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Preface

Quantum Neural Computation is a graduate-level monographic textbook. It
presents a comprehensive introduction, both non-technical and technical, into
modern quantum neural computation. Classical computing systems perform
classical computations (i.e., Boolean operations, such as AND, OR, NOT
gates) using devices that can be described classically (e.g., MOSFETs). On the
other hand, quantum computing systems perform classical computations using
quantum devices (quantum dots), that is devices that can be described only
using quantum mechanics. Any information transfer between such computing
systems involves a state measurement. This book describes this information
transfer at the edge of classical and quantum chaos and turbulence, where
mysterious quantum-mechanical linearity meets even more mysterious brain’s
nonlinear complexity, in order to perform a super-high-speed and error-free
computations. This monograph describes a crossroad between quantum field
theory, brain science and computational intelligence.

Quantum Neural Computation has six Chapters and Appendix. The In-
troduction gives a glimpse of what is to come later in the book, mostly vari-
ous forms of quantum computation, quantum neural networks and quantum
brain, together with modern adaptive path-integral methods. Chapter 2 gives
a modern review of classical neurodynamics, including brain physiology, bio-
logical and artificial neural networks, synchronization, spike neural nets and
wavelet resonance, motor control and learning. Chapter 3 presents a mod-
ern review of quantum physics, including quantum mechanics and quantum
field theory (mostly Feynman pat-integral-based), as well as both Abelian and
non-Abelian gauge theories (with their pat-integral quantizations). Chapter 4
presents several fields from nonlinear dynamics that are related to quantum
neural computation, including classical and quantum chaos, turbulence and
solitons, with the special treatment to nonlinear Schrödinger equation (NLS,
the core model of quantum neural networks, in which quantum superposition
meets neural nonlinearity). Chapter 5 gives a personalized review (mostly
based on the authors’ own papers) of the current research in quantum-brain
and quantum-mind. Chapter 6 presents a review of quantum information,
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quantum game theory, quantum computation and classical electronic for quan-
tum computing. The Appendix gives a brief review of some mathematical and
physiological concepts (necessary for comprehensive reading of the book), fol-
lowed by classical computational tools used in quantum neural computation.

The objective of Quantum Neural Computation is to provide a serious
reader with a serious scientific tool that will enable them to actually perform
a competitive research in the rapidly-growing field of quantum neural com-
putation. The monograph includes a very comprehensive bibliography on the
subject and a detailed index.

Target readership for Quantum Neural Computation includes all research-
ers and students of complex, classical + quantum nonlinear systems (in com-
puter science, physics, mathematics, engineering, medicine, chemistry, biol-
ogy, psychology, sociology, economics, etc.), working in industry, clinics and
academia.

Adelaide V. Ivancevic
May 2009 T. Ivancevic
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1

Introduction

In this Introductory Chapter we give a glimpse of what is to come in later
the book, mostly various forms of quantum computation, quantum neural
networks1 and quantum brain, together with modern adaptive path-integral
methods.

1 Roughly speaking, artificial neural network (ANN) is a system loosely modeled
on the human brain (see, e.g. [II07b]). The field goes by many names, such as
connectionism, parallel distributed processing , neuro-computing , natural intelligent
systems, machine learning algorithms and ANNs. It is an attempt to simulate within
specialized hardware or sophisticated software, the multiple layers of simple process-
ing elements called neurons. Each neuron is linked to certain of its neighbors with
varying coefficients of connectivity that represent the strengths of these connections.
Learning is accomplished by adjusting these strengths to cause the overall network
to output appropriate results.

Although currently there is a large variety of models for ANNs, they all share
eight major aspects (for technical details, see Sect. 2.2 below): (i) A set of processing
units, or ‘neurons’, represented by a set of integers; (ii) An activation for each unit,
represented by a vector of time-dependent functions; (iii) An output function for
each unit, represented by a vector of functions on the activations; (iv) A pattern
of connectivity among units, represented by a matrix of real numbers indicating
connection strength; (v) A propagation rule spreading the activations via the con-
nections, represented by a function on the output of the units; (vi) An activation
rule for combining inputs to a unit to determine its new activation, represented by a
function on the current activation and propagation; (vii) A learning rule, which can
be either unsupervised such as Hebbian [Heb49], or supervised, such as backpropria-
tion [Hay98, II07b], for modifying connections based on experience, represented by a
change in the ‘synaptic weights’ based on any number of variables; (viii) An environ-
ment which provides the system with experience, represented by sets of activation
vectors for some subset of the units.

