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Foreword

This volume is dedicated to Jacob Aboudi,
a fine scientist who has made seminal con-
tributions in applied mechanics. The papers
presented here reflect the appreciation of many
of Jacob’s colleagues. A publication list fol-
lowing this introduction provides an indica-
tion of his distinguished academic career, cur-
rently in its fifth decade, and the breadth of
his knowledge. His papers consistently demon-
strate originality, innovation and diligence.
This list uncovers the methodical work of
a dedicated researcher whose achievements
established him as a leading authority in the
area of mathematical modeling of the behav-
ior of heterogeneous materials, the area which
became known as homogenization theory.

Starting in 1981, Jacob established a
micromechanical model known as the Method
of Cells (MOC) which evolved into the Generalized Method of Cells (GMC) that
predicts the macroscopic response of composite materials as a function of the prop-
erties, volume fractions, shapes, and constitutive behavior of its constituents. The
versatility of the model has been demonstrated to effectively incorporate various
types of constituent material behavior (i.e., both coupled and uncoupled mechani-
cal, thermal, electrical and magnetic effects). As a result of its potential in providing
an efficient tool for the emerging field of multiscale analysis, the method gained
increasing attention and became a subject for further research. In 1997, NASA
presented Jacob with a certificate of recognition “for the creative development of
exceptional scientific and technical contributions which have been determined to
be of significant value in the advancement of the aerospace technology program of
NASA entitled: MICROMECHANICAL ANALYSIS CODE with GENERALIZED
METHOD of CELLS (MAC/GMC)”.

Subsequently, the limited accuracy of GMC which results from neglecting cou-
pling between normal and shear stresses led to his developing the High Fidelity
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Generalized Method of Cells (HFGMC). Jacob continues to extend this method
with incorporation of large deformations, constitutive laws for advanced constituent
materials and an improved numerical formulation.

The publication list also reflects Jacob’s contributions in other areas includ-
ing wave propagation, fracture mechanics, contact problems and applied numerical
solutions of partial differential equations.

Of course, the publication list cannot provide any indication of Jacob’s charac-
ter and interests, such as his love of history. In this regard, those who have had
the pleasure to collaborate with him can attest to his integrity, collegiality, sound
judgment and ability to give advice on a wide spectrum of issues. He is skilled at
effectively clarifying complex concepts for students, is dedicated to his graduate
students, and has contributed to the academic community in numerous ways.

Jacob Aboudi was born in 1935 in Baghdad, and emigrated to Israel in 1951.
After graduating in 1961 with a B.Sc. degree in Applied Mathematics from Tel
Aviv University, Jacob taught in the same department while pursuing advanced stud-
ies at the Weizmann Institute of Science. The latter institution awarded him M.Sc.
and Ph.D degrees in 1964 and 1968, respectively, both in Applied Mathematics.
Jacob was then hired as a Lecturer at Tel Aviv University, first in the Department of
Environmental Sciences and then in the Faculty of Engineering where he became a
Professor in 1980. He served 8 years as the head of the Department of Solid Mechan-
ics, Materials and Structures, 6 years as the Dean of the Faculty of Engineering and
participated in many University and Faculty Committees. Jacob was the incumbent
of the Diane and Arthur Belfer Chair of Mechanics and Biomechanics for 13 years.

Jacob has spent sabbatical leaves and extended visits abroad at the University
of Strathclyde, UK, Northwestern University, Virginia Polytechnic Institute and
State University, the University of Virginia, and at NASA Glenn Research Center,
Cleveland, all in the USA.

With this volume, we wish to express our profound respect and admiration of
Jacob Aboudi.

