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Preface

All three authors of the present book have long-standing experience in teach-
ing graduate courses in multivariate analysis (MVA). These experiences have
taught us that aside from distribution theory, projections and the singular
value decomposition (SVD) are the two most important concepts for un-
derstanding the basic mechanism of MVA. The former underlies the least
squares (LS) estimation in regression analysis, which is essentially a projec-
tion of one subspace onto another, and the latter underlies principal compo-
nent analysis (PCA), which seeks to find a subspace that captures the largest
variability in the original space. Other techniques may be considered some
combination of the two.

This book is about projections and SVD. A thorough discussion of gen-
eralized inverse (g-inverse) matrices is also given because it is closely related
to the former. The book provides systematic and in-depth accounts of these
concepts from a unified viewpoint of linear transformations in finite dimen-
sional vector spaces. More specifically, it shows that projection matrices
(projectors) and g-inverse matrices can be defined in various ways so that a
vector space is decomposed into a direct-sum of (disjoint) subspaces. This
book gives analogous decompositions of matrices and discusses their possible
applications.

This book consists of six chapters. Chapter 1 overviews the basic linear
algebra necessary to read this book. Chapter 2 introduces projection ma-
trices. The projection matrices discussed in this book are general oblique
projectors, whereas the more commonly used orthogonal projectors are spe-
cial cases of these. However, many of the properties that hold for orthogonal
projectors also hold for oblique projectors by imposing only modest addi-
tional conditions. This is shown in Chapter 3.

Chapter 3 first defines, for an n by m matrix A, a linear transformation
y = Ax that maps an element x in the m-dimensional Euclidean space Em

onto an element y in the n-dimensional Euclidean space En. Let Sp(A) =
{y|y = Ax} (the range or column space of A) and Ker(A) = {x|Ax = 0}
(the null space of A). Then, there exist an infinite number of the subspaces
V and W that satisfy

En = Sp(A)⊕W and Em = V ⊕Ker(A), (1)

where ⊕ indicates a direct-sum of two subspaces. Here, the correspondence
between V and Sp(A) is one-to-one (the dimensionalities of the two sub-
spaces coincide), and an inverse linear transformation from Sp(A) to V can

v
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be uniquely defined. Generalized inverse matrices are simply matrix repre-
sentations of the inverse transformation with the domain extended to En.
However, there are infinitely many ways in which the generalization can be
made, and thus there are infinitely many corresponding generalized inverses
A− of A. Among them, an inverse transformation in which W = Sp(A)⊥

(the ortho-complement subspace of Sp(A)) and V = Ker(A)⊥ = Sp(A′) (the
ortho-complement subspace of Ker(A)), which transforms any vector in W
to the zero vector in Ker(A), corresponds to the Moore-Penrose inverse.
Chapter 3 also shows a variety of g-inverses that can be formed depending
on the choice of V and W , and which portion of Ker(A) vectors in W are
mapped into.

Chapter 4 discusses generalized forms of oblique projectors and g-inverse
matrices, and gives their explicit representations when V is expressed in
terms of matrices.

Chapter 5 decomposes Sp(A) and Sp(A′) = Ker(A)⊥ into sums of mu-
tually orthogonal subspaces, namely

Sp(A) = E1

·⊕ E2

·⊕ · · · ·⊕ Er

and
Sp(A′) = F1

·⊕ F2

·⊕ · · · ·⊕ Fr,

where
·⊕ indicates an orthogonal direct-sum. It will be shown that Ej can

be mapped into Fj by y = Ax and that Fj can be mapped into Ej by
x = A′y. The singular value decomposition (SVD) is simply the matrix
representation of these transformations.

Chapter 6 demonstrates that the concepts given in the preceding chap-
ters play important roles in applied fields such as numerical computation
and multivariate analysis.

Some of the topics in this book may already have been treated by exist-
ing textbooks in linear algebra, but many others have been developed only
recently, and we believe that the book will be useful for many researchers,
practitioners, and students in applied mathematics, statistics, engineering,
behaviormetrics, and other fields.

This book requires some basic knowledge of linear algebra, a summary
of which is provided in Chapter 1. This, together with some determination
on the part of the reader, should be sufficient to understand the rest of
the book. The book should also serve as a useful reference on projectors,
generalized inverses, and SVD.

