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Foreword

The meeting “Visions in Mathematics — Towards 2000” took place
mainly at Tel Aviv University in August 25-September 3, 1999, with
a few days at the Sheraton-Moriah Hotel at the Dead Sea Health
Resort. The meeting included about 45 lectures by some of the leading
researchers in the world, in most areas of mathematics and a number
of discussions in different directions, organized in various forms.

The goals of the conference, as defined by the scientific commit-
tee, consisting of N. Alon, J. Bourgain, A. Connes, M. Gromov and
V. Milman, were to discuss the importance, methods, future and
unity /diversity of mathematics as we enter the 21st Century, to con-
sider the relation between mathematics and related areas and to dis-
cuss the past and future of mathematics as well as its interaction with
Science.

A new format of mathematical discussions developed by the end
of the Conference into an interesting addition to the more standard
form of lectures and questions. The “Addendum” to this part of the
Proceedings contains the transcript of some of the discussions which
took place at the Dead Sea.

We believe that the meeting succeeded in giving a wide panorama
of mathematics and mathematical physics, but we did not touch upon
the interaction of mathematics with the experimental sciences.

This is the second (and final) part of the proceedings of the meet-
ing.

It is a pleasure to thank Mrs. Miriam Hercberg and Mrs. Di-
ana Yellin for their great technical help in the preparation of this
manuscript.

N. Alon J. Bourgain
A. Connes M. Gromov

V. Milman
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ALGEBRAIC AND PROBABILISTIC METHODS IN
DISCRETE MATHEMATICS

NoGca ALON

Abstract

Combinatorics is an essential component of many mathematical areas,
and its study has experienced an impressive growth in recent years.
This survey contains a discussion of two of the main general techniques
that played a crucial role in the development of modern combinatorics:
algebraic methods and probabilistic methods. Both techniques are
illustrated by examples, where the emphasis is on the basic ideas and
the connection to other areas.

1 Introduction

Mathematical Research deals with ideas that can be meaningful to every-
body and there is no doubt that it also lies behind most of the major
advances in Science and Technology. Yet, mathematicians often tend to
formulate their questions, results and thoughts in a way that is comprehen-
sible only to their colleagues who work in a closely related area. One of the
goals of the conference “Visions in Mathematics” was to try and present
the main areas in mathematics in a way that can be interesting to a general
mathematical audience, and possibly even to a general scientific audience.
Although this is a difficult task, it is not impossible, and I believe that
many of the lectures achieved this goal.

Following the spirit of the conference, this survey is also aimed at a gen-
eral mathematical audience. I try to explain two of the main techniques
that played a crucial role in the development of modern combinatorics: al-
gebraic techniques and probabilistic methods. The focus is on basic ideas,
rather than on technical details, and the techniques are illustrated by ex-
amples that demonstrate the connection between combinatorics and related
mathematical areas.

Research supported in part by a US-Israel BSF grant, by a grant from the Israel
Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel
Aviv University.
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My choice of topics and examples is inevitably influenced by my own
personal taste, and hence it is somewhat arbitrary. Still, I believe that
it provides some of the flavour of the techniques, problems and results in
the area, which may hopefully be appealing to researchers in mathematics,
even if their main interest is not Discrete Mathematics.

2 Algebraic Techniques

Various algebraic techniques have been used successfully in tackling prob-
lems in Discrete Mathematics over the years. These include several tools
that T will not discuss here, like tools from Representation Theory applied
extensively in enumeration problems, or spectral techniques used in the
study of highly regular structures. In this section I describe mainly two
representative algebraic tools. The first one may be called Combinatorial
Nullstellensatz, is based on some basic properties of polynomials, and has
applications in Combinatorial Number Theory, Graph Theory and Com-
binatorics. The second one may be called the dimension argument, and
has had numerous applications over the years. The examples given here
illustrate the basic ideas. More examples can be found in various survey
articles and books including [G], [Al2], [BF], [BI].

2.1 Combinatorial Nullstellensatz. The classical Hilbert’s Nullstel-
lensatz (see, e.g., [vdW]) asserts that if F' is an algebraically closed field,

fsg1,--- ,gm are polynomials in the ring of polynomials F[z1,... ,z,], and
f vanishes over all common zeros of g1,... ,gm, then there is an integer k
and polynomials hq,... , h,, in Fzq,...,2z,] so that

m
=3 hige
i=1

In the special case m = n, where each g; is a univariate polynomial of the
form [[,cs. (zi — s), a stronger conclusion holds, as follows.

