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Preliminaries

We assume that the reader knows real analysis as presented in standard works such
as Rudin [197] or Royden [192]. The reader should also be familiar with the basics
of harmonic analysis as contained in the first few chapters of Duoandikoetxea [68]
or Grafakos [91]. Here we review some notation and basic results that will be used
throughout this monograph.

We will work primarily in Rn. The norm in Rn will be denoted by | · | and
Lebesgue measure by dx. Given a measurable set E, |E| will also denote the
Lebesgue measure of E, and χE will denote the characteristic function of the set
E. Given a cube Q, �(Q) will denote the side-length of Q, so that �(Q)n = |Q|.
Given Q and λ > 0, λQ will denote the cube with the same center as Q and such
that �(λQ) = λ�(Q).

By a weight we will mean a non-negative function u that is positive on a set
of positive measure. If a condition is given on a weight involving an integral, we
will implicitly assume that the integral is finite. Given a weight u and a measurable
set E, let

u(E) =

∫
E

u(x) dx.

A weight u is called a doubling measure if there exists a constant C > 0 such that
for all cubes Q, u(2Q) ≤ Cu(Q). If |E| > 0, define

−
∫
E

u(x) dx =
1

|E|
∫
E

u(x) dx;

if |E| = 0, set it equal to 0.
The collection of smooth functions of compact support will be denoted by

C∞
c .

For 1 ≤ p <∞, Lp will denote the Banach function space with norm

‖f‖Lp =

(∫
Rn

|f(x)|p dx
)1/p

.

Given a measurable set E we define the localized Lp norm on E by

‖f‖p,E =

(
−
∫
E

|f(x)|p dx
)1/p

.
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For 1 < p <∞, p′ denotes the conjugate exponent of p:

1

p
+

1

p′
= 1.

The space Lp′
is the dual space of Lp. Given a locally integrable weight u, Lp(u)

will denote the Banach function space with norm

‖f‖Lp(u) =

(∫
Rn

|f(x)|pu(x) dx
)1/p

.

The dual space of Lp(u) is Lp′
(u). Given a vector-valued function f = {fi} and q,

1 ≤ q <∞, let

‖f‖�q =

( ∞∑
i=1

|fi|q
)1/q

.

We say that f = {fi} ∈ Lp(u) if ‖f(·)‖�q ∈ Lp(u).
Given p, q, 1 ≤ p, q < ∞, and a pair of weights (u, v), an operator T is of

strong type (p, q) if there exists a constant C such that for all f ∈ Lp(v),

‖Tf‖Lq(u) ≤ C‖f‖Lp(v).

We also denote this by T : Lp(u)→ Lq(u). If u = v and p = q, then we say that T
is bounded on Lp(u), and we denote the infimum of the constant C by ‖T‖Lp(u).

Given a locally integrable weight u, Lp,∞(u), 1 ≤ p < ∞, will denote the
Lorentz space with quasi-norm

‖f‖Lp,∞(u) = sup
λ>0

λu({x ∈ Rn : |f(x)| > λ})1/p.

An operator T is of weak type (p, q) if there exists a constant C such that, for all
f ∈ Lp(v),

‖Tf‖Lq,∞(u) ≤ C‖f‖Lp(v),

or equivalently, for all λ > 0,

u({x ∈ Rn : |Tf(x)| > λ}) ≤ C

(
1

λp

∫
Rn

|f(x)|pv(x) dx
)q/p

.

We denote this by T : Lp(v)→ Lq,∞(u).
Given a locally integrable function f , the Hardy-Littlewood maximal func-

tion, Mf , is defined by

Mf(x) = sup
Q�x

−
∫
Q

|f(y)| dy,

where the supremum is taken over all cubes Q in Rn with sides parallel to the
coordinate axes. An operator that is pointwise equivalent is gotten if the supremum
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is taken over all cubes in Rn, cubes centered at x, or balls. The maximal operator
M is a bounded operator on Lp, 1 < p <∞, and satisfies the weak (1, 1) inequality
M : L1 → L1,∞.

For each j ∈ Z, define the set

Dj = {[0, 2−j)n + k : k ∈ Zn};

the set of dyadic cubes D is the union ∪jDj .
Finally, throughout this monograph, C, c, etc. will denote positive constants

whose values may change even in a chain of inequalities. Specific values that the
constants depend on will be noted as necessary.





Part I

One-Weight Extrapolation



Chapter 1

Introduction to Norm
Inequalities and Extrapolation

The extrapolation theorem of Rubio de Francia is one of the deepest results in
the study of weighted norm inequalities in harmonic analysis: it is simple to state
but has profound and diverse applications. The goal of this book is to give a
systematic development of the theory of extrapolation, one which unifies known
results and expands them in new directions. In addition, we want to show how
extrapolation theory, broadly defined, can be applied to the theory of weighted
norm inequalities. We describe new and simpler proofs of known results, and then
prove new results and show how these lead to additional open questions.