V.G. Ivancevic, T.T. Ivancevic, Quantum Neural Computation,
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2 1 Introduction

1.1 Neurodynamics

To give a brief introduction to classical neurodynamics, we start from the fully
recurrent, N -dimensional, RC transient circuit, given by a nonlinear vector
differential equation [Hay98, Kos92, II07b]:

Cj v̇j = Ij −
vj
Rj

+ wijfi(vi), (i, j = 1, . . . , N), (1.1)

where vj = vj(t) represent the activation potentials in the jth neuron, Cj

and Rj denote input capacitances and leakage resistances, synaptic weights
wij represent conductances, Ij represent the total currents flowing toward the
input nodes, and the functions fi are sigmoidal.

Geometrically, (1.1) defines a smooth autonomous vector-field X(t) in ND
neurodynamical phase-space manifold M , and its (numerical) solution for the
given initial potentials vj(0) defines the autonomous neurodynamical phase-
flow Φ(t) : vj(0)→ vj(t) on M .

In AI parlance, (1.1) represents a generalization of three well-known re-
current NN models (see [Hay98, Kos92, II07b]):

(i) continuous Hopfield model [Hop84],
(ii) Grossberg ART-family cognitive system [CG83b], and
(iii) Hecht–Nielsen counter-propagation network [Hec87, Hec90].

Physiologically, (1.1) is based on the Nobel-awarded Hodgkin–Huxley equa-
tion of the neural action potential (for the single squid giant axon membrane)
as a function of the conductances g of sodium, potassium and leakage [HH52a,
Hod64]:

Cv̇ = I(t)− gNa(v − vNa)− gK(v − vK)− gL(v − vL),

where bracket terms represent the electromotive forces acting on the ions.
The continuous Hopfield circuit model [Hop84]:

Cj v̇j = Ij −
vj
Rj

+ Tijui, (i, j = 1, . . . , N), (1.2)

where ui are output functions from processing elements, and Tij is the inverse
of the resistors connection-matrix becomes (1.1) if we put Tij = wij and
ui = fi[vj(t)].

The Grossberg analogous ART2 system is governed by activation equation:

εv̇j = −Avj + (1−Bvj)I+
j − (C + Dvj)I−

j , (j = 1, . . . , N),

where A,B,C,D are positive constants (A is dimensionally conductance),
0 ≤ ε� 1 is the fast-variable factor (dimensionally capacitance), and I+

j , I
−
j

are excitatory and inhibitory inputs to the jth processing unit, respectively.
General Cohen–Grossberg activation equations [CG83b] have the form:
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v̇j = −aj(vj)[bj(vj)− fk(vk)mjk], (j = 1, . . . , N), (1.3)

and the Cohen–Grossberg theorem ensures the global stability of the system
(1.3). If

aj = 1/Cj , bj = vj/Rj − Ij , fj(vj) = uj ,

and constant mij = mji = Tij , the system (1.3) reduces to the Hopfield circuit
model (1.2).

The Hecht–Nielsen counter-propagation network is governed by the acti-
vation equation [Hec87, Hec90]:

v̇j = −Avj + (B − vj)Ij − vj
∑

k �=j
Ik, (j = 1, . . . , N),

where A,B are positive constants and Ij are input values for each processing
unit.

Provided some simple conditions are satisfied, namely, say symmetry of
weights wij = wij , non-negativity of activations vj and monotonicity of trans-
fer functions fj , the system (1.1) is globally asymptotically stable (in the
sense of Lyapunov energy functions). The fixed-points (stable states) of the
system correspond to the fundamental memories to be stored, so it works as
content-addressable memory (AM). The initial state of the system (1.1) lies
inside the basin of attraction of its fixed-points, so that its initial state is
related to appropriate memory vector. Various variations on this basic model
are reported in the literature [Hay98, Kos92], and more general form of the
vector-field can be given, preserving the above stability conditions.

1.2 Quantum Computation

Quantum computers promise to perform calculations believed to be impossi-
ble for ordinary computers. Some of those calculations are of great real-world
importance. For example, certain widely used encryption methods could be
cracked given a computer capable of breaking a large number into its com-
ponent factors within a reasonable length of time. Virtually all encryption
methods used for highly sensitive data are vulnerable to one quantum al-
gorithm or another. The extra power of a quantum computer comes about
because it operates on information represented as qubits (or, quantum bits,
see Fig. 1.1) instead of bits of the conventional, or so-called Von Neumann
computer .2 Recall that an ordinary classical bit can be either a 0 or a 1, and
standard microchip architectures enforce that dichotomy rigorously. A qubit,
2 The so-called Von Neumann architecture [Neu58] is a design model for a stored-
program digital computer that uses a central processing unit (CPU) and a single
separate storage structure to hold both instructions and data. It is named after
mathematician and early computer scientist John Von Neumann. Such a computer
implements a universal Turing machine, and the common ‘referential model’ of spec-
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in contrast, can be in a superposition state, which entails proportions of 0 and
1 coexisting together. One can think of the possible qubit states as points on
a sphere: the north pole is a classical 1, the south pole a 0, and all the points
in between are all the possible superpositions of 0 and 1. The freedom that
qubits have to roam across the entire sphere helps to give quantum computers
their unique capabilities (see [Col06]).