Theorem 2.1. Let F be an arbitrary field, and let f = f(x1,...,2y)
be a polynomial in Flxi,...,xz,]. Let Si,...,S, be nonempty subsets of
F and define g;(x;) = [[scg,(¥i — s). If f vanishes over all the common
zeros of g1, ... ,gn (that is; if f(s1,...,8,) =0 for all s; € S;), then there
are polynomials hy,...  h, € Flz1,... ,xy] satisfying deg(h;) < deg(f) —

deg(g;) so that
n
F=> higi.
i=1
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As a consequence of the above one can prove the following,
Theorem 2.2. Let F be an arbitrary field, and let f = f(x1,... ,x,)
be a polynomial in F|xi,...,x,|. Suppose the degree deg(f) of f is
>, t;, where each t; is a nonnegative integer, and suppose the coeffi-

cient of 7", xf’ in f is nonzero. Then, if S,... ,S, are subsets of F' with
|S;| > t;, there are s1 € S1,89 € Sa,...,8, €S, so that
f(s1,...,8,) #0.

These two results are proved in [Al4], where it is proposed to call them
Combinatorial Nullstellensatz. The proofs are based on some simple prop-
erties of polynomials. It turns out that these results are related to some
classical ones, and have many combinatorial applications.

One of the classical results that follow easily from Theorem 2.2 is the
following theorem, conjectured by Artin in 1934, proved by Chevalley in
1935 and extended by Warning in 1935.

Theorem 2.3 (cf., e.g., [S]). Let p be a prime, and let
P1 = Pl(xl,... ,J,‘n),PQ = Pg(l‘l,... ,{En),... ,Pm = Pm(xl,... ,l‘n)

be m polynomials in the ring Zy[x1, ... ,xy]. If n > 3" deg(P;) and the
polynomials P; have a common zero (ci,... ,¢,), then they have another
common zero.

The proof follows in a few lines by applying Theorem 2.2 to the poly-
nomial

f:f(x:L?"'7ajn):H(1_Pi(x1,...7.’I}n)p71)—6H H (ajj_c)7
i=1 J=1cEZp,cc;
where ¢ is chosen so that f(cy,...,¢,) =0.

Another classical result that follows from a similar reasoning is the
Cauchy-Davenport Theorem, which is one of the fundamental results in
Additive Number Theory, see, e.g., [N]. This theorem asserts that if p is a
prime, and A, B are two nonempty subsets of Z,, then

|A+ B| > min {p, |A| + |B| — 1}.

Cauchy proved this theorem in 1813, and applied it to give a new proof
to a lemma of Lagrange in his well known 1770 paper that shows that any
integer is a sum of four squares. Davenport formulated the theorem as a
discrete analogue of a conjecture of Khintchine (proved a few years later)
about the Schnirelman density of the sum of two sequences of integers. The
original proofs of the theorem given by Cauchy and Davenport are purely
combinatorial. As observed in [AINR], there is a different, algebraic proof,
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which extends easily and gives several related results. This proof is, again,
a simple application of Theorem 2.2. It readily extends to provide bounds
for restricted sums in finite fields. If h = h(zg, z1,... ,zx) is a polynomial
over Z, and Ap, Ay, ... , Ay are subsets of Z,, then the method provides a
lower bound (which is often tight) for the cardinality of the set

{ao—l—a1 +...4ag:a; € A;, h(ao,al,... ,ak) #0}

When h is the polynomial [, ;. ;~o(zi — ;) the above set corresponds
to sums of distinct elements. By applying Theorem 2.2 to an appropriate
polynomial, and by observing that the relevant coefficient in this case can
be computed from the known results about the Ballot problem (see, e.g.,
[M]), as well as from the known connection between this problem and the
hook formula for the number of Young tableaux of a given shape, one can
obtain a tight lower bound for the number of such sums. The very special
case of this result in which k = 1, A4g = A and Ay = A—{a} for an arbitrary
element a € A, implies the following theorem, conjectured by Erdés and
Heilbronn in 1964 (cf., e.g., [ErG]) and proved, after various partial results
by several researchers, by Dias Da Silva and Hamidoune [DH], using some
tools from linear algebra and the representation theory of the symmetric
group.

Theorem 2.4 [DH]. Ifp is a prime, and A is a nonempty subset of Z,,
then
Ha+d :a,a" € Aja#d'}| > min{p,2|A| - 3}.

