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Preface

The past decade has seen an incredible growth of network methods following
publications by Laszlo Barabasi and others. Excellent text books exist on general
networks and graph theory, but these books typically describe unweighted networks.
This book focuses on weighted networks. In weighted networks, the pairwise con-
nection strength between two nodes is quantified by a real number between 0 and 1.
It is worth emphasizing that most of the material also applies to unweighted
networks. Further, unweighted networks can easily be constructed from weighted
networks by dichotomizing the connection strengths between nodes. While un-
weighted networks permit graph-theoretic visualization techniques and algorithms,
weighted networks can be advantageous for many reasons including the following:

1.

They preserve the continuous nature of the underlying connectivity information.
For example, weighted correlation networks that are constructed on the basis of
correlations between numeric variables do not require the choice of a hard thresh-
old (Chap.5). Dichotomizing information and (hard)-thresholding may lead to
information loss.

They often lead to highly robust results (Zhang and Horvath 2005). In contrast,
results based on unweighted networks, constructed by thresholding a pairwise
association measure, often strongly depend on the threshold.

They can sometimes be decomposed and approximated by simpler networks.
For example, networks can sometimes be approximated by “factorizable” net-
works (Chap. 2). Such approximations are often difficult to achieve for sparse,
unweighted networks.

. They sometimes allow for a parsimonious parametrization (in terms of modules

and conformities, see Sect. 2.3).

. They often allow one to derive simple relationships between network concepts

(statistics) (Sect. 3.8 and Chap. 6). In particular, weighted correlation networks
facilitate a geometric interpretation based on the angular interpretation of the
correlation (Sect. 6.7).

They can be used to enhance standard data-mining methods such as cluster
analysis since (dis)-similarity measures can often be transformed into weighted
networks (Sect. 7.7).
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Many of the applied sections in this book present analysis techniques and strategies
to the wider audience of applied researchers. The book assumes little mathematical
and statistical knowledge, but some sections are rather abstract. To make the book
self-contained, some sections review statistical and data-mining techniques. Since
several technical sections and chapters are less relevant to applied researchers, they
start out with the warning that they can be skipped. I also present abstract, theoretical
material since it may be useful for quantitative researchers, who carry out method-
ological research. In my own experience, I have found that applied researchers can
be expert users of network methods and software. Of course, domain-knowledge
experts have often a superior intuition about how to arrive at a meaningful analy-
sis of their data. Many weighted network methods arose from collaborations with
cancer biologists, neuroscientists, mouse geneticists, and biologists (e.g., see the
acknowledgement section and references).

Although the field of weighted network analysis only began a few years ago,
it is already impossible to summarize it in one book. I have tried to cite as many
articles as possible, but I apologize to my colleagues for failing to cite their work.
Several people are mentioned throughout the book, see the index for names and
page numbers. I am acutely aware that I leave unmentioned many important ideas
and techniques. My only excuse for giving too much attention to my own work is
that I understand it best.

While the methods are formulated in general terms, which facilitate their ap-
plication to wide variety of data, most applications involve genes, proteins, and
gene expression data. It has become clear that networks have important medical
and biological applications. Gene co-expression networks bridge the gap from in-
dividual genes to clinically important, emergent phenotypes. Gene networks allow
one to move beyond single-gene comparisons and systematically identify biologi-
cally meaningful relationships between gene products, pathways, and phenotypes.
Weighted gene co-expression network analysis (WGCNA) has been used to identify
candidate disease biomarkers, to annotate genes with regard to module member-
ship, to study the relationships between co-expression modules, and to compare the
network topology of different networks. Case studies show how WGCNA can be
used to screen for genes, to understand the transcriptional architecture, and to re-
late modules in different mouse tissues. Integrating co-expression networks with
genetic marker data facilitates systems genetic applications (Sects. 11.5 and 12.3),
which make use of causal testing and network edge-orienting procedures.

Freely Available R Software

This book provides an in-depth description of the wecNa R package (Langfelder
and Horvath 2008), which provides functions for carrying out network analysis
tasks. R is a freely available, open source language and environment for statisti-
cal computing and graphics, which has become a de-facto standard in data analysis
(Thaka and Gentleman 1996; Venables and Ripley 2002; Gentleman et al. 2004,
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2005; Carey et al. 2005). The R environment integrates standard data analysis and
visualization techniques with packages (libraries) implementing the latest advances
in data mining, statistics, and machine learning. The wacNa package is available
from the Comprehensive R Archive Network (CRAN), the standard repository for
R add-on packages. To install it, type the following command into the R session:

install.packages ("WGCNA")

Most of the R code and data presented in the book chapters can be downloaded from
the following webpage:
www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Book
Related scientific articles and presentations can be found at the following webpages:
www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/.