Quantum computers can be roughly divided into two classes: (i) discrete
ones, pioneered by Richard P. Feynman several decades ago; and (ii) recently
proposed topological ones. In this section we will give a brief, nontechnical
description of both types. In later Chapters we will elaborate on the most
interesting aspects (using the necessary technical machinery).

1.3 Discrete Quantum Computers

The concept of quantum computing , or quantum computation, was first stated
by Feynman [Fey82] and Benioff [Ben82], and formalized by Deutsch [Deu85],
Bernstein and Vazirani [BV93], and Yao [Yao93]. For review, see papers
[Aha98, Ber97, RP98, Ste98], books [Gru99, WC98], and courses available
on the web [Pre98b, Ven07].

ifying sequential architectures, in contrast with more recent parallel architectures.
In particularly, a stored-program digital computer is one that keeps its program in-
structions as well as its data in read-write, random access memory. Stored-program
computers were an advancement over the program-controlled computers of the 1940s,
such as Colossus and ENIAC, which were programmed by setting switches and in-
serting patch leads to route data and control signals between various functional
units. In the majority of modern computers, the same memory is used for both data
and program instructions.

The separation between the CPU and memory leads to the von Neumann bot-
tleneck , the limited throughput (data transfer rate) between the CPU and mem-
ory compared to the amount of memory. In modern machines, throughput is much
smaller than the rate at which the CPU can work. This seriously limits the effec-
tive processing speed when the CPU is required to perform minimal processing on
large amounts of data. The CPU is continuously forced to wait for vital data to
be transferred to or from memory. As CPU speed and memory size have increased
much faster than the throughput between them, the bottleneck has become more of
a problem.

The performance problem is reduced by a cache between CPU and main memory,
and by the development of branch prediction algorithms. Note that a cache is a
collection of data duplicating original values stored elsewhere or computed earlier,
where the original data is expensive to fetch (owing to longer access time) or to
compute, compared to the cost of reading the cache. In other words, a cache is
a temporary storage area where frequently accessed data can be stored for rapid
access. Once the data is stored in the cache, future use can be made by accessing
the cached copy rather than re-fetching or recomputing the original data, so that
the average access time is shorter. A cache, therefore, helps expedite data access
that the CPU would otherwise need to fetch from main memory.



1.3 Discrete Quantum Computers 5

Fig. 1.1. A qubit rotation can be visualized by a rotation of the unit vector in the
so-called Bloch sphere. For example, here we have a spin-1/2 state of a qubit in a
magnetic field (modified and adapted from [Tha99]).

Roughly, quantum computer is a computation device that makes direct
use of distinctively quantum-mechanical phenomena, such as superposition
and entanglement ,3 to perform operations on data. Whilst in a conventional
computer information is stored as bits, in a quantum computer it is stored as
quantum binary digits, or qubits. The basic principle of quantum computation
is that the quantum properties can be used to represent and structure data,
and that quantum mechanisms can be devised and built to perform operations
with these data [GC98].

A classical computer uses strings of 0s and 1s. It can do calculations on
only one set of numbers at once. A quantum computer uses quantum states
which can be in a superposition of many different numbers at once. A classical
computer is made up of bits while a quantum computer is made up of quantum

3 Quantum entanglement, a phenomenon referred to by E. Schrödinger as ‘the
essence of quantum physics’, is a property of quantum superpositions involving
more than one system. Just as two classical bits can be in any of four states
(00, 01, 10, 11), the general quantum state of two qubits is a superposition of the
form c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉 and the quantum state of N qubits can be
represented by a complex-valued vector with 2N components. This is the basis of
the exponential superiority of quantum computation: instead of N Boolean regis-
ters, one has 2N complex variables, even though there are only N physical switches.
But to be computationally useful, the joint quantum state must be ‘non-separable’.
A separable state can be expressed as an abstract product of individual states:

|00〉 = |0〉A |0〉B , |00〉 + |01〉 = |0〉A(|0〉 + |1〉)B .