The primary audience for our work is researchers and graduate students who
are working on weighted norm inequalities and related topics. However, we believe
that many of our results will be useful to mathematicians working in other areas
of harmonic analysis and partial differential equations. While the more technical
results and proofs will require specialized knowledge to be fully understood, we
have striven to make the broad outline of the theory and the statement of our
main results accessible to a broader audience. The minimum we have assumed
and the basic notation we use is given in the Preliminaries at the beginning of the
book.

In this chapter, to put our results in context, we first review the history of
the theory of weighted norm inequalities. Unfortunately, no recent survey of the
field exists, but beyond the specific articles we cite below, we refer the reader to
the books by Garćıa-Cuerva and Rubio de Francia [88], Duoandikoetxea [68] and
Grafakos [92], and the early survey articles by Muckenhoupt [150] and Dynkin and
Osilenker [72]. We then describe the theory of extrapolation and summarize the
subsequent chapters. A more detailed overview of the contents of Part I is given
in the second half of Chapter 2.

© Springer Basel AG 2011 
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4 Chapter 1. Introduction to Norm Inequalities and Extrapolation

1.1 Weighted norm inequalities

By a weight we mean a non-negative, locally integrable function that is positive
on a set of positive measure. The integrability condition can be relaxed, but for
simplicity we consider here this important special case. The basic problems in the
study of weighted norm inequalities are to prove estimates of the form∫

Rn

|Tf(x)|pu(x) dx ≤ C

∫
Rn

|f(x)|pv(x) dx
or

u({x ∈ Rn : |Tf(x)| > λ}) ≤ C

λp

∫
Rn

|f(x)|pv(x) dx,
where 1 ≤ p < ∞, and T is an operator, usually one of the classical operators of
harmonic analysis: i.e., a maximal function, singular integral, square function, etc.
These problems divides naturally into two classes: when we have a single weight
function w (i.e., u = v = w) and when we have a pair of weights (u, v). These are
referred to as one-weight and two-weight inequalities.

The theory of one-weight inequalities began with the study of power weights
of the form u(x) = |x|a. See for example, Stein [213, 214] (see also Soria and Weiss
[212]). Shortly thereafter came the celebrated Helson-Szegö theorem [101], which
characterized one-weight inequalities for the conjugate function (i.e., the periodic
Hilbert transform on the unit circle) using complex analysis.

A period of sustained research in this area began in the 1970s with the work
of Muckenhoupt and others. In [148] Muckenhoupt introduced the Ap weights (now
often referred to as Muckenhoupt weights): for 1 < p <∞, w ∈ Ap if there exists
a constant K such that for every cube Q ⊂ Rn,

−
∫
Q

w(x) dx

(
−
∫
Q

w(x)1−p′
dx

)p−1

≤ K <∞.

(A variant of this condition was introduced earlier by Rosenblum [191].) The weight
w is in A1 if there exists a constantK such that for almost every x ∈ Rn,Mw(x) ≤
Kw(x), where M is the Hardy-Littlewood maximal operator. In each case the
infimum of all such K is denoted by [w]Ap

. The prototypical Ap weights are the
power weights: for all a ∈ R, |x|a ∈ A1 if and only if −n < a ≤ 0, and for p > 1,
|x|a ∈ Ap if and only if −n < a < (p− 1)n.

The centrality of the Ap condition is shown by the following result.

Theorem 1.1. Given p, 1 ≤ p <∞, and w ∈ Ap, then

w({x ∈ Rn : |Tf(x)| > λ}) ≤ C

λp

∫
Rn

|f(x)|pw(x) dx,

where T is the Hardy-Littlewood maximal operator, the Hilbert transform, or a
Riesz transform. If p > 1, then the corresponding strong type inequality holds:∫

Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

|f(x)|pw(x) dx.
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Furthermore, the Ap condition is necessary: if the strong or weak (p, p) inequality
holds for a weight w and one of these operators, then w ∈ Ap.

The sufficiency of the Ap weights for the Hardy-Littlewood maximal oper-
ator to be bounded on Lp(w) was proved by Muckenhoupt [148]; for the Hilbert
transform by Hunt, Muckenhoupt and Wheeden [104]; and for Riesz transforms
(and indeed for any singular integral with a sufficiently smooth kernel) by Coifman
and Fefferman [25]. Their proof involved proving an intermediate inequality: for
0 < p <∞, ∫

Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

Mf(x)pw(x) dx, (1.1)

where w satisfies the so-called A∞ condition. (This is defined in Theorem 1.3
below.) The necessity of the Ap condition for the maximal operator is also due to
Muckenhoupt, and a similar argument works for the Hilbert transform [104]. This
argument can be extended to show that if all the Riesz transforms are bounded
on Lp(w), then w ∈ Ap. (See [88].) The fact that if a single Riesz transform is
bounded, then w ∈ Ap is due to Stein [216].