This special case can be proved directly by assuming it is false, taking
C' to be a set of cardinality 2| A| — 4 containing all sums of distinct elements
ai,a2 € A, with ag # a for some fixed a € A, and then by applying
Theorem 2.2 to the polynomial f(z,y) = (z —y) [[.cc(z +y —¢) to get a
contradiction.

Erd6s, Ginzburg and Ziv [ErGZ] proved that every sequence of 2n — 1
elements of the cyclic group Z, contains a subsequence of exactly n terms
whose sum (in Z,) is 0. This is tight, as shown, for example, by the
sequence consisting of n — 1 zeros and n — 1 ones. The main part of the
proof of this statement is its proof for prime values of n = p, as the general
case can then be easily obtained by induction. Kemnitz [Ke] conjectured
that for every prime p, every sequence of 4p — 3 elements of Zg contains
a subsequence of exactly p terms whose sum (in Zg) is zero. Ronyai [Ro]
has proved, very recently, that 4p — 2 elements suffice. His proof can be
described as an application of Theorem 2.2. This is done by first proving
the following lemma.
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LEMMA 2.5 [AID]. If (a1,b1), ... , (asp, bsp) € Z2 and 327 (a;,b;) = 0 (in
Zg), then thereis an I C {1,2,... ,3p}, |I| = p, such that ), ;(a;,b;) = 0.

To prove the lemma, consider the polynomial

3p—1 p—1 3p—1 p—1
f(xl,l‘z, ce ,373p_1) = (1 — ( Z aﬂ?i) ) <1 — < Z b1$z> )
i=1 =1

(- (8a)7) o

i=1 =1

Then the coefficient of Hfﬁ Il x; is nonzero, and hence, by Theorem 2.2 with

S1=2952...= 83,1 = {0,1} there are x; € {0,1} such that f(z1,... ,23p—1)
is not zero. As f(0,0,...,0) = 0, not all z; are 0. If Zfﬁ;l x; 1S not zero
modulo p then f(x1,...,23,-1) = 0, hence this sum is either p or 2p. In

both cases we get the desired result, where in the second case we apply the
fact that the sum of all 3p vectors is 0.

To prove, next, that any sequence (a1,b1), (a2, b2), ... , (@ap—2,bap—2) of
elements of Zg contains a subsequence of precisely p terms whose sum is 0,
apply Theorem 2.2 to the polynomial

4p—2 p—1 4p—2 p—1
f(wy,29,... 245 2) = (1 - ( Z ai$i> ) <1 - < Z bﬂi) )
i=1 i=1

4p—2 p—1 4p—2
(1—<in> > 2— Z ij —2H(1—$i),
i=1 JC{1,2,... . 4p—2},|J|=p jEJ i=1

with §1 = Sy = ... = Sy—2 = {0,1}. As the coefficient of [ [, z; is nonzero
there are z; € {0,1} such that f(z1,...,z4—2) # 0. It is easy to check
that not all z; are zero. It also follows that ). x; must be divisible by p;
if it is p we are done, if it is 3p the desired result follows from the lemma,
and the last ingredient is the fact that if it is 2p then the term

2 — Z H .I'j

Jc{1,2,... 4p—2},|J|=pjEJ

is zero and hence so is f. This completes the proof.

Theorem 2.2 has various applications in Graph Theory, including ones
in Graph Coloring, which is the most popular area of the subject. We
sketch below the basic approach, following [A1T]. See also [Ma] for a related
method.

A wvertex coloring of a graph G is an assignment of a color to each
vertex of (G. The coloring is proper if adjacent vertices receive distinct
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colors. The chromatic number x(G) of G is the minimum number of colors
used in a proper vertex coloring of G. An edge coloring of G is, similarly, an
assignment of a color to each edge of G. It is proper if adjacent edges receive
distinct colors. The minimum number of colors in a proper edge-coloring
of G is the chromatic index x'(G) of G. This is equal to the chromatic
number of the line graph of G.

A graph G = (V| E) is k-choosable if for every assignment of sets of
integers S(v) C Z, each of size k, to the vertices v € V, there is a proper
vertex coloring ¢ : V +— Z so that c¢(v) € S(v) for all v € V. The choice
number of G, denoted ch(G), is the minimum integer k so that G is k-
choosable. Obviously, this number is at least the chromatic number x(G)
of G. The choice number of the line graph of G, denoted here by ch/(G),
is usually called the list chromatic index of GG, and it is clearly at least the
chromatic index x/(G) of G.