Rivka Gilat and Leslie Banks-Sills
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Aboudi’s Micromechanics Theories Applied
to Multiscale Analysis of Composites

Brett A. Bednarcyk and Steven M. Arnold

Abstract NASA Glenn Research Center in Cleveland, OH has worked with Pro-
fessor Jacob Aboudi since 1992 to develop and implement his micromechanics
theories into a user-friendly software suite. This effort has resulted in the pub-
licly available Micromechanics Analysis Code with Generalized Method of Cells
(MAC/GMC) software, along with the coupling of the code with finite element anal-
ysis and structural sizing software for multiscale analysis of composite structures.
This chapter outlines these methods, discusses why Aboudi’s methods are ideal for
use in multiscale analyses, and briefly describes three recent multiscale composite
analysis examples involving (i) creep of a woven ceramic matrix composite (CMC),
(ii) damage/failure of a polymer matrix composite (PMC) T-stiffened panel, and
(iii) damage/failure of notched PMC laminated plates.

1 Introduction

The use of advanced composites (PMCs, CMCs, metal matrix composites (MMCs))
provides benefits in the design of advanced lightweight, high temperature, struc-
tural systems because they provide increased specific properties (e.g., strength to
density ratio) in comparison to their monolithic counterparts. To fully realize the
benefits offered by these materials, however, experimentally verified, computa-
tionally efficient, multiscale design and analysis tools must be developed for the
advanced multiphased materials of interest. Furthermore, in order to assist both the
structural analyst in designing with these materials and the materials scientist in
designing/developing the materials', these tools must encompass the various levels
of scale for composite analysis, see Fig. 1.

"' The structural engineer’s perspective relates to the design of structures with given materials
whereas the materials scientist’s concern is how to design a material for a given application.
Clearly, the two perspectives are not mutually exclusive.
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Fig. 1 Illustration of associated levels of scale for composite analysis
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Fig. 2 (a) Homogenization provides the ability to determine structure level properties from
constituent level properties while localization provides the ability to determine constituent level
responses from structure level results. (b) Example tree diagram

These scales are the micro scale (constituent level), the meso scale (lami-
nate/composite and/or stiffened panel level) and the macro scale (global/structure
level), and they progress from left to right in Fig. 1. One traverses (transcends
(moves right) or descends (moves left)) these scales using homogenization and
localization techniques, respectively (Figs. 1 and 2a); where a homogenization tech-
nique provides the properties or response of a “structure” (higher level) given
the properties or response of the structure’s “constituents” (lower scale). Con-
versely, localization techniques provide the response of the constituents given the
response of the structure. Figure 2b illustrates the interaction of homogenization
and localization techniques, in that during a multi-scale analysis, a particular stage
in the analysis procedure can function on both levels simultaneously.? For exam-
ple, for the process of homogenizing the stages represented by X and Y to obtain

2 This is also illustrated in Fig. 1 where, for example, the global scale has subscales (compo-
nents) within it (i.e., vehicle — engine — turbopump — blade) and the mesoscale has subcomponents
(stiffened panel — laminate — ply).
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properties for the stage represented by V, X and Y form the constituent level
while V is on the structure level. However, for the process of homogenizing V
and W to obtain properties for U, V is now on the constituent level (as is W).
Obviously, the ability to homogenize and localize accurately requires a sophisti-
cated theory that relates the geometric and material characteristics of structure and
constituents.

Numerous homogenization techniques (micromechanical models) exist that can
provide effective composite properties to a finite element package. These range
from the simplest analytical approximations (i.e., Voigt/Reuss) to more accurate
yet involved methods (e.g., concentric cylinder assemblage, Mori-Tanaka, Eshelby,
and Aboudi’s generalized method of cells) to finally, fully numerical methods that
are the most general and accurate yet computationally intense (e.g., finite element,
boundary element, Fourier series). Each has its realm of applicability and advan-
tages, however, many are unable to admit general user defined deformation and
damage/failure constitutive models for the various constituents (i.e., fiber or matrix)
thus limiting their ultimate usefulness, especially for high temperature analysis
where nonlinear, time-dependent behavior is often exhibited.