Similar results were soon proved for a variety of other operators, and there
now exists an extensive literature on one-weight norm inequalities. For a partial
list, we refer the reader to [68, 72, 88, 92] and the references they contain. A
common approach has been to prove inequalities that are similar to (1.1), and we
will collectively refer to these as Coifman-Fefferman inequalities.

One important variation that emerged was the class of “dyadic” Ap weights,
Ad

p. This condition is defined as the general Ap conditions but with the cubes
restricted to dyadic cubes. This class is the appropriate one to consider for a
variety of dyadic operators. For more on this subject, we refer the reader to the
lecture notes by Pereyra [169] and the references they contain.

Central to the original proofs of Theorem 1.1 is the rich structure of the Ap

weights. Several properties are immediate consequences of the definition.

Proposition 1.2. The Muckenhoupt weights have the following properties:

(a) for 1 < p <∞, w ∈ Ap if and only if w1−p′ ∈ Ap′ ;

(b) if 1 ≤ p < q <∞, then Ap ⊂ Aq;

(c) given w1, w2 ∈ A1, for 1 < p <∞, w1w
1−p
2 ∈ Ap.

Property (a) follows at once from the definition; property (b) from Hölder’s
inequality; and property (c) from the fact that if w ∈ A1, then for almost every
x ∈ Q,

−
∫
Q

w(y) dy ≤Mw(x) ≤ [w]A1
w(x).

Beyond the elementary results of Proposition 1.2, Muckenhoupt weights have
many deeper properties. We begin with a definition: define the class of weights A∞
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by

A∞ =
⋃
p≥1

Ap.

Theorem 1.3. The Muckenhoupt weights can be characterized by the following prop-
erties:

(a) w ∈ A∞ if and only if there exist constants C, δ > 0 such that given any cube
Q and any measurable set E ⊂ Q,

w(E)

w(Q)
≤ C

( |E|
|Q|
)δ

;

(b) w ∈ A∞ if and only if for some s > 1, w ∈ RHs: there exists a constant K
such that for every cube Q,(

−
∫
Q

w(x)s dx

)1/s

≤ K−
∫
Q

w(x) dx;

(c) If w ∈ Ap, p > 1, there exists ε, 0 < ε < p− 1, such that w ∈ Ap−ε;

(d) If w ∈ Ap, p > 1, there exist w1, w2 ∈ A1 such that w = w1w
1−p
2 .

The A∞ condition was discovered independently by Coifman and Feffer-
man [25] and Muckenhoupt [149]. The RHs condition is referred to as the reverse
Hölder inequality and was also proved by Coifman and Fefferman [25]. (The RHs

classes were considered independently by Gehring [89].) The Ap condition itself is
a kind of reverse Hölder inequality, since the opposite inequality,

1 ≤ −
∫
Q

w(x) dx

(
−
∫
Q

w(x)1−p′
dx

)p−1

,

is a consequence of Hölder’s inequality. Property (c) follows immediately from
the reverse Hölder inequality for the weight w1−p′

; it was first proved directly by
Muckenhoupt [148]. Property (d) is referred to as the Jones factorization theorem;
it was first conjectured by Muckenhoupt at the Williamstown conference in 1979
(see [150]) and proved by P. Jones at the same conference [111]. A much simpler
proof was later given by Coifman, Jones and Rubio de Francia [26]. (We will
say more about this proof below.) The expression “the factorization theorem”
usually refers to both property (d) and its much simpler converse, property (c) in
Proposition 1.2 above, but we will reserve this name for property (d). No standard
terminology exists for property (c) in Proposition 1.2, but we will refer to it as
“reverse factorization.”

In the 1970s the rapid progress in the study of one-weight norm inequalities
initially fed hopes that the corresponding problems for two-weight inequalities



1.1. Weighted norm inequalities 7

would soon be solved as well. The immediate candidate for a condition on a pair
of weights (u, v) was the two-weight Ap condition: for p > 1, (u, v) ∈ Ap if

−
∫
Q

u(x) dx

(
−
∫
Q

v(x)1−p′
dx

)p−1

≤ K <∞,

and (u, v) ∈ A1 if Mu(x) ≤ Kv(x). (In particular, given any weight u, (u,Mu) ∈
A1.) Muckenhoupt [148] noted that the same proof as in the one-weight case
immediately shows that for all p, 1 ≤ p <∞, (u, v) ∈ Ap if and only if the maximal
operator satisfies the weak (p, p) inequality. However, it was soon discovered that
while the two-weight Ap condition is necessary for the strong (p, p) inequality for
the maximal operator and the strong and weak type inequalities for the Hilbert
transform, it is not sufficient. (See Muckenhoupt and Wheeden [155].)

