RTL(t)

φ(α)

ρ∞
ρL

T∞
TL(t)

p∞ − p∗(TL)

p∗(TL)
, (1.3)

TL(t) = T0 + ρL L

kL

√
DL

π

∫ t

0

dδ(t̃)/dt̃√
t − t̃

dt̃ . (1.4)

Here, t is the time measured from the instant of the step change of the state, T0 is
the initial temperature of the vapor and liquid, ρ∞ and T∞ are the vapor density and
temperature far from the interface behind the reflected shock wave, ρL is the liquid
density, DL is the thermal diffusivity of liquid, kL is the thermal conductivity of
liquid, L is the latent heat of condensation, and φ(α) and p∗(TL) are respectively
given by

φ(α) = −C∗
4 + 2

√
π

1 − α

α
, (1.5)

p∗(TL) = p∗
0

[
1 − A + A

T0
TL(t)

]
, (1.6)

where p∗
0 = p∗(T0) and A = bT0/(c + T0)

2 in which b and c are given later
[Eqs. (1.9) and (1.10)]; ρL , DL , kL , and L are constant values. Equation (1.6) is
obtained from Antoine’s equation [30] by Taylor’s expansion, and p∗(T0) = p∗

0 as
it should be so; Antoine’s equation is given below in Eq. (1.7).

The saturated vapor pressure p∗ and the saturated vapor density ρ∗ can be
obtained by Antoine’s equation and the state equation for ideal gases:

p∗ = exp

(
a − b

c + TL

)
, (1.7)

ρ∗ = p∗

RTL
, (1.8)

7 The values of C∗
4 and d∗

4 are given in Eq. (2.134) for hard-sphere gas and Eq. (2.136) for the
BKW model.
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where the units of TL and p∗ are respectively (K) and (Pa), and the constant values
a, b, and c are for methanol vapor

a = 23.4803, b = 3626.55, c = −34.29, (1.9)

and for water vapor

a = 23.1964, b = 3816.44, c = −46.13. (1.10)

From Eqs. (1.3), (1.4), and (1.6), we obtain a Volterra integral equation of the
second kind on the displacement speed of the interface as follows:

dδ(t)

dt
= β1 − β2√

π

∫ t

0

dδ(t̃)/dt̃√
t − t̃

dt̃, (1.11)

where

β1 = p∞(p∞ − p∗
0)

φ(α)ρL p∗
0

√
2

RT0
,

β2 = p∞(p∞ − p∗
0 + 2Ap∞)L

φ(α)kL p∗
0

√
DL

2RT 3
0

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.12)

The solution of Eq. (1.11) can be obtained as [6]

dδ(t)

dt
= β1 exp(β2

2 t)erfc(β2
√

t), (1.13)

where

erfc(β2
√

t) = 2√
π

∫ ∞

β2
√

t
e−x2

dx . (1.14)

Integrating Eq. (1.13) with respect to the time t leads to

δ(t) = β1

β2
2

[
exp(β2

2 t)erfc(β2
√

t)+ 2√
π
β2

√
t − 1

]
. (1.15)

where δ(0) = 0. From Eqs. (1.4), (1.11), and (1.13), we obtain

TL(t) = T0 + β1ρL L
√

DL

β2kL

[
1 − exp(β2

2 t)erfc(β2
√

t)
]
. (1.16)

where TL(0) = T0. The position and temperature of the interface are respectively
described by Eqs. (1.15) and (1.16).
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1.2.2 Temporal Transition Phenomenon of Interface Displacement

Equations (1.15) and (1.16) can be classified into two cases depending on values of
the variable β2

√
t as follows:

(1) for β2
√

t � 18;

δ(t) = β1t, (1.17)

TL(t) = T0 + 2β1ρL L

kL

√
DL

π
t, (1.18)

(2) for β2
√

t 	 19;

δ(t) = 2√
π

β1

β2

√
t − β1

β2
2

, (1.19)

TL = T0 + ρL L
√

DL

kL

β1

β2
(= const.), (1.20)

where we should notice, for the following discussion, that β1 and β1/β
2
2 are depen-

dent on φ(α), i.e., α, while β1/β2 is independent of φ(α). The displacement of the
interface is drastically influenced by φ(α) and the time measured from the instant of
the step change of the state. For β2