An alternative approach to micromechanics involves fully characterizing the
composite material or laminate experimentally, which has the advantage of cap-
turing the in-situ response of the constituents perfectly. However, such full char-
acterization for all applicable temperatures and configurations (e.g., fiber volume
fractions, tow spacings, etc.) can be expensive, and composites are almost always
anisotropic on this scale. Thus some properties needed as input for finite ele-
ment models can be virtually impossible to measure, and development of real-
istic models that capture the nonlinear multiaxial deformation and failure can
be challenging (due to the anisotropy). Clearly, the physics of deformation and
failure occur on the micro scale (and below), and, by modeling the physics at
the micro scale, models for the monolithic, often isotropic, constituents can be
employed.

Recently, a comprehensive and versatile micromechanics analysis computer
code, known as MAC/GMC [7], has been developed at NASA Glenn Research
Center based on Aboudi’s well-known micromechanics theories [1-5]. FEAMAC
(the coupling of MAC/GMC with the finite element analysis framework through
user subroutines) and HyperMAC (the coupling of MAC/GMC with the commer-
cial structural sizing software known as HyperSizer [10]) have begun to address the
truly multiscale framework depicted in Fig. 1. This software suite, known collec-
tively as InMAC, provides a wide range of capabilities for modeling continuous,
discontinuous, woven, and smart (piezo-electo-magnetic) composites. Libraries of
nonlinear deformation, damage, failure, and fiber/matrix debonding models, contin-
uous and discontinuous repeating unit cells, and material properties are provided,
and the software is available from NASA Glenn.
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2 Analysis Tools Based on Aboudi’s Theories

2.1 Micromechanics Analysis Code with Generalized
Method of Cells (MAC/GMC)

In developing an analytical tool that can serve both materials scientists and struc-
tural analysts, the employed methods must admit physics-based deformation and
life models on the scale of the constituents and be capable of accurately predict-
ing the macro composite response. This enables materials scientists to investigate
the effects of deformation/damage mechanisms on the scale where they occur and
make changes to develop new materials. From the structural analyst standpoint, the
methods must be accurate, efficient, and compatible with structural finite element
models. A number of models presently exist that can fulfill certain aspects of the
aforementioned requirements. However, there are very few working models that
are both computationally efficient and sufficiently accurate both at the micro and
macro scales. It is the authors’ position that Aboudi’s micromechanics theories — the
method of cells [1], the generalized method of cells (GMC) [2,13], and high-fidelity
GMC (HFGMC) [5] — are unique in this regard.

Aboudi’s theories are capable of predicting the response of both continuous and
discontinuous multi-phase composites with arbitrary internal microstructures and
reinforcement shapes. They are continuum-based micromechanics models that pro-
vide efficient, closed-form expressions for the macroscopic composite response in
terms of the properties, size, shape, distribution, and response of the individual con-
stituents or phases that make up the material. Perhaps most importantly, Aboudi’s
theories admit physics-based viscoplastic deformation and arbitrary damage/life
models for each constituent due to their ability to localize to the subcell level, pro-
viding full multiaxial stress and strain fields throughout the constituent materials.
For these reasons, Aboudi’s micromechanics theories were selected as the basis
for NASA Glenn’s MAC/GMC software. MAC/GMC provides industry, academia,
and government engineers and materials scientists with a comprehensive, compu-
tationally efficient, user-friendly micromechanics analysis tool that can easily and
accurately design/analyze multi-phase (composite) materials/structures for a given
application. The distinction between HFGMC and GMC is that, through the use of
an assumed higher-order local displacement field, HFGMC provides improved local
field accuracy. However, HFGMC is more computationally intensive as it requires
solution of a greater number of equations to fully discriminate its more accurate
local fields. Two review papers documenting the application of GMC and HFGMC
by various researchers were presented by Aboudi [3,4]. MAC/GMC includes both
theories and can thus be thought of as a variable-fidelity tool.

It should be noted that MAC/GMC includes capabilities for traditional con-
stituent materials as well as thermo-electro-magnetic materials and shape memory
alloys (so-called “smart” materials). The code also includes a multiscale clas-
sical lamination theory module, wherein Aboudi’s micromechanics theories are
employed at each integration point in each ply, see Fig. 3a. Thus, once lamination