In writing this book, we have been heavily influenced by Rao and Mitra’s
(1971) seminal book on generalized inverses. We owe very much to Professor
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C. R. Rao for his many outstanding contributions to the theory of g-inverses
and projectors. This book is based on the original Japanese version of the
book by Yanai and Takeuchi published by Todai-Shuppankai (University of
Tokyo Press) in 1983. This new English edition by the three of us expands
the original version with new material.

January 2011 Haruo Yanai
Kei Takeuchi
Yoshio Takane
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Chapter 1

Fundamentals of Linear
Algebra

In this chapter, we give basic concepts and theorems of linear algebra that
are necessary in subsequent chapters.

1.1 Vectors and Matrices

1.1.1 Vectors

Sets of n real numbers a1, a2, · · · , an and b1, b2, · · · , bn, arranged in the fol-
lowing way, are called n-component column vectors:

a =




a1

a2
...

an




, b =




b1

b2
...

bn




. (1.1)

The real numbers a1, a2, · · · , an and b1, b2, · · · , bn are called elements or com-
ponents of a and b, respectively. These elements arranged horizontally,

a′ = (a1, a2, · · · , an), b′ = (b1, b2, · · · , bn),

||a|| =
√

a2
1 + a2

2 + · · ·+ a2
n. (1.2)

© Springer Science+Business Media, LLC 2011 

are called n-component row vectors.
We define the length of the n-component vector a to be
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2 CHAPTER 1. FUNDAMENTALS OF LINEAR ALGEBRA

This is also called a norm of vector a. We also define an inner product
between two vectors a and b to be

(a, b) = a1b1 + a2b2 + · · ·+ anbn. (1.3)

The inner product has the following properties:

(i) ||a||2 = (a, a),

(ii) ||a + b||2 = ||a||2 + ||b||2 + 2(a, b),

(iii) (aa, b) = (a, ab) = a(a, b), where a is a scalar,

(iv) ||a||2 = 0 ⇐⇒ a = 0, where ⇐⇒ indicates an equivalence (or “if and
only if”) relationship.

We define the distance between two vectors by

d(a, b) = ||a− b||. (1.4)

Clearly, d(a, b) ≥ 0 and

(i) d(a, b) = 0 ⇐⇒ a = b,

(ii) d(a, b) = d(b,a),

(iii) d(a, b) + d(b, c) ≥ d(a, c).

The three properties above are called the metric (or distance) axioms.

Theorem 1.1 The following properties hold:

(a, b)2 ≤ ||a||2||b||2, (1.5)

||a + b|| ≤ ||a||+ ||b||. (1.6)

Proof. (1.5): The following inequality holds for any real number t:

||a− tb||2 = ||a||2 − 2t(a, b) + t2||b||2 ≥ 0.

This implies
Discriminant = (a, b)2 − ||a||2||b||2 ≤ 0,

which establishes (1.5).
(1.6): (||a||+ ||b||)2−||a+b||2 = 2{||a|| · ||b||−(a, b)} ≥ 0, which implies

(1.6). Q.E.D.

Inequality (1.5) is called the Cauchy-Schwarz inequality, and (1.6) is called
the triangular inequality.
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For two n-component vectors a ( 6= 0) and b ( 6= 0), the angle between
them can be defined by the following definition.

Definition 1.1 For two vectors a and b, θ defined by

cos θ =
(a, b)

||a|| · ||b|| (1.7)

is called the angle between a and b.

1.1.2 Matrices

We call nm real numbers arranged in the following form a matrix:

A =




a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm



. (1.8)

Numbers arranged horizontally are called rows of numbers, while those ar-
ranged vertically are called columns of numbers. The matrix A may be
regarded as consisting of n row vectors or m column vectors and is generally
referred to as an n by m matrix (an n × m matrix). When n = m, the
matrix A is called a square matrix. A square matrix of order n with unit
diagonal elements and zero off-diagonal elements, namely

In =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



,

is called an identity matrix.
Define m n-component vectors as

a1 =




a11

a21
...

an1




, a2 =




a12

a22
...

an2




, · · · , am =




a1m

a2m
...

anm




.