Other relevant R packages mentioned throughout the book are freely available
on the R CRAN package resource at
www.R-project.org
and/or on the Bioconductor webpage.

Carey VJ, Gentry J, Whalen E, Gentleman R (2005) Network structures and algo-
rithms in bioconductor. Bioinformatics 21(1):135-136

Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. J] Com-
put Graph Stat 5(3):299-314

Gentleman RC, Carey VJ, Bates DJ, Bolstad BM, Dettling M, Dudoit S, Ellis B,
Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, lacus S, Irizarry
R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth GK,
Tierney L, Yang YH, Zhang J (2004) Bioconductor: Open software development
for computational biology and bioinformatics. Genome Biol 5(10):R80

Gentleman R, Huber W, Carey V, Irizarry R, Dudoit S (2005) Bioinformatics and
computational biology solutions using R and bioconductor. Springer, New York

Langfelder P, Horvath S (2008) WGCNA: An R package for weighted correlation
network analysis. BMC Bioinform 9(1):559

Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer,
New York

Zhang B, Horvath S (2005) General framework for weighted gene coexpression
analysis. Stat Appl Genet Mol Biol 4:17

Los Angeles, USA Steve Horvath
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Chapter 1
Networks and Fundamental Concepts

Abstract This chapter introduces basic terminology and network concepts.
Subsequent chapters illustrate that many data analysis tasks can be addressed using
network methods. Network concepts (also known as network statistics or network
indices) can be used to describe the topological properties of a single network and
for comparing two or more networks (e.g., differential network analysis). Dozens of
potentially useful network concepts are known from graph theory, e.g., the connec-
tivity, density, centralization, and topological overlap. Measures of node intercon-
nectedness, e.g., based on generalizations of the topological overlap matrix, can be
used in neighborhood analysis. We distinguish three types of fundamental network
concepts: (1) whole network concepts are defined without reference to modules, (2)
intramodular concepts describe network properties of a module, and (3) intermod-
ular concepts describe relationships between two or more modules. Intermodular
network concepts can be used to define networks whose nodes are modules.

1.1 Network Adjacency Matrix

Networks can be used to describe the pairwise relationships between n nodes (which
are sometimes referred to as vertices). For example, we will use networks to describe
the relationships between n genes. We consider networks that are fully specified by
an n x n dimensional adjacency matrix A = (A;;), where the entry A;; quantifies the
connection strength from node i to node j. For an unweighted network, A;; equals
1 or 0 depending on whether a connection (also known as link or edge) exists from
node i to node ;.

For a weighted network, A;; takes on a real number between 0 and 1. A;; specifies
the connection strength between node i and node j. For an undirected network, the
connection strength (A;;) from i to j equals the connection strength from j to i (4;;),
i.e., the adjacency matrix A is symmetric (A;;) = (Aj;). For a directed network, the
adjacency matrix is typically not symmetric (see Sect. 11.4). Unless we explicitly
mention otherwise, we assume in the following that we are dealing with an undi-
rected network. As a convention, we set the diagonal elements to 1, i.e., A; = 1.

S. Horvath, Weighted Network Analysis: Applications in Genomics and Systems Biology, 1
DOI 10.1007/978-1-4419-8819-5_1, (© Springer Science+Business Media, LLC 2011
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In summary, we study networks whose adjacencies satisfy the following conditions:

OSA,'J' <1,
Ajj = Ajis
A = 1. (1.1)

Many network applications use at least one node significance measure. Abstractly
speaking, we define a node significance measure GS = (GSy,...,GS,) as a vector
with n components that correspond to the network nodes. For the ith node, GS;
quantifies the significance or importance with regard to a particular application. The
only assumption is that GS; = 0 means that node i is not significant with regard
to the application under consideration. We should emphasize that node significance
does not necessarily correspond to statistical significance. For example, GS; can be
an indicator variable that equals 1 if prior literature suggests that node i is known to
be important and 0 otherwise. If a statistical significance level (p value) is available
for each node, then a p value-based node significance measure can be defined as
follows:

GS; = —log(p value;). (1.2)

In this case, GS; is proportional to the number of zeroes of the ith p value. In gene
network applications, gene significance measures allow one to incorporate external
gene information into the network analysis. In functional enrichment analysis, a
gene significance measure could indicate pathway membership. In gene knockout
experiments, gene significance could indicate knockout essentiality.