This led Muckenhoupt and Wheeden [147] to focus not on the structural
or geometric properties of Ap weights but on their relationship to the maximal
operator, in particular, the fact that w ∈ Ap was necessary and sufficient for

the maximal operator to be bounded on Lp(w) and Lp′
(w1−p′

). This led them to
make the following conjecture which is still open: given a pair of weights (u, v), a
sufficient condition for the Hilbert transform to satisfy the strong (p, p) inequality
H : Lp(v) → Lp(u), 1 < p < ∞, is that the maximal operator satisfy the pair of
inequalities

M : Lp(v)→ Lp(u), (1.2)

M : Lp′
(u1−p′

)→ Lp′
(v1−p′

). (1.3)

(Even though M is not a linear operator, inequality (1.3) is referred to as the dual
of (1.2).) Additionally, Muckenhoupt and Wheeden conjectured that if the dual
inequality (1.3) holds for a pair (u, v), then the weak (p, p) inequality H : Lp(v)→
Lp,∞(u) also holds. For the weak (1, 1) inequality, they conjectured that

u({x ∈ Rn : |Hf(x)| > λ}) ≤ C

λ

∫
Rn

|f(x)|Mu(x) dx.

Each of these conjectures can be generalized naturally to other singular integrals.
All of them are in the spirit of Calderón and Zygmund, whose philosophy was that
to control a singular integral one should control the maximal operator.

The study of two-weight norm inequalities has proved to be considerably
more difficult than it is in the one-weight case. As B. Muckenhoupt recently noted
[152], fundamental problems in the two-weight case, including the conjectures just
discussed, remain open. Progress has been made, but slowly, and seemingly small
improvements in results have required the development of sophisticated techniques.
In many cases interesting results have been proved but they have remained iso-
lated and could not be developed further. Cotlar and Sadosky [29, 30], working in
the spirit of the Helson-Szegö theorem, gave a necessary and sufficient condition
on a pair of weights for the conjugate function to satisfy a two-weight strong (p, p)
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inequality. Leckband [122] and Fujii [82] found two-weight conditions that gener-
alized the Ap condition by incorporating measure-theoretic properties similar to
the A∞ condition. Rakotondratsimba [186, 187, 188] gave Ap type conditions for
weights that are radial and monotone.

Currently there are two major approaches to two-weight norm inequalities,
which we will refer to as “testing conditions” and “Ap bump conditions.” The lat-
ter are central to our understanding of norm inequalities and extrapolation theory,
and so determine the point of view we have adopted in this book. However, though
testing conditions do not play a direct role in our work, we want to describe them
before discussing our own. We do so for two reasons: first, they are very important
in the study of weighted norm inequalities and an area of active research today.
Second, despite its importance, we believe that this approach has some shortcom-
ings and we want to highlight these to suggest to the reader the advantages of
our approach. We do not claim that the Ap bump conditions are “better” in any
normative sense: we just want to illustrate the reasons why we prefer one over the
other.

Testing conditions were originally introduced by Sawyer [201]. He proved that
a necessary and sufficient condition on a pair of weights (u, v) for the strong (p, p)
inequality, 1 < p <∞,∫

Rn

Mf(x)pu(x) dx ≤ C

∫
Rn

|f(x)|pv(x) dx,

is that for every cube Q,∫
Q

M(v1−p′
χQ)(x)

pu(x) dx ≤ C

∫
Q

v(x)1−p′
dx. (1.4)

The necessity of this condition is immediate: simply apply the norm inequality to
the family of test functions v1−p′

χQ. We denote the fact that a pair of weights
satisfies (1.4) by writing (u, v) ∈ Sp.

Sawyer [207, 208] later extended this approach to linear operators with pos-
itive kernels, for instance, the fractional integral operator Iα, 0 < α < n. Because
of linearity, strong (p, p) inequalities with respect to the weights (u, v) are equiva-
lent to strong (p′, p′) inequalities for the weights (v1−p′

, u1−p′
). This led naturally

to two testing conditions: one from the Lp inequality and one from the dual Lp′

inequality. More precisely, Iα satisfies the (p, p) inequality Iα : Lp(v) → Lp(u) if
and only if the weights (u, v) satisfy∫

Q

Iα(v
1−p′

χQ)(x)
pu(x) dx ≤ C

∫
Q

v(x)1−p′
dx, (1.5)∫

Q

Iα(uχQ)(x)
p′
v(x)1−p′ ≤ C

∫
Q

u(x) dx. (1.6)

Sawyer [204] also proved that the dual testing condition (1.6) was necessary and
sufficient for the fractional integral operator to satisfy the weak (p, p) inequality
Iα : Lp(v)→ Lp,∞(u).
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These results for fractional integrals led to the following conjectures: if T is
a singular integral operator (e.g., the Hilbert transform), then T : Lp(v)→ Lp(u)
if and only if ∫

Q

|T (v1−p′
χQ)(x)|pu(x) dx ≤ C

∫
Q

v(x)1−p′
dx, (1.7)∫

Q

|T (uχQ)(x)|p′
v(x)1−p′ ≤ C

∫
Q

u(x) dx. (1.8)

Testing conditions such as these are referred to generically as Sawyer-type condi-
tions.