We may represent the m vectors collectively by

A = [a1, a2, · · · , am]. (1.9)
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The element of A in the ith row and jth column, denoted as aij , is often
referred to as the (i, j)th element of A. The matrix A is sometimes written
as A = [aij ]. The matrix obtained by interchanging rows and columns of A
is called the transposed matrix of A and denoted as A′.

Let A = [aik] and B = [bkj ] be n by m and m by p matrices, respectively.
Their product, C = [cij ], denoted as

C = AB, (1.10)

is defined by cij =
∑m

k=1 aikbkj . The matrix C is of order n by p. Note that

A′A = O ⇐⇒ A = O, (1.11)

where O is a zero matrix consisting of all zero elements.

Note An n-component column vector a is an n by 1 matrix. Its transpose a′

is a 1 by n matrix. The inner product between a and b and their norms can be
expressed as

(a, b) = a′b, ||a||2 = (a, a) = a′a, and ||b||2 = (b, b) = b′b.

Let A = [aij ] be a square matrix of order n. The trace of A is defined
as the sum of its diagonal elements. That is,

tr(A) = a11 + a22 + · · ·+ ann. (1.12)

Let c and d be any real numbers, and let A and B be square matrices of
the same order. Then the following properties hold:

tr(cA + dB) = ctr(A) + dtr(B) (1.13)

and
tr(AB) = tr(BA). (1.14)

Furthermore, for A (n×m) defined in (1.9),

||a1||2 + ||a2||2 + · · ·+ ||an||2 = tr(A′A). (1.15)

Clearly,

tr(A′A) =
n∑

i=1

m∑

j=1

a2
ij . (1.16)
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Thus,
tr(A′A) = 0 ⇐⇒ A = O. (1.17)

Also, when A′
1A1, A

′
2A2, · · · ,A′

mAm are matrices of the same order, we
have

tr(A′
1A1 + A′

2A2 + · · ·+ A′
mAm) = 0 ⇐⇒ Aj = O (j = 1, · · · ,m). (1.18)

Let A and B be n by m matrices. Then,

tr(A′A) =
n∑

i=1

m∑

j=1

a2
ij ,

tr(B′B) =
n∑

i=1

m∑

j=1

b2
ij ,

and

tr(A′B) =
n∑

i=1

m∑

j=1

aijbij ,

and Theorem 1.1 can be extended as follows.

Corollary 1

tr(A′B) ≤
√

tr(A′A)tr(B′B) (1.19)

and √
tr(A + B)′(A + B) ≤

√
tr(A′A) +

√
tr(B′B). (1.20)

Inequality (1.19) is a generalized form of the Cauchy-Schwarz inequality.

The definition of a norm in (1.2) can be generalized as follows. Let M
be a nonnegative-definite matrix (refer to the definition of a nonnegative-
definite matrix immediately before Theorem 1.12 in Section 1.4) of order n.
Then,

||a||2M = a′Ma. (1.21)

Furthermore, if the inner product between a and b is defined by

(a, b)M = a′Mb, (1.22)

the following two corollaries hold.
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Corollary 2
(a, b)M ≤ ||a||M ||b||M . (1.23)

Corollary 1 can further be generalized as follows.

Corollary 3

tr(A′MB) ≤
√

tr(A′MA)tr(B′MB) (1.24)

and
√

tr{(A + B)′M(A + B)} ≤
√

tr(A′MA) +
√

tr(B′MB). (1.25)

In addition, (1.15) can be generalized as

||a1||2M + ||a2||2M + · · ·+ ||am||2M = tr(A′MA). (1.26)

1.2 Vector Spaces and Subspaces

For m n-component vectors a1, a2, · · · ,am, the sum of these vectors multi-
plied respectively by constants α1, α2, · · · , αm,

f = α1a1 + α2a2 + · · ·+ αmam,

is called a linear combination of these vectors. The equation above can be ex-
pressed as f = Aa, where A is as defined in (1.9), and a′ = (α1, α2, · · · , αm).
Hence, the norm of the linear combination f is expressed as

||f ||2 = (f , f) = f ′f = (Aa)′(Aa) = a′A′Aa.