1.1.1 Connectivity and Related Concepts

The connectivity (also known as degree) of the ith node is defined by

ki=> Aj. (1.3)
J#i
In unweighted networks, the connectivity k; equals the number of nodes that are
directly linked to node i. In weighted networks, the connectivity equals the sum of
connection weights between node i and the other nodes.

1.1.2 Social Network Analogy: Affection Network

Since humans are organized into social networks, social network analogies should
be intuitive to many readers. Therefore, we will refer to the following “affection
network” throughout this book. Each individual is represented by a node in the
affection network. We assume that the connection strength (adjacency) between two
individuals reflects how much affection they feel for each other. To be specific, we
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assume that the affection (adjacency) A;; equals 1 if two individuals strongly like
each other, it equals 0.5 if they are neutral toward each other, and it equals O if they
strongly dislike each other. Then the scaled connectivity K; is a measure of relative
popularity: high values of K; indicates that the ith person is well liked by many
others.

1.2 Analysis Tasks Amenable to Network Methods

Networks are useful for describing the relationships between objects (interpreted as
network nodes). Networks are increasingly being used to analyze high-dimensional
data sets where nodes correspond to variables (e.g., gene measurements). Networks
facilitate sophisticated data analysis, which can often be described in intuitive ways.
As social beings we function in social networks, which is why network language and
terminology are very intuitive to us. For example, a network module can be inter-
preted as a social clique (e.g., a club) and highly connected hub nodes as popular
people. Network methods can be used to address a variety of data analysis tasks
including the following:

1. To describe direct and indirect relationships between objects. While the network
adjacency matrix encodes direct first-order relationships, higher order relation-
ships can be measured based on shared neighbors (see, e.g., Sect. 1.3.14)

2. To carry out a neighborhood analysis. Roughly speaking, a neighborhood is
composed of nodes that are highly connected to a given “seed” set of nodes.
Thus, neighborhood analysis facilitates a guilt-by-association screening strategy
for finding nodes that are close to a given seed set of interesting nodes (see
Sect. 1.4).

3. To describe network properties using network concepts (also known as network
statistics). We describe several types of network concepts in this and subsequent
chapters.

4. To describe the module structure of a data set. Modules (groups, clusters,
cliques) of nodes can be defined in many ways. Several module detection and
clustering procedures are described in Chap. 8.

5. To define shared “consensus” modules present in multiple data sets. By con-
struction, consensus modules can be found in two or more networks (see
Sect.7.11.1). Consensus modules may represent fundamental preserved struc-
tural properties of the network.

6. To identify important modules. For example, module significance measures can
be used to identify gene modules that relate to cancer survival time (Sect. 5.7).
A module significance measure can be defined by averaging a node significance
measure across the module genes.

7. To measure differences in connectivity patterns between two data sets. Differen-
tial network analysis can be used to identify changes in connectivity patterns or
module structure between different conditions (Sect. 1.11). Module preservation
statistics are described in Chap. 9.
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8. To find highly connected “hub” nodes. For example, highly connected intramod-
ular hub nodes effectively summarize or represent the module.

9. To reduce or compress the data. For example, focusing the analysis on modules
or their representatives (e.g., intramodular hub nodes) amounts to a network-
based data reduction technique. Module-based analyses greatly alleviate the
multiple testing problem that plagues many statistical analyses involving large
numbers of variables.

10. To annotate objects with regard to module membership. For example, intramod-
ular connectivity measures can be used to annotate all network nodes with
respect to how close they are to the identified modules. This can be accom-
plished by defining a fuzzy measure of module memberships (intramodular
connectivity) that generalizes the binary module membership indicator to a
quantitative measure. Fuzzy measures of module membership can be used to
identify nodes that lie intermediate between (i.e., close to) two or more mod-
ules.

11. To develop network-based or module-based node screening procedures. For
example, gene pathway-based approaches for finding biologically important
genes can be defined with regard to module membership measures (intramodu-
lar connectivity). In general, node-screening criteria can be based on a variety
of network concepts (e.g., based on differential network analysis).