However, the so-called Bell state, |00〉 + |11〉, cannot be factorized in this way, and
is therefore non-separable. The entanglement of a state is a measure of its non-
separability, and arguably represents the fundamental resource used in quantum
computation [CT07].
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bits, or qubits. A quantum computer can do an arbitrary reversible classical
computation on all the numbers simultaneously. A quantum computer can
be treated as an interacting multi-spin system. Technically, in quantum com-
putation, the traditional Ising-like bits of a classical computer are promoted
to Heisenberg-like spin-1/2 systems. Computation in an N -bit system then
takes place via unitary transformations of a 2ND Hilbert space generated by
pairwise spin–spin interactions.

There are many routes to build a quantum computer. The 0 and 1 of a
qubit might be the ground and excited states of an atom in a linear ion trap
or of a quantum dot ; they might be polarizations of photons that interact
in an optical cavity ; they might be the excess of one nuclear spin state over
another in a liquid sample in an nuclear magnetic resonance (NMR) machine.
As long as one can put the system in a quantum superposition and there
is a way to interact multiple qubits, a system can potentially be used as a
quantum computer. In order for a system to be a good choice, it should fulfill
five criteria [Bar08]:

(i) be a scalable physical system with well-defined qubits;
(ii) be initializable to a simple fiducial state such as |000 . . .〉;
(iii) have much longer decoherence times (i.e., one can do many operations

before losing quantum coherence);
(iv) have a universal set of quantum gates; and
(v) permit high quantum efficiency, qubit-specific measurements.

In particular, NMR is a very promising approach. The computers are
molecules in a liquid, and information is encoded in atomic nuclei in the
molecules. Instead of trying to coax results out of a few fragile qubits, the tech-
nique is based on manipulating, or, in effect, programming, enormous numbers
of nuclei with radio-frequency pulses and then harnessing statistics to filter the
right answers (about one result in a million) out of the background of noise.

If large-scale quantum computers can be built, they will be able to solve
certain problems much faster than any of conventional computers, e.g., famous
Shor’s algorithm, which is a quantum algorithm for integer factorization, first
introduced by mathematician Peter Shor in 1994. On a quantum computer, to
factor an integer N , Shor’s algorithm takes polynomial time in logN , specifi-
cally O((logN)3), demonstrating that integer factorization is in the complexity
class BQP . This is exponentially faster than the best-known classical factor-
ing algorithm, the general number field sieve, which works in sub-exponential
time, about O(2(logN)1/3

). Shor’s algorithm is important because it can, in
theory, be used to ‘break’ the widely used public-key cryptography scheme
known as RSA, which is based on the assumption that factoring large num-
bers is computationally infeasible. So far as is known, this assumption is valid
for conventional computers; no classical algorithm is known that can factor
in polynomial time in logN . However, Shor’s algorithm shows that factor-
ing is efficient on a quantum computer, so an appropriately large quantum
computer can ‘break’ RSA. It was also a powerful motivator for the design
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and construction of quantum computers and for the study of new quantum
computer algorithms.4

In particular, Shor’s algorithm is based on the quantum Fourier transform,
which is the discrete Fourier transform (DFT) with a particular decomposition
into a product of simpler unitary matrices (see Appendix). Using this decom-
position, the discrete Fourier transform can be implemented as a quantum
circuit5 consisting of Hadamard transform gates6 and controlled phase shifter
gates.7 The quantum Fourier transform has many applications in quantum al-

4 In 2001, Shor’s algorithm was demonstrated by a group at IBM, who factored 15
into 3 × 5, using an NMR implementation of a quantum computer with 7 qubits
[VSB01]. However, some doubts have been raised as to whether IBM’s experi-
ment was a true demonstration of quantum computation, since no entanglement
was observed. Since IBM’s implementation, several other groups have implemented
Shor’s algorithm using photonic qubits, emphasizing that entanglement was observed
[LBY07].
5 In quantum information theory, a quantum circuit is a model for quantum com-
putation in which a computation is a sequence of reversible transformations on a
quantum mechanical analog of an n bit register. This analogous structure is referred
to as an n-qubit register.

To consider quantum gates, we need to specify the quantum replacement of an n-
bit datum. The quantized version of classical n-bit space {0, 1}n is given by HQB(n) =
�2({0, 1}n). This is by definition the space of complex-valued functions on {0, 1}n and
is naturally an inner-product space. This space can also be regarded as consisting
of linear superpositions of classical bit strings. Using Dirac bra-ket notation (see
Chap. 3), if x1, x2, . . . , xn is a classical bit string, then

|x1, x2, . . . , xn 〉

is an n-qubit; these special n-qubits (of which there are 2n) are called computational
basis states. All n-qubits are complex linear combinations of computational basis
states. Note that HQB(n) has complex dimension 2n.
6 The Hadamard transform (also known as the Walsh–Hadamard transform) is an
example of a generalized class of Fourier transforms. It performs an orthogonal,
symmetric, involutary