The m n-component vectors a1, a2, · · · , am are said to be linearly de-
pendent if

α1a1 + α2a2 + · · ·+ αmam = 0 (1.27)

holds for some α1, α2, · · · , αm not all of which are equal to zero. A set
of vectors are said to be linearly independent when they are not linearly
dependent; that is, when (1.27) holds, it must also hold that α1 = α2 =
· · · = αm = 0.

When a1,a2, · · · , am are linearly dependent, αj 6= 0 for some j. Let
αi 6= 0. From (1.27),

ai = β1a1 + · · ·+ βi−1ai−1 + βi+1ai+1 + βmam,
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where βk = −αk/αi (k = 1, · · · ,m; k 6= i). Conversely, if the equation
above holds, clearly a1, a2, · · · , am are linearly dependent. That is, a set
of vectors are linearly dependent if any one of them can be expressed as a
linear combination of the other vectors.

Let a1, a2, · · · ,am be linearly independent, and let

W =

{
d|d =

m∑

i=1

αiai

}
,

where the αi’s are scalars, denote the set of linear combinations of these
vectors. Then W is called a linear subspace of dimensionality m.

Definition 1.2 Let En denote the set of all n-component vectors. Suppose
that W ⊂ En (W is a subset of En) satisfies the following two conditions:
(1) If a ∈ W and b ∈ W , then a + b ∈ W .
(2) If a ∈ W , then αa ∈ W , where α is a scalar.
Then W is called a linear subspace or simply a subspace of En.

When there are r linearly independent vectors in W , while any set of
r + 1 vectors is linearly dependent, the dimensionality of W is said to be r
and is denoted as dim(W ) = r.

Let dim(W ) = r, and let a1,a2, · · · , ar denote a set of r linearly in-
dependent vectors in W . These vectors are called basis vectors spanning
(generating) the (sub)space W . This is written as

W = Sp(a1, a2, · · · , ar) = Sp(A), (1.28)

where A = [a1,a2, · · · , ar]. The maximum number of linearly independent
vectors is called the rank of the matrix A and is denoted as rank(A). The
following property holds:

dim(Sp(A)) = rank(A). (1.29)

The following theorem holds.

Theorem 1.2 Let a1,a2, · · · , ar denote a set of linearly independent vectors
in the r-dimensional subspace W . Then any vector in W can be expressed
uniquely as a linear combination of a1, a2, · · · , ar.

(Proof omitted.)
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The theorem above indicates that arbitrary vectors in a linear subspace can
be uniquely represented by linear combinations of its basis vectors. In gen-
eral, a set of basis vectors spanning a subspace are not uniquely determined.

If a1, a2, · · · ,ar are basis vectors and are mutually orthogonal, they
constitute an orthogonal basis. Let bj = aj/||aj ||. Then, ||bj || = 1
(j = 1, · · · , r). The normalized orthogonal basis vectors bj are called an
orthonormal basis. The orthonormality of b1, b2, · · · , br can be expressed as

(bi, bj) = δij ,

where δij is called Kronecker’s δ, defined by

δij =

{
1 if i = j
0 if i 6= j

.

Let x be an arbitrary vector in the subspace V spanned by b1, b2, · · · , br,
namely

x ∈ V = Sp(B) = Sp(b1, b2, · · · , br) ⊂ En.

Then x can be expressed as

x = (x, b1)b1 + (x, b2)b2 + · · ·+ (x, br)br. (1.30)

Since b1, b2, · · · , br are orthonormal, the squared norm of x can be expressed
as

||x||2 = (x, b1)2 + (x, b2)2 + · · ·+ (x, br)2. (1.31)

The formula above is called Parseval’s equality.
Next, we consider relationships between two subspaces. Let VA = Sp(A)

and VB = Sp(B) denote the subspaces spanned by two sets of vectors col-
lected in the form of matrices, A = [a1, a2, · · · ,ap] and B = [b1, b2, · · · , bq].
The subspace spanned by the set of vectors defined by the sum of vectors in
these subspaces is given by

VA + VB = {a + b|a ∈ VA, b ∈ VB}. (1.32)

The resultant subspace is denoted by

VA+B = VA + VB = Sp(A,B) (1.33)

and is called the sum space of VA and VB. The set of vectors common to
both VA and VB, namely