After the original work of Sawyer, no progress was made on these conjectures
until the groundbreaking work of Nazarov, Treil and Volberg. They realized that
there is a close connection between Sawyer type conditions and the testing condi-
tions that are part of the T1 theorem of David and Journé [58] (also see [92]). As
part of their work on the Vitushkin conjecture, they developed a theory of singu-
lar integrals on non-homogeneous spaces (e.g., Rn with a non-doubling measure)
including a Tb theorem. (See [157, 159, 160].) Building on these ideas they have
been able to prove L2 Sawyer-type conditions for several operators. In [158] they
proved that Sawyer-type conditions were necessary and sufficient for families of
Haar multipliers Ha to satisfy Ha : L2(v) → L2(u) with uniform bounds. (Haar
multipliers are dyadic singular integral operators that are “localized” and so easier
to deal with. They provide a good model for singular integrals, and more general
dyadic operators can be used to approximate Hilbert and Riesz transforms—see
[105, 180, 181, 182, 183, 184].) They also proved that the single testing condi-
tion (1.7) was necessary and sufficient for the dyadic square function to satisfy
Sd : L2(v)→ L2(u). In [227] they proved that (1.7), (1.8) and a stronger version of
the two-weight A2 condition—the so-called invariant A2 condition—are necessary
and sufficient for the Hilbert transform to satisfy H : L2(v) → L2(u), provided
that u and v satisfy doubling conditions. In [161] they proved L2 Sawyer-type
conditions for individual Haar multipliers and other dyadic operators (without
doubling conditions).

Despite the elegance of these results, we believe that they have some draw-
backs. First, it is not clear if they are the correct conditions when p 	= 2. In [158],
Nazarov, Treil and Volberg noted (without proof) that their results for families of
Haar multipliers are not true when p 	= 2. In addition, for operators other than
singular integrals we have reason to believe that Sawyer-type conditions may not
be the correct ones to consider. As we discuss in detail Chapter 10 below, in the
two-weight case the dyadic square function behaves very differently for p ≤ 2 and
for p > 2; this in turn suggests that the Sawyer-type condition (which is in some
sense the same for all p) may not be sufficient when p > 2.

Second, we believe that Sawyer-type conditions are of limited utility in prac-
tice. Given a pair of weights (u, v), it seems almost as difficult to check whether
the Sawyer-type conditions hold for a specific operator as it does to prove a strong
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type norm inequality. Conversely, it seems equally difficult to construct examples
of weights that satisfy them. Moreover, unlike the Ap weights, the Sawyer-type
conditions and the weights that satisfy them are bound to individual operators: if
the operator is changed, the work of finding or checking pairs of weights must be
started over.

Our approach to two-weight norm inequalities is quite different: our goal has
been to find two-weight, Ap-type conditions that are sufficient for large classes
of operators. Our work has close connections with the deep conjecture of Muck-
enhoupt and Wheeden discussed above, which we will explain below. Its proxi-
mate origins are in our work to generalize an often overlooked paper by Neuge-
bauer [163]. To best understand his result, we first restate the Ap condition,
1 < p <∞, in terms of localized Lp norms: (u, v) ∈ Ap if for every cube Q,

‖u1/p‖p,Q‖v−1/p‖p′,Q ≤ K <∞.

Neugebauer showed that given a pair of weights (u, v), there exist w ∈ Ap and
positive constants c1, c2 such that c1u(x) ≤ w(x) ≤ c2v(x) if and only if there
exists r > 1 such that for every cube Q,

‖u1/p‖rp,Q‖v−1/p‖rp′,Q ≤ K <∞. (1.9)

From this condition we immediately get a large number of two-weight norm in-
equalities as corollaries to the analogous one-weight results. In particular, we have
that the two inequalities (1.2) and (1.3) hold for the maximal operator. We refer
to (1.9) as an Ap bump condition.