Throughout the book, we mention additional analysis tasks that can be addressed
by more specialized networks. For example, correlation networks (described in
Chap. 5) are constructed on the basis of correlations between numeric variables that
can be described by an m x n numeric matrix datX. The nodes of a correlation net-
work correspond to the columns of the matrix datX. Network concepts and methods
can be used to describe the correlation patterns between the variables and to reduce
the data. Although other statistical techniques exist for analyzing correlation matri-
ces, network language and concepts are particularly intuitive. Statistically speaking,
networks can be used as a data exploratory techniques (similar to cluster analysis,
factor analysis, or other dimensional reduction techniques), as machine learning,
data mining, and variable selection techniques. While sometimes established statis-
tical techniques can be used to address similar goals, they are often far less intuitive
to applied scientists. In contrast, network methods can usually be explained using
social network analogies. Often the data being analyzed correspond to network mea-
surements, e.g., genes operate in pathways or modules. It is natural to use network
methods when one tries to model pathways.

1.3 Fundamental Network Concepts

In the following, we describe existing and novel network concepts (also known as
network statistics or indices) that can be used to describe local and global network
properties (Dong and Horvath 2007). The prime example of a fundamental network
concept is the connectivity k; (1.3). Sometimes network concepts are defined with
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regard to a node significance measure GS;. Abstractly speaking, a fundamental
network concept is a function of the off-diagonal elements of A and/or a node
significance measure GS. Below we present several network concepts including the
density, maximum adjacency ratio, centralization, hub node significance, etc.

1.3.1 Matrix and Vector Notation

If M is a matrix and f is a real number, then MP denotes the element-wise power,
i.e., the ijth element of MB is given by Mg . Similarly, if v is a numeric vector, then

the ith component of WP is given by v? . More generally, if f() is a function that maps

real numbers to real numbers, then f(v) denotes the vector whose ith component is
given by f(v;). We define sum(M) = 3,3 ; Mj; as the sum across all matrix entries,
max(M) as the maximum entry of matrix M, and max(v) as the maximum compo-
nent of the vector v. Similarly we define the minimum function min(-). We define the

function Sg(-) for a vector vas Sg(v) =3, v? = sum(vP). Then mean(v) = sum(v)/n
and variance(v) = sum(v*) /n — (sum(v)/n)?. The transpose of a matrix or vector is
denoted by the superscript *. The Frobenius matrix norm is denoted by

IM|lF = /Zngjzw/sum(Mz). (1.4)
i

Further denote by I the identity matrix and by diag(v?) a diagonal matrix with its
ith diagonal component given by v%, i=1,...,n

We briefly review two types of multiplying two n X n dimensional matrices A
and B. The component-wise product A * B yields an n x n dimensional matrix whose
i, jth element is given by A;; * Bj;. In contrast, the matrix multiplication AB yields
an n x n dimensional matrix whose i, jth element is given by Y, A;Bj;. Note that
no multiplication sign is used for the matrix multiplication. In contrast, the multipli-
cation sign * between two matrices denotes their component-wise product. The R
commands for carrying out these two types of multiplication are given by AxB and
A\%+\%B, respectively.

1.3.2 Scaled Connectivity

The connectivity (node degree) k; is probably the best known fundamental network
concept. Many other network concepts are functions of the connectivity. For exam-
ple, the minimum connectivity is defined as:

kmin = min(k), (1.5)
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where min(k) denotes the minimum across the n components of the vector k. The
maximum connectivity is defined as:

kmax = max(k). (1.6)

Consider a network concept NC; (such as the connectivity) that depends on a node
index i (where i = 1,...,n). Denote by max(NC) the maximum observed value
across the n nodes. Then the scaled version of the network concept is defined
as follows:

NC

For example, the scaled connectivity K; of the ith node is defined by

ScaledConnectivity; = 3 i =K. (1.8)

max

By definition the scaled connectivity lies between 0 and 1, i.e., 0 < K; < 1. Note
that we distinguish the scaled from the unscaled connectivity using an uppercase
“K” and a lowercase ‘k’, respectively. By definition &,y < n — 1. Sometimes it is
convenient to define the scaled connectivity (with a capital C) as follows:

(1.9)

To avoid confusion, we should point out that the word “scale” has different meanings
in different contexts. It has no relationships to the scale-free topology fitting index
described in the following section.

1.3.3 Scale-Free Topology Fitting Index

Many studies have explored the frequency distribution of the connectivity, which
can be defined based on the discretized connectivity vector dk = discretize(k).
The discretize function takes as input a numeric vector and outputs a vector of
equal length whose components indicate the bin number into which the value
falls. Denote the number of equal-width bins by no.bins. Then the uth compo-
nent dk, = discretize(k,no.bins), reports the bin number r = 1,2, ... no.bins into
which k, falls. The discretize function is defined in (14.10). Denote by p(r) the
relative frequency of the rth bin, i.e., the proportion of components of k that fall
into the rth bin. The frequency distribution of the connectivity can be estimated
with p(dk) = (p(1),..., p(no.bins)). Using this notation, we define the connectivity
frequency p.Connectivity (sometimes denoted p(dk) or p(k)) as follows:

p.Connectivity = p(dk) = p(discretize(k,no.bins)), (1.10)
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which depends on the number of bins no.bins. As default, we set no.bins = 10 when
discretizing the connectivity vector Connectivity.