VA∩B = {x|x = Aα = Bβ for some α and β}, (1.34)
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also constitutes a linear subspace. Clearly,

VA+B ⊃ VA (or VB) ⊃ VA∩B. (1.35)

The subspace given in (1.34) is called the product space between VA and
VB and is written as

VA∩B = VA ∩ VB. (1.36)

When VA ∩ VB = {0} (that is, the product space between VA and VB has
only a zero vector), VA and VB are said to be disjoint. When this is the
case, VA+B is written as

VA+B = VA ⊕ VB (1.37)

and the sum space VA+B is said to be decomposable into the direct-sum of
VA and VB.

When the n-dimensional Euclidean space En is expressed by the direct-
sum of V and W , namely

En = V ⊕W, (1.38)

W is said to be a complementary subspace of V (or V is a complementary
subspace of W ) and is written as W = V c (respectively, V = W c). The
complementary subspace of Sp(A) is written as Sp(A)c. For a given V =
Sp(A), there are infinitely many possible complementary subspaces, W =
Sp(A)c.

Furthermore, when all vectors in V and all vectors in W are orthogonal,
W = V ⊥ (or V = W⊥) is called the ortho-complement subspace, which is
defined by

V ⊥ = {a|(a, b) = 0,∀b ∈ V }. (1.39)

The n-dimensional Euclidean space En expressed as the direct sum of r
disjoint subspaces Wj (j = 1, · · · , r) is written as

En = W1 ⊕W2 ⊕ · · · ⊕Wr. (1.40)

In particular, when Wi and Wj (i 6= j) are orthogonal, this is especially
written as

En = W1

·⊕ W2

·⊕ · · · ·⊕ Wr, (1.41)

where
·⊕ indicates an orthogonal direct-sum.

The following properties hold regarding the dimensionality of subspaces.

Theorem 1.3

dim(VA+B) = dim(VA) + dim(VB)− dim(VA∩B), (1.42)
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dim(VA ⊕ VB) = dim(VA) + dim(VB), (1.43)

dim(V c) = n− dim(V ). (1.44)

(Proof omitted.)

Suppose that the n-dimensional Euclidean space En can be expressed
as the direct-sum of V = Sp(A) and W = Sp(B), and let Ax + By = 0.
Then, Ax = −By ∈ Sp(A) ∩ Sp(B) = {0}, so that Ax = By = 0. This
can be extended as follows.

Theorem 1.4 The necessary and sufficient condition for the subspaces
W1 = Sp(A1),W2 = Sp(A2), · · · ,Wr = Sp(Ar) to be mutually disjoint is

A1a1 + A2a2 + · · ·+ Arar = 0 =⇒ Ajaj = 0 for all j = 1, · · · , r.

(Proof omitted.)

Corollary An arbitrary vector x ∈ W = W1 ⊕ · · · ⊕ Wr can uniquely be
expressed as

x = x1 + x2 + · · ·+ xr,

where xj ∈ Wj (j = 1, · · · , r).

Note Theorem 1.4 and its corollary indicate that the decomposition of a particu-
lar subspace into the direct-sum of disjoint subspaces is a natural extension of the
notion of linear independence among vectors.

The following theorem holds regarding implication relations between
subspaces.

Theorem 1.5 Let V1 and V2 be subspaces such that V1 ⊂ V2, and let W be
any subspace in En. Then,

V1 + (V2 ∩W ) = (V1 + W ) ∩ V2. (1.45)

Proof. Let y ∈ V1+(V2∩W ). Then y can be decomposed into y = y1+y2,
where y1 ∈ V1 and y2 ∈ V2 ∩W . Since V1 ⊂ V2, y1 ∈ V2, and since y2 ⊂ V2,
y = y1 + y2 ∈ V2. Also, y1 ∈ V1 ⊂ V1 + W , and y2 ∈ W ⊂ V1 + W , which
together imply y ∈ V1+W . Hence, y ∈ (V1+W )∩V2. Thus, V1+(V2∩W ) ⊂
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(V1 + W ) ∩ V2. If x ∈ (V1 + W ) ∩ V2, then x ∈ V1 + W and x ∈ V2. Thus,
x can be decomposed as x = x1 + y, where x1 ∈ V1 and y ∈ W . Then y =
x−x1 ∈ V2∩W =⇒ x ∈ V1+(V2∩W ) =⇒ (V1+W )∩V2 ⊂ V1+(V2∩W ), es-
tablishing (1.45). Q.E.D.