An immediate question was whether this condition could be weakened and
still get that the maximal operator satisfiesM : Lp(v)→ Lp(u). This was answered
in [174], where it was shown that a sufficient condition was that the pair of weights
satisfies

‖u1/p‖p,Q‖v−1/p‖B,Q ≤ K <∞,

where the norm on the right-hand term is a normalized Orlicz space norm and
B is a Young function that satisfies an easily checked growth condition. We defer
the statement of this condition to Chapter 5, Theorem 5.14, as it requires some
additional definitions; intuitively, it says that B(t) is “infinitesimally” larger than
tp

′
. For example, we could take B(t) = trp

′
, r > 1; in this, case we see that we

can eliminate one “bump” from Neugebauer’s condition. But we can also take
B(t) = tp

′
log(e+ t)p

′−1+δ, where δ > 0. The centrality of this growth condition is
shown by the fact that it is necessary for the maximal operator to be bounded—see
Remark 5.15 below.

As an immediate consequence of this result, we have that the maximal op-
erator satisfies inequalities (1.2) and (1.3) provided that the pair of weights (u, v)
satisfy the Ap bump condition

‖u1/p‖A,Q‖v−1/p‖B,Q ≤ K <∞, (1.10)
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where the Young functions A, B satisfy the appropriate growth conditions. This
led naturally to the following version of the conjecture of Muckenhoupt and Whee-
den: a sufficient condition on the pair of weights (u, v) for any singular integral
to satisfy T : Lp(v) → Lp(u) is that (1.10) holds. Moreover, our version of their
conjecture for weak (p, p) inequalities is that T : Lp(v) → Lp,∞(u) if the pair
satisfies

‖u1/p‖A,Q‖v−1/p‖p′,Q ≤ K <∞.

In a series of papers over the past fifteen years [33, 47, 53, 55, 56, 171] we have
made considerable progress on these conjectures, and in the final two chapters of
this book we expand upon our earlier work.

In contrast to the testing conditions discussed above, it is usually straightfor-
ward to determine if a pair of weights satisfies (1.10), though we must admit that it
can be computationally tedious depending on the Young functions A and B. More-
over, it is very easy to construct examples of pairs (u, v) that satisfy (1.10)—see
(1.12) below.

1.2 The theory of extrapolation

With the theory of weighted norm inequalities as a foundation, we can now discuss
the extrapolation theorem of Rubio de Francia. Here we state the essential version
of the theorem, though we defer the proof to Chapter 2 below.

Theorem 1.4. Given an operator T , suppose that for some p0, 1 ≤ p0 < ∞, and
every w ∈ Ap0

, there exists a constant C depending on [w]Ap0
such that∫

Rn

|Tf(x)|p0w(x) dx ≤ C

∫
Rn

|f(x)|p0w(x) dx.

Then for every p, 1 < p <∞, and every w ∈ Ap there exists a constant depending
on [w]Ap

such that∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

|f(x)|pw(x) dx.

The extrapolation theorem was an unexpected and very surprising result. It
was discovered by Rubio de Francia (see [193, 194, 195]) whose background in func-
tional analysis gave him a very different perspective on the theory of weighted norm
inequalities. (For this background, see the survey articles by Torrea et al. [223].)
The philosophy underlying this result was pithily summarized by Rubio de Fran-
cia’s colleague Antonio Cordoba [84]:

There are no Lp spaces, only weighted L2.

Beyond the original work of Rubio de Francia, there are a number of proofs of
Theorem 1.4 and we will discuss these in more detail in Chapter 2. A key feature
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of many of these proofs is the iteration algorithm of Rubio de Francia: given a
positive, sublinear operator T that is bounded on Lp(w), define a new operator R
by

Rh =

∞∑
k=0

T kh

2k‖T‖kLp(w)

.

(This was first referred to as the Rubio de Francia algorithm in [13].) The crucial,
but deceptively simple property of the iteration algorithm is that it is almost
“invariant” under the operator T : more precisely,

T (Rh) ≤ 2‖T‖Lp(w)Rh.

The iteration algorithm is central to our own work and we discuss it in more detail
in subsequent chapters. Here, we want to note that it is also used in a central way
in the simplest proofs of the Jones factorization theorem (Theorem 1.3 above; see
[88, 92]), and this shows that there is a very deep connection between extrapolation
and factorization.

Given the ongoing work of creating a theory of two-weight norm inequalities
parallel to the one-weight theory, it is not surprising that a number of authors
considered two-weight extrapolation and factorization theorems: see Neugebauer
[163, 164], Bloom [13], Hernández [102], Ruiz and Torrea [198], and Segovia and
Torrea [209, 210]. In every case these authors worked with pairs of weights (u, v)
such that the maximal operator satisfied inequality (1.2) and the dual inequal-
ity (1.3); in other words, there is a close connection between their results and the
Muckenhoupt-Wheeden conjecture for singular integrals discussed in the previous
section. This points to one drawback of these results: given the current state of
knowledge they cannot be applied, since it is not possible to prove the “base case”
(e.g., weighted L2 inequalities) needed to use extrapolation. A different approach
to two-weight extrapolation using pairs (u, v) ∈ A1 was developed in [54] and was
implicit in [53].