The study of choice numbers was introduced, independently, by Vizing
[Viz] and by Erd8s, Rubin and Taylor [ErRT|. There are many graphs
G for which the choice number ch(G) is strictly larger than the chromatic
number x(G) (a complete bipartite graph with 3 vertices in each color class
is one such example). In view of this, the following conjecture, suggested
independently by various researchers including Vizing, Albertson, Collins,
Tucker and Gupta, which apparently appeared first in print in the paper
of Bollobas and Harris ([BoH]), is somewhat surprising.

CONJECTURE 2.6 (The list coloring conjecture). For every graph G,
ch'(G) =X'(G).

This conjecture asserts that for line graphs there is no gap at all between
the choice number and the chromatic number. Many of the most interesting
results in the area are proofs of special cases of this conjecture, which is
still wide open.

The graph polynomial fo = fa(x1,xe,... ,x,) of a graph G = (V, E)
on aset V = {1,... ,n} of n vertices is defined by fg(x1,x2,...,2,) =
I{(z; —xj) : i < j, ij € E}. This polynomial has been studied by var-
ious researchers, starting already with Petersen [P] in 1891. Note that if
S1,...,S, are sets of integers, then there is a proper coloring assigning to
each vertex i a color from its list S;, if and only if there are s; € S; such
that fa(s1,...,8n) # 0. This condition is precisely the one appearing in
the conclusion of Theorem 2.2, and it is therefore natural to expect that
this theorem can be useful in tackling coloring problems. By applying it to
line graphs of planar, cubic graphs, and by interpreting the appropriate co-
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efficient of the corresponding polynomial combinatorially, it can be shown,
using a known result of Vigneron [Vi] and the Four Color Theorem, that
the list chromatic index of every 2-connected cubic planar graph is 3. This
is a strengthening of the Four Color Theorem, which is well known to be
equivalent to the fact that the chromatic index of any such graph is 3. An
extension of this result appears in [EIG].

Additional results on graph coloring and choice numbers using the algebraic
approach are described in the survey [All].

2.2 The dimension argument. In order to prove an upper bound for
the cardinality of a set, it is sometimes possible to associate each mem-
ber of the set with a vector in an appropriately defined vector space, and
show that the set of vectors obtained in this manner is linearly indepen-
dent. Thus, the cardinality of the set is at most the dimension of the
vector space. This simple linear-algebra technique, which may be called
the dimension argument, has many impressive combinatorial applications.
In this subsection we describe a few representative examples.

Borsuk [Bors] asked if any set of points in R? can be partitioned into
at most d + 1 subsets of smaller diameter. Kahn and Kalai [KK]| gave an
example showing that this is not the case, by applying a theorem of Frankl
and Wilson [FW]. Here is a sketch of a slightly modified version of this
counterexample, following Nilli [Ni]. The main part of the proof uses the
the dimension argument. Let n = 4p, where p is an odd prime, and let F
be the set of all vectors x = (z1,...,x,) € {—1,1}", where x; = 1 and the
number of negative coordinates of x is even.

LEMMA 2.7. If G C F contains no two orthogonal vectors then |G| <
o ()

To prove the lemma note, first, that the scalar product a- b of any two
members of F is divisible by 4, and since there is no a € F for which —a is
also in F the assumption implies that there are no distinct a and b in G so
that a-b =0 (mod p). For each a € G define a polynomial over the finite
field GF (p) as follows: Pa(x) = [T°Z, (a-x—1), where here x = (21,... ,x,)
is a vector of variables. Note that by the assumption

(i) Pa(b) =0 (in GF(p)) for every two distinct members a and b of G,
and
(ii) Pa(a)#0forallaeg.

Let P, be the multilinear polynomial obtained from the standard rep-
resentation of P, as a sum of monomials by using, repeatedly, the relations
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27 = 1. Since Pa(x) = Pa(x) for every vector x with {—1,1} coordinates,
the relations (i) and (ii) above hold with every P replaced by P.