Many network theorists have studied the properties of the frequency distribution
of the connectivity p.Connectivity = p(dk) (Barabasi and Albert 1999; Albert and
Barabasi 2000; Jeong et al. 2001; Ravasz et al. 2002; Watts 2002; Han et al. 2004;
Barabasi and Oltvai 2004; Pagel et al. 2007). In many (but certainly not all) real
network applications, the frequency distribution p(dk) follows a power law:

p(r) = PositiveNumberxr~7 (L.1D)

1
z;li.bins Y
case, the network is said to exlllibit scale-free topology (Barabasi and Albert 1999;
Barabasi and Oltvai 2004; Albert et al. 2000) with scaling parameter y. By taking
the log of both sides of (1.11), one can verify that scale-free topology implies a
straight line relationship between log(p(r)) and log(r):

where PositiveNumber = and y denote positive real numbers. In this

log(p(r)) = —vyx*log(r) + log(PositiveNumber). (1.12)

To measure the extent of a straight line relationship between log(p(r)) and log(r),
we define the scale-free topology fitting index

ScaleFreeFit(no.bins) = cor(log(p(dk)),log(BinNo))? (1.13)

as the square of the correlation coefficient (5.12) between log(p(dk)) and
log(BinNo), where BinNo = (1,2,...,no.bins). We often use the following ab-
breviation R? = ScaleFreeFit.

Networks whose scale-free topology index R? is close to 1 are defined to be
approximately scale free. One can visually inspect whether approximate scale-free
topology is satisfied by plotting log(p(k)) versus log(k) (see Fig. 1.5). In most real
networks one observes an inverse relationship between log(p(k))and log(k), i.e., ¥
is positive. Scale-free networks are extremely heterogeneous, and their topology be-
ing dominated by a few highly connected nodes (hubs) that link the rest of the less
connected nodes to the system. Several models have been proposed for explaining
the emergence of the power-law distribution (scale-free topology). For example, it
can be explained using a network growth model in which nodes are preferentially
attached to already established nodes, a property that is also thought to characterize
the evolution of biological systems (Albert and Barabasi 2000). Scale-free networks
display a remarkable tolerance against errors (Albert et al. 2000). Many networks
satisfy the scale-free property only approximately. For example, Fig. 5.7 shows that
for a yeast co-expression network, the connectivity distribution p(r) is better mod-
eled using an exponentially truncated power law (Csanyi and Szendroi 2004)

p(r) = PositiveNumber * r~" x exp(—or)
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1
Zfi'lbins r~Yxexp(—ar)
On a log scale, an exponentially truncated power law is given as:

where PositiveNumber = , 7, and o denotes positive real numbers.

log(p(r)) = —yxlog(r) — our + log(PositiveNumber) (1.14)

Potential Uses In Sect. 4.3, we use the scale-free topology index R? for formulating
the scale-free topology criterion for network construction.

1.3.4 Network Heterogeneity

The network heterogeneity measure is based on the variance of the connectivity.
Authors differ on how to scale the variance (Snijders 1981). We define it as the
coefficient of variation of the connectivity distribution, i.e.,

var(k) _ [nx sum(k?)
mean(k) sum(k)?

Heterogeneity = -1 (1.15)

This heterogeneity measure is invariant with respect to multiplying the connectivity
by a scalar.

Social Network Interpretation of the Heterogeneity: The heterogeneity can be used
to measure the variation of popularity (connectivity) across the individuals.

Potential Uses of the Heterogeneity: Describing the reasons for and the meaning of
the heterogeneity of complex networks has been the focus of considerable research
inrecent years (Albert et al. 2000; Watts 2002). As mentioned before, many complex
networks have been found to exhibit approximate scale-free topology, which implies
that these networks are highly heterogeneous.