The importance of the Rubio de Francia extrapolation theorem lies not only
in its intrinsic beauty, but also in its powerful applications. There have been many;
here we describe four in detail. Additional applications that arise from our general-
izations of one-weight extrapolation are given in Chapters 3 and 4. The first impor-
tant application was to rough singular integrals. Let Sn−1 denote the unit sphere
in Rn, let Ω ∈ L∞(Sn−1) be such that

∫
Sn−1 Ω(x) dx = 0 and let h ∈ L∞(R+).

We consider the singular integral T with kernel

K(x) = h(|x|)Ω(x/|x|)|x|n .

T is bounded on Lp, 1 < p <∞; when h ≡ 1 this follows from the method of rota-
tions (see [68]); for general h this was proved by R. Fefferman [77]. Duoandikoetxea
and Rubio de Francia [71] proved that T is bounded on Lp(w), 1 < p < ∞, for
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w ∈ Ap. Key to the proof was the extrapolation theorem, since this reduced the
problem to proving that T is bounded on L2(w), w ∈ A2. For this case they used
the Fourier transform, square function estimates and interpolation with change of
measure to deduce the weighted inequality from the unweighted L2 estimate.

Another important application of extrapolation was given by R. Fefferman
and Pipher [78]. They were considering singular integral operators TZ on R3 that
commute with the family of multiparameter dilations φs,t(x, y, z) = (sx, ty, stz),
s, t > 0. The closely related maximal operators MZ are defined as the supremum
of averages over rectangles in the Zygmund basis Z whose side-lengths are of the
form (s, t, st). Unweighted estimates for such operators were proved by Ricci and
Stein [190]. Fefferman and Pipher proved one-weight estimates on Lp(w), where
w ∈ Ap,Z , the Ap class defined with respect to rectangles in Z. Again central to the
proof was Rubio de Francia extrapolation (which they noted could be extended
to weights in Ap,Z): they showed that in L2(w) the proof reduced to a certain
square function estimate, but this approach does not work when p 	= 2. They
also proved sharp embedding theorems for these operators in Orlicz spaces close
to L1. They showed that these followed from sharp Lp estimates for the Hilbert
transform; implicit in their proof of these sharp estimates is a duality argument
that is reminiscent of our approach to both one and two-weight extrapolation.

The third application is to elliptic differential equations. The Beltrami equa-
tion in the plane is fz − μfz̄ = 0, where μ is a bounded function such that
‖μ‖∞ = k < 1. Astala, Iwaniec and Saksman [6] showed that solutions of this
equation are continuous if f ∈ W 1,q

loc for q > k + 1 and that there were discon-

tinuous solutions if q < k + 1. Further, they showed that solutions in W 1,1+k
loc

were continuous if the Beurling-Ahlfors operator (a complex-valued analog of the
Hilbert transform) satisfied a certain sharp weighted Ap estimate. This estimate
was proved by Petermichl and Volberg [184]; via extrapolation they reduced the
problem to weighted L2 estimates, which they proved using Bellman function
techniques.

As a final application we consider our work on a conjecture by Sawyer. In [205]
he proved that if u, v ∈ A1, then

uv({x ∈ R : M(fv)(x) > λv(x)}) ≤ C

λ

∫
R

|f(x)|u(x)v(x) dx; (1.11)

this inequality arose naturally when trying to prove weighted norm inequalities by
combining interpolation with change of measure (see Stein andWeiss [217]) and the
Jones factorization theorem. Sawyer conjectured that this inequality is true if the
maximal operator is replaced by the Hilbert transform. This conjecture was proved
in [45] and was shown to hold in higher dimensions for Calderón-Zygmund singular
integral operators. The proof consisted of several steps. First, inequality (1.11)
was extended to higher dimensions for the dyadic maximal operator. Then, using
a version of Rubio de Francia extrapolation adapted to this kind of inequality, it
was shown that it holds in Rn for both the Hardy-Littlewood maximal operator
and singular integrals.
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1.3 The organization of this book

The starting point for this book is a new and much simpler proof of the Rubio de
Francia extrapolation theorem. It does not require cases depending on the size of p,
and it only uses very elementary structural properties of weights and the fact that
the maximal operator is bounded on Lp(w). In some sense, we are able to make
clear “what is really going on” in the proof, and this provides a springboard for
a number of generalizations of the extrapolation theorem. We had already begun
to do so in earlier work (see, for instance, [40, 44, 46, 57]); here we develop these
extensions systematically.