It is easy to see that this implies that the polynomials P, for a € G are

linearly independent. Therefore, |G| is bounded by the dimension of the
space of multilinear polynomials of degree at most p — 1 in n — 1 variables
(since z; = 1) over GF(p), which is Zf:_(} (”;1), completing the proof of
the lemma.
For any n-vector x = (x1,...,%p), let x x x denote the tensor product
of x with itself, i.e., the vector of length n?, (z;; : 1 < i,j < n), where
zij = x;x;. Define S = {x*x : x € F}, where F is as above. The norm
of each vector in S is n and the scalar product between any two members
of S is easily seen to be non-negative. Moreover, by Lemma 2.7 any set of
more than Zf:_ol (":1) members of S contains an orthogonal pair, i.e., two
points the distance between which is the diameter of S. It follows that S
cannot be partitioned into less than 272/ Zf;ol (”;1) subsets of smaller
diameter.

The vectors in S lie in an affine subspace of dimension (Z), and hence

if
p-1 n—1 n
n—2
/3 (70) > (5)+

the set S is a subset of R? for d = (72‘) that cannot be partitioned into at
most d 4 1 subsets of smaller diameter. The smallest d for which this holds
(with n = 4p, p an odd prime) is d = 946 = (424) obtained by taking p = 11.

For an undirected graph G = (V, E), let G™ denote the graph whose ver-
tex set is V™ in which two distinct vertices (uy, ug,... ,uy,) and (v, va,... ,
vp) are adjacent iff for all ¢ between 1 and n either u; = v; or u;v; € E. The
Shannon capacity ¢(G) of G is the limit lim,_,(a(G™))Y/", where a(G™)
is the maximum size of an independent set of vertices in G™. This limit
exists, by super-multiplicativity, and it is always at least a(G).

The study of this parameter was introduced by Shannon in [Sh], mo-
tivated by a question in Information Theory. Indeed, if V is the set of
all possible letters a channel can transmit in one use, and two letters are
adjacent if they may be confused, then a(G™) is the maximum number of
messages that can be transmitted in n uses of the channel with no danger
of confusion. Thus ¢(G) represents the number of distinct messages per use
the channel can communicate with no error while used many times.

The (disjoint) union of two graphs G and H, denoted G + H, is the
graph whose vertex set is the disjoint union of the vertex sets of G and
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of H and whose edge set is the (disjoint) union of the edge sets of G and
H. If G and H are graphs of two channels, then their union represents the
sum of the channels corresponding to the situation where either one of the
two channels may be used, a new choice being made for each transmitted
letter.

Shannon [Sh| proved that for every G and H, ¢(G + H) > ¢(G) + ¢(H)
and that equality holds if the vertex set of one of the graphs, say G, can
be covered by a(G) cliques. He conjectured that in fact equality always
holds. Counter examples are given in [Al3], where it is shown that there
are graphs G and H satisfying ¢(G) < k and ¢(H) < k, whereas ¢(G+H) >

k(Ho(l))Slfﬁglfgk and the o(1)-term tends to zero as k tends to infinity.

The construction is based on some of the ideas of Frankl and Wilson
[FW], together with a method for bounding the Shannon capacity of a graph
using the dimension argument. This bound, described below, is strongly
related to a bound of Haemers [HJ.

Let G = (V,E) be a graph and let F be a subspace of the space of
polynomials in r variables over a field F. A representation of G over F
is an assignment of a polynomial f, in F to each vertex v € V and an
assignment of a point ¢, € F" to each v € V such that the following two
conditions hold:

1. For each v € V, fy(c,) # 0.
2. If uw and v are distinct nonadjacent vertices of G then f,(c,) = 0.

In these notations, the following holds.

PROPOSITION 2.8. Let G = (V, E) be a graph and let F be a subspace of
the space of polynomials in r variables over a field F'. If G has a represen-
tation over F then o(G) < dim(F).

This is proved by associating each vertex of an independent set of max-
imum cardinality in a given power of G, an appropriate polynomial in the
corresponding tensor power of F, and by showing that these polynomials
are linearly independent. The details can be found in [Al3].

Many additional applications of the dimension argument appear in [Bl],

[BF], [G].

3 Probabilistic Methods

The discovery, demonstrated in the early work of various researchers, that
deterministic statements can be proved by probabilistic reasoning, led al-
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ready more than fifty years ago to several striking results in Analysis,
Number Theory, Combinatorics and Information Theory. These are demon-
strated in early papers of Paley, Zygmund, Kac, Shannon, Turan and Szele,
and even more so in the work of Paul Erdés. It soon became clear that the
method, which is now called the probabilistic method, is a very powerful tool
for proving results in Discrete Mathematics. The early results combined
combinatorial arguments with fairly elementary probabilistic techniques,
whereas the development of the method in recent years required the ap-
plication of more sophisticated tools from probability theory. There is, by
now, a huge amount of material on the topic, and it is hopeless to try and
survey it in a comprehensive manner here. My intention in this section
is therefore merely to illustrate the basic ideas with a few representative
examples. More material can be found in the books [AlS], [Sp] and [JLR].