Corollary (a) For V1 ⊂ V2, there exists a subspace W̃ ⊂ V2 such that
V2 = V1 ⊕ W̃ .
(b) For V1 ⊂ V2,

V2 = V1

·⊕ (V2 ∩ V ⊥
1 ). (1.46)

Proof. (a): Let W be such that V1⊕W ⊃ V2, and set W̃ = V2∩W in (1.45).
(b): Set W = V ⊥

1 . Q.E.D.

Note Let V1 ⊂ V2, where V1 = Sp(A). Part (a) in the corollary above indicates
that we can choose B such that W = Sp(B) and V2 = Sp(A) ⊕ Sp(B). Part (b)
indicates that we can choose Sp(A) and Sp(B) to be orthogonal.

In addition, the following relationships hold among the subspaces V , W ,
and K in En:

V ⊃ W =⇒ W = V ∩W, (1.47)

V ⊃ W =⇒ V + K ⊃ W + K, (where K ∈ En), (1.48)

(V ∩W )⊥ = V ⊥ + W⊥, V ⊥ ∩W⊥ = (V + W )⊥, (1.49)

(V + W ) ∩K ⊇ (V ∩K) + (W ∩K), (1.50)

K + (V ∩W ) ⊆ (K + V ) ∩ (K + W ). (1.51)

Note In (1.50) and (1.51), the distributive law in set theory does not hold. For
the conditions for equalities to hold in (1.50) and (1.51), refer to Theorem 2.19.

1.3 Linear Transformations

A function φ that relates an m-component vector x to an n-component
vector y (that is, y = φ(x)) is often called a mapping or transformation.
In this book, we mainly use the latter terminology. When φ satisfies the
following properties for any two n-component vectors x and y, and for any
constant a, it is called a linear transformation:

(i) φ(ax) = aφ(x), (ii) φ(x + y) = φ(x) + φ(y). (1.52)
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If we combine the two properties above, we obtain

φ(α1x1 + α2x2 + · · ·+ αmxm) = α1φ(x1) + α2φ(x2) + · · ·+ αmφ(xm)

for m n-component vectors, x1, x2, · · · , xm, and m scalars, α1, α2, · · · , αm.

Theorem 1.6 A linear transformation φ that transforms an m-component
vector x into an n-component vector y can be represented by an n by m ma-
trix A = [a1, a2, · · · , am] that consists of m n-component vectors a1, a2, · · · ,
am. (Proof omitted.)

We now consider the dimensionality of the subspace generated by a linear
transformation of another subspace. Let W = Sp(A) denote the range of
y = Ax when x varies over the entire range of the m-dimensional space
Em. Then, if y ∈ W , αy = A(αx) ∈ W , and if y1, y2 ∈ W , y1 + y2 ∈ W .
Thus, W constitutes a linear subspace of dimensionality dim(W ) = rank(A)
spanned by m vectors, a1, a2, · · · , am.

When the domain of x is V , where V ⊂ Em and V 6= Em (that is, x
does not vary over the entire range of Em), the range of y is a subspace of
W defined above. Let

WV = {y|y = Ax, x ∈ V }. (1.53)

Then,
dim(WV ) ≤ min{rank(A),dim(W )} ≤ dim(Sp(A)). (1.54)

Note The WV above is sometimes written as WV = SpV (A). Let B represent the
matrix of basis vectors. Then WV can also be written as WV = Sp(AB).

We next consider the set of vectors x that satisfies Ax = 0 for a given
linear transformation A. We write this subspace as

Ker(A) = {x|Ax = 0}. (1.55)

Since A(αx) = 0, we have αx ∈ Ker(A). Also, if x,y ∈ Ker(A), we have
x + y ∈ Ker(A) since A(x + y) = 0. This implies Ker(A) constitutes a
subspace of Em, which represents a set of m-dimensional vectors that are