Our material divides naturally into two parts. In Part I we consider the one-
weight theory. In Chapter 2 we briefly describe earlier proofs of Theorem 1.4 and
then give our own proof. We analyze the proof to highlight the key features—the
boundedness of the maximal operator, duality, and reverse factorization. We then
describe the numerous generalizations which our approach makes possible. These
generalizations are developed and proved in Chapters 3 and 4. In Chapter 3 we
focus on weighted Lp results, and in Chapter 4 we show that Rubio de Fran-
cia extrapolation can be generalized to prove norm inequalities for operators in
large families of Banach function spaces. These generalizations may be succinctly
captured by expanding upon Cordoba’s remark given above:

There are no Banach function spaces, only weighted L2.

At the end of both of these chapters we sketch a number of applications of
our extrapolation theory. These include a new approach to Coifman-Fefferman in-
equalities that avoids the so-called good-λ inequalities, vector-valued inequalities,
modular inequalities for singular integrals, and norm inequalities for operators on
the variable Lebesgue spaces.

In Part II we treat two-weight extrapolation and factorization theory. To a
certain extent this half of the book is independent of Part I, though the reader
should consult Chapter 2 to get a better sense of our overall philosophy. Our ap-
proach to two-weight extrapolation grew naturally out of our approach to weighted
norm inequalities; in fact, some special cases of our extrapolation results were im-
plicit in earlier work [33, 53, 54]. We show that one can extrapolate in the scale
of weights that satisfy (1.10): given an operator T , suppose that for some p0 and
Young functions A, B in a certain class, ‖Tf‖Lp0 (u0) ≤ C‖f‖Lp0 (v0) whenever
(u0, v0) satisfy (1.10) with p replaced by p0. Then given any p we give sufficient
conditions on Young functions A and B so that ‖Tf‖Lp(u) ≤ C‖f‖Lp(v) whenever
(u, v) satisfy (1.10).

The presence of the Orlicz space norms in (1.10) causes our proofs to be
more technical than the proofs in the one-weight case in Part I. Further, to get
the sharpest possible results we diverge considerably from the specific proofs given
in Part I. Nevertheless, the proofs in the two-weight case rely on the same essential
ingredients: boundedness of the maximal operator, duality, and reverse factoriza-
tion.
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The material in Part II is organized as follows: in Chapter 5 we gather pre-
liminary information about Young functions, Orlicz spaces, and Orlicz maximal
operators that is needed in subsequent chapters. In particular, we characterize the
Young functions such that (1.10) implies that the maximal operator satisfies (1.2)
and the dual inequality (1.3).

In Chapter 6 we discuss factorization in the two-weight setting. We first de-
fine the appropriate A1-type weights and prove a reverse factorization theorem
for weights that satisfy (1.10). Since there is a close connection between reverse
factorization, factorization and extrapolation, we also develop a two-weight fac-
torization theory for weights that satisfy (1.10). We introduce an important new
class of weights—the so-called factored weights,

(ũ, ṽ) =
(
w1(MΨw2)

1−p, (MΦw1)w
1−p
2

)
, (1.12)

whereMΦ andMΨ are Orlicz maximal operators—that are gotten from the reverse
factorization theorem and which satisfy (1.10). These weights are of particular
interest in applications since we can prove a number of results for this special class
that generalize known results in surprising ways, and these lead to new conjectures
for two-weight inequalities in general.

Chapters 7 and 8 are the theoretical heart of Part II. In Chapter 7 we prove
the main two-weight extrapolation theorems. This chapter is unavoidably techni-
cal, both because of the nature of the conditions on the weights and because we
wanted to develop our results in a fairly general setting. To clarify the situation we
give a number of examples and special cases. In Chapter 8 we further develop the
theory of two-weight extrapolation, focusing particularly on endpoint results and
rescaling such as we used to develop the so-called A∞ extrapolation in Chapter 3.

Throughout Chapters 5–8 we will primarily consider Ap-type conditions and
maximal operators defined with respect to arbitrary cubes. However, unless we
specifically say otherwise, all of our results hold when we restrict ourselves to
operators and conditions defined in terms of dyadic cubes. At certain points we
will point out when other, stronger, results hold, but in Chapter 10 we will often
apply results from these chapters to the dyadic case without comment.

In the last two chapters we give applications of extrapolation to the study of
two-weight norm inequalities. In Chapter 9 we consider three kinds of operators:
the sharp maximal operator, Calderón-Zygmund singular integrals, and fractional
integral operators. For the sharp maximal operator, we give a two-weight inequality
which is a generalization of the Fefferman-Stein inequality [76] and compare our
result to another two-weight version due to Fujii [81]. We then use these results
to develop a two-weight theory of Coifman-Fefferman inequalities. For singular
and fractional integrals we give conjectures for sharp conditions for two-weight
weak and strong type inequalities that are based on the original conjectures of
Muckenhoupt and Wheeden. We then review the known results, showing in some
cases that they are easy consequences of extrapolation, and then prove new results,
including new results for pairs of factored weights.