The Ramsey number R(k,t) is the minimum number n such that every
graph on n vertices contains either a clique of size k or an independent
set of size t. By a special case of the celebrated theorem of Ramsey (cf.,
e.g., [GrRS]), R(k,t) is finite for every positive integers k and ¢, and in fact
R(k,t) < (kﬁff) In particular, R(k,k) < 4. The problem of determin-
ing or estimating the numbers R(k,t) received a considerable amount of

attention, and seems to be very difficult in general.

In one of the first applications of the probabilistic method in Combina-
torics, Erdds [Er] proved that if (2)217(5) < 1 then R(k,k) > n. Therefore,
R(k,k) > |[2¥/2] for all k > 2. The proof is (by now) extremely simple; Let
G = G(n,1/2) be a random graph on the n vertices {1,2,... ,n}, obtained
by picking each pair of distinct vertices, randomly and independently, to be
connected with probability 1/2. Every fixed set of k vertices of G forms a

clique or an independent set with probability 21_(}5). Thus (2)21_@) (<1)
is an upper bound for the probability that G contains a clique or an inde-
pendent set of size k. It follows that with positive probability G is a graph
without such cliques or independent sets, and hence such a graph exists!

A proper coloring of a graph is acyclic if there is no two-colored cycle.
The acyclic chromatic number of a graph is the minimum number of colors
in an acyclic coloring of it. The Four Color Theorem, which is the best
known result in Discrete Mathematics, asserts that the chromatic number
of every planar graph is at most 4. Answering a problem of Griinbaum
and improving results of various authors, Borodin [Bor| showed that every
planar graph has an acyclic 5-coloring. He conjectured that for any surface
but the plane, the maximum possible chromatic number of a graph embed-
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dable on the surface, is equal to the maximum possible acyclic chromatic
number of a graph embeddable on it. The Map Color Theorem proved in
[RY] determines precisely the maximum possible chromatic number of any
graph embeddable on a surface of genus g. This maximum is the maximum
number of vertices of a complete graph embeddable on such a surface, which

turns out to be
7+ /1 +48g
] 2 |=0(g"?).
The following result shows that the maximum possible acyclic chromatic

number of a graph on such a surface is asymptotically different, thus dis-
proving Borodin’s conjecture.

Theorem 3.1 [AIMS]. The acyclic chromatic number of any graph em-
beddable on a surface of genus g is at most O(g*7). Moreover, for every
g > 0 there is a graph embeddable on a surface of genus g whose acyclic
chromatic number is at least Q(g*" /(log g)'/7).

The proof of the O(g4/ ™) upper bound is probabilistic, and combines
some combinatorial arguments with the Lovasz Local Lemma. This Lemma,
proved in [ErL], is a tool for proving that under suitable conditions, with
positive probability, none of a large finite collection of nearly independent,
low probability events in a probability space holds. This positive proba-
bility is often extremely small, and yet the Local Lemma can be used to
show it is positive. The proof of the Q(g*7/(log g)*/7) lower bound is also
probabilistic, and is based on an appropriate random construction. Note
that the statement of the above theorem is purely deterministic, and yet
its proof relies heavily on probabilistic arguments.

The final example in this section is a recent gem; it is based on a simple
result in graph theory, whose proof is probabilistic. This result has several
fascinating consequences in Combinatorial Geometry and Combinatorial
Number Theory. Some weaker versions of these seemingly unrelated con-
sequences have been proved before, in a far more complicated manner

An embedding of a graph G = (V, F) in the plane is a a planar represen-
tation of it, where each vertex is represented by a point in the plane, and
each edge uv is represented by a curve connecting the points corresponding
to the vertices u and v. The crossing number of such an embedding is the
number of pairs of intersecting curves that correspond to pairs of edges with
no common endpoints. The crossing number cr(G) of G is the minimum
possible crossing number in an embedding of it in the plane. The following
theorem was proved by Ajtai, Chvétal, Newborn and Szemerédi [ACNS]
and, independently, by Leighton [L].
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Theorem 3.2. The crossing number of any simple graph G = (V, E) with

. E|?
|E| > 4|V| is at least Glll‘lflz'