√
t � 1, the position of the interface changes in

proportion to the time and the interface speed depends on φ(α), while for β2
√

t 	 1
the position changes in proportion to the square root of the time, and its change
gradually becomes independent of φ(α) as the time lapse and becomes strongly
dependent on thermophysical properties of the vapor and liquid. This suggests that
the position of the interface should be measured in early time stages just after the

8 For small values of x , erfc x can be expressed as follows [3]:

erfc x = 1 − erf x = 1 − 2√
π

∞∑
n=0

(−1)n x2n+1

(2n + 1)n! ,

where erf x is the error function.
9 For large values of x , erfc x can be expressed as follows [3]:

√
π

2
erfc x =

∞∫
x

e−ξ2
dξ = 1

2
e−x2

[
1

x
− 1

2x3
+ 1.3

22x5
− · · · + (−1)n−1 1.3 . . . (2n − 3)

2n−1x2n−1

]

+ (−1)n
1.3 . . . (2n − 1)

2n

∞∫
x

e−ξ2
dξ

ξ2n
.
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step change caused by the shock reflection, when we determine α through the mea-
surement of the interface displacement.

It is quite natural to notice, in the above discussion, that there exists a transition
time between the t-proportion displacement of the interface and the

√
t-proportion

one and that this time can be deduced from the relation β2
√

t = O(1). Defining the
transition time as τt when β2

√
τt = 1, we obtain

τt = 2RT 3
0

DL

[
φ(α)kL p∗

0

p∞(p∞ − p∗
0 + 2Ap∞)L

]2

. (1.21)

The transition time τt is in proportion to [φ(α)]2. Generally, φ(α) approaches −C∗
4

(= 2.13204 for hard-sphere gas) as α does unity, and on the other hand, φ(α)
approaches infinity as α does zero. Evaluating τt for small pressure changes by
5 % from the saturated vapor pressures at 290 K for methanol and water vapors,
we obtain, e.g., for α = 1, τt ∼= 0.1 μs for methanol vapor and τt ∼= 7 μs for
water vapor, respectively. In both cases, the transition times are very short. The
reason why the transition time of methanol vapor is shorter than that of water vapor
is principally because the saturated vapor pressure of methanol is six times higher
than that of water at 290 K; the vapor with the higher saturated pressure causes the
more mass flux and the more rapid temperature rise of liquid, thereby resulting in
the shorter transition time.

If the liquid is a very thin film and it is on a solid wall with a thermal conduc-
tivity higher than that of the liquid, the transition time becomes a little longer (see
Sect. 3.2.2). Although the restriction of transition time for the measurement of inter-
face displacement is not so strict, we can understand that the measurement should
be carried out in the time scale of microseconds, not in time scale of milliseconds or
seconds. All values of αe and αc shown in Tables 1.1 and 1.2 have been measured in
the past through the displacement of plane or curved liquid surface directly, or other
indirect ways. However, there was no recognition of the existence of the temporal
transition phenomenon in the past measurements. This is one of reasons why the
values of αe and αc measured have been largely different.

1.2.3 Mechanism of Temporal Transition Phenomenon

As clarified in the preceding subsection, the displacement of the interface greatly
depends on the change of the saturated vapor pressure at the interfacial liquid tem-
perature. The time evolution of the temperature is given by Eq. (1.18) for t � τt

and by Eq. (1.20) for t 	 τt . The temperature at the time τt is given by

TL = T0 + 0.5724
β1ρL L

√
DL

β2kL
. (1.22)
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At this time stage, the temperature rise is about 57% of the temperature variation
from its initial value to the asymptote [= β1ρL L

√
DL/(β2kL)]. Therefore, we can

understand that the transition time is the characteristic time when the temperature
approaches the asymptote over the time.

Now, let us consider the balance of heat fluxes at the interface in order to under-
stand the mechanism of the temporal transition phenomenon. The balance equation
of heat fluxes per unit time and unit interface area is given by

ρL L
dδ(t)

dt
∼= heat conduction into liquid

∝ TL(t)− T0√
t

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.23)
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Fig. 1.4 Temperature changes of liquid surface and liquid interior: (a) before transition time and
(b) after transition time