1.3.5 Maximum Adjacency Ratio

For weighted networks, we define the maximum adjacency ratio of node i as follows:

(A2
MAR; = M, (1.16)
2 j4iAij

which is defined if k; = 3.;+;A;; > 0. One can easily verify that 0 <A;; < 1 implies
0 <MAR; < 1. Note that MAR; = 1 if all nonzero adjacencies take on their maximum
value of 1, which justifies the name “maximum adjacency ratio”. By contrast, if all
nonzero adjacencies take on a small (but constant) value A;; = €, then MAR; = ¢
will be small.



1.3 Fundamental Network Concepts 9

Social Network Interpretation of the Maximum Adjacency Ratio: MAR; = 1 sug-
gests that the ith individual does not form neutral relationships; this individual either
strongly likes or dislikes others since all A;; are either O or 1. In contrast, MAR; = 0.5
suggests the ith individual forms less intense relationships with others.

Potential Uses of the Maximum Adjacency Ratio: Since MAR; = 1 for all nodes in
an unweighted network, the maximum adjacency ratio is only useful for weighted
networks. The MAR can be used to determine whether a hub node forms moderate
relationships with a lot of nodes or very strong relationships with relatively few
nodes. To illustrate this point, we show in the following simple example that the
MAR can be used to distinguish nodes that have the same connectivity. Assume a
network (labeled by I) for which the adjacency between node 1 and every other

node equals Agli =1/(n—1). Then kgl) = 2,‘7&11‘1% =m-1)/(n—1)=1 and
MARgI) = 1/(n—1). For a different network (labeled by II) where Agﬂz) =1 and

A" = 0if j >3, the connectivity k" still equals 1 but MAR{") = 1.

As aside, we mention that a directed network analog of MAR; has been used in
the analysis of metabolic fluxes (Almaas et al. 2004).

1.3.6 Network Density

To simplify notation, we will make use of the function vectorizeMatrix which turns
an n x n dimensional symmetric matrix A into a vector whose n * (n — 1) /2 compo-
nents correspond to the upper-diagonal entries of A, i.e.,

vectorizeMatrix(A) = (A12,A13, ..., An_1n)- (1.17)

Using this notation, the network density (also known as line density (Snijders 1981))
is defined as the mean off-diagonal adjacency and is closely related to the mean
connectivity.

Density = mean(vectorizeMatrix(A))
_ i j>iAij
nn—1)/2
mean(k) _ mean(k)

= = , (1.18)
n—1 n

where k = (ki,...,k,) denotes the vector of node connectivities.

Social Network Interpretation: The density measures the overall affection among
individuals. A density close to 1 indicates that all individuals strongly like each
other, while a density of 0.5 suggests the presence of more ambiguous relationships.

Below, we show that many module detection (and clustering) methods aim to
find subnetworks with high density.
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1.3.7 Quantiles of the Adjacency Matrix

Quantiles are used to describe the distribution of a variable. The prob = 0 quantile
of a set of numbers is the minimum, the prob = 0.25 quantile is the first quartile, the
prob = 0.50 quantile is the median, and the prob = 1.0 quantile is the maximum.
Using this terminology, we define the network concept prob-th quantile of the adja-
cency as the prob-th quantile of the off-diagonal elements of the adjacency matrix

quantile,,,,(A) = quantile,,,,(vectorizeMatrix(A)), (1.19)

which is the quantile of the vectorized adjacency matrix (1.17). The minimum and
median values across the off-diagonal elements of the adjacency matrix are denoted
by quantiley(A) = min(A) and quantile, s(A) = median(A), respectively. The me-
dian adjacency quantiley 5(A) = median(A) can be considered a robust measure of
network density. In Sect.4.5, we use general quantiles for ‘calibrating’ different
networks.

1.3.8 Network Centralization

The network centralization (also known as degree centralization (Freeman 1978)) is
given by

Centralization = n max(k) — mean(k)
n—2\ n—1 n—1
n max(k) Densi
= ———~ — Densi
n—2\ n—1 &
k
~ MK D ity (1.20)
n

The centralization is 1 for a network with star topology; by contrast, it is O for a
network where each node has the same connectivity. Note that a regular grid network
where mean(k) = max(k) has centralization 0.

Social Network Interpretation of the Centralization: The centralization of the affec-
tion network is close to 1, if one individual has loving relationships with all others
who in turn strongly dislike each other. In contrast, a centralization of 0 indicates
that all individuals are equally popular.

Potential Uses of the Centralization: While the centralization is a widely used mea-
sure in social network studies, it has only rarely been used to describe structural
differences of metabolic networks (Ma et al. 2004). We have found that the central-
ization can be used to describe properties of cluster trees (Dong and Horvath 2007;
Horvath and Dong 2008).