The proof is by a simple probabilistic argument. By Euler’s formula any
simple planar graph with n vertices has at most 3n —6 edges, implying that
the crossing number of any simple graph with n vertices and m edges is at
least m — (3n —6) > m — 3n. Let G = (V, E) be a graph with |E| > 4|V|
embedded in the plane with ¢ = ¢r(G) crossings. Let H be the random
induced subgraph of G obtained by picking each vertex of G, randomly
and independently, to be a vertex of H with probability p (where p will be
chosen later). The expected number of vertices of H is p|V|, the expected
number of its edges is p?|E|, and the expected number of crossings in its
given embedding is p*t, implying that the expected value of its crossing
number is at most p*t. Therefore, p*t > p?|E| — 3p|V|, implying that
Bl vl
p p
Without trying to optimize the constant factor, take p = 4|V |/|E| ( < 1),
to get the desired result.

L. Székely [Sz] noticed that this result can be applied to obtain a sur-
prisingly simple proof of a result of Szemerédi and Trotter in Combinatorial
Geometry [SzeT]. The original proof is far more complicated.

cr(G)=t>

Theorem 3.3. Let P be a set of n distinct points in the plane, and let
L be a set of m distinct lines. Then, the number of incidences between
the members of P and those of L (that is, the number of pairs (p,l) with
pe P, leLandpel)is at most c(m?3n?/3 + m + n), for some absolute
constant c.

Székely’s proof is short and elegant: denote the number of incidences
by I. Let G = (V, E) be the graph whose vertices are all members of P,
where two are adjacent if and only if they are consecutive points of P on
some line in L. Clearly, |V| = n and |E| = I — m. Note that G is already
given embedded in the plane, where the edges are represented by segments
of the corresponding lines in L. In this embedding, every crossing is an
intersection point of two members of L, implying that cr(G) < ('y) < m?/2.
By Theorem 3.2, either I —m = |E| < 4|V| = 4n, that is, I < m + 4n, or
m? (I —m)3
zer(@)z Vg
showing that I < (32)Y/3m?/3n2/3 + m. In both cases I < 4(m*/3n?/3 4
m + n), completing the proof.
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G. Elekes found several applications of the last theorem to Additive
Number Theory. Here, too, the proofs are amazingly simple. Here is a
representative result. A related one appears in [E].

Theorem 3.4. For any three sets A,B and C' of s real numbers each,
|A-B+C|={ab+c: a€ Abe B,ce C}| > Q(s*?).
To prove this result, define R =A- B+ C, |R| = r and put
P={(a,t):ac AteR}, L={y=br+c:beB,ceC}.
Thus P is a set of n = sr points in the plane, L is a set of m = s lines
in the plane, and each line y = bz + ¢ in L is incident with s points of P,
that is, with all the points {(a,ab + ¢) : a € A}. Therefore, by Theorem
3.3, 83 < 4(s*3(s1)%/® 4+ sr + 52), implying that r > Q(s%/?), as needed.

4 The Algorithmic Aspects

The rapid development of theoretical Computer Science and its tight con-
nection to Discrete Mathematics motivated the study of the algorithmic as-
pects of algebraic and probabilistic techniques. Can a combinatorial struc-
ture, or a substructure of a given one, whose existence is proved by algebraic
or probabilistic means, be constructed explicitly (that is, by an efficient de-
terministic algorithm)? Can the algorithmic problems corresponding to
existence proofs be solved by efficient procedures? The investigation of
these questions are often related to other branches of mathematics. Here
we merely mention a few open problems motivated by these questions.

As mentioned in the last paragraph of subsection 2.1, the list chromatic
index of any planar cubic 2-connected graph is 3. Can the corresponding
algorithmic problem be solved efficiently? That is, can we color properly
the edges of any given planar cubic 2-connected graph using given lists of
three colors per edge, in polynomial time?

This problem, as well as several similar applications of Theorem 2.2,
are widely open. Note that any efficient procedure that finds, for a given
input polynomial that satisfies the assumptions of Theorem 2.2, a point
(s1,82,... ,8y) satisfying its conclusion, would provide efficient algorithms
for all these algorithmic problems. It would thus be interesting to find such
an efficient procedure.

Probabilistic proofs also suggest the study of the corresponding algo-
rithmic problems. This is related to the study of randomized algorithms,
a topic which has been developed tremendously during the last decade.
See, e.g., [MoR] and its many references. Even the simple proof of Erdés,
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described in section 3, that there are graphs on more than |2¥/2| vertices
containing neither a clique nor an independent set of size k leads to an open
problem which seems very difficult. Can we construct, explicitly, a graph
on n > (14 ¢)¥ vertices with neither a clique nor an independent set, of size
k, in time which is polynomial in n, where ¢ > 0 is any positive absolute
constant?

The above problems, as well as many related ones, could be viewed as
a victory of algebraic and probabilistic techniques. They illustrate the fact
that these methods often supply solutions to problems that we cannot solve
constructively. I am convinced that the study of algebraic and probabilistic
methods, as well as the related search for more constructive proofs, will keep
playing a major role in the future development of Discrete Mathematics.
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CHALLENGES IN ANALYSIS
R. CoirMAN

Mathematical analysis, and in particular Harmonic Analysis, has tradi-
tionally been tied to physical modeling — providing the language to describe
the infinitesimal laws of nature through calculus and partial differential ex-
pressions as well as descriptions of field effects through integral operators,
spectral and functional analysis.

A variety of deep analytical methods and tools were developed enabling
detailed understanding and descriptions of natural transforms of analy-
sis. The Fourier transform, the Hilbert transform and their generalizations
as Singular Integrals, pseudodifferential and Fourier Integral calculi, have
played a central role in 20" century analysis.

Over the last few years, while attempting to deal computationally with
the problems that existing theory was supposed to elucidate, it became
clear that a large number of fundamental issues both theoretical and com-
putational need to be addressed; and that new mathematical/algorithmic
tools and languages need to be developed.

It has become obvious that major obstructions exist to the develop-
ment of an effective computational harmonic analysis. Moreover, success
in overcoming these difficulties will provide the scientist dealing with com-
plex scientific structure with a language to formulate and model his science.
Our goal is to describe some of these challenges, both algorithmic and the-
oretical, by providing a few examples, hinting at the existence of a rich field
of research.

The main theme governing these examples is our lack of understanding
of analysis and geometry in high dimension (> 10).

The main issue involves our ability to evaluate effectively an analytical
expression. We will see that this question provides a natural mechanism to
test our analytical/synthetic understanding, and leads to deep structural
and organizational insights.!

'Such insights have recently led to the solution by Lacey and Thiele of Calderon’s
conjecture and provided a conversion of Carleson’s proof of the convergence of Fourier
Series into a powerful analytic method, as well as deep insights in complex function
theory.
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1 Digital Transcriptions of Functions, Libraries of
Waveforms

For this exposition it is convenient to think of a function f as a Fourier
transzorm of a compactly supported square integrable function f, (with
suppf C [—No, No).

Such a function is determined by its “samples” f(k/Ny). We can identify
the function with the vector f = {f(k/No)}k =0,%1,..., f = (fr).

We should think of f(t) as a recorded sound and of fj, as digital samples
of f. Unfortunately this simple-minded digitization of f is neither efficient
nor very useful. Our goal is to transcribe the function to a given precision
€ using a minimal or close to minimal number of parameters. Moreover, we
would like to automate the transcription mode and to develop a calculus
with these transcriptions. (In much the same way as the standard binary
or digital notation enables the automation of a numerical computation).

The standard procedure in signal processing is to window f(¢) by mul-
tiplication by w(t — j) where w is compactly supported on [—1,1] and
S w?(t — j) = 1 and then expand f(t)w(t — j) as a Fourier series in t.
The Fourier coefficients are kept (to some precision ) and used to rep-
resent the function. This kind of representation is convenient for storing
sound or other one dimensional signals providing a local frequency content
of the function.

The following figures show the effect of various window functions. The
function being digitized is digitized for various choices of window size. The
third choice is more effective, revealing the full structure of the function as
a sum of three sounds with linearly increasing frequency.

We now describe briefly a mode for automatic transcription of functions
resembling an “orchestration” of the function as a superposition of “musical
scores” for different instruments. A “score” is a superposition of notes,

where each note has a location, duration, pitch and amplitude.

More precisely we consider a small basic window w(t) which is supported
on an interval [ — 5, 3]Ew2(t —j) =1 and w(t)w(t + 1) is even. Then the
functions w(t — j)sin [(k+ 3 )7 (¢t — j)| form an orthonormal basis of L?(R)

(see [CM]). Similarly, if we let wy (t) = [w?(t) + w?(t — 1)]'/? the functions
wi(t —2j)sin [(k+ 3) (t —25)3]

form a basis.
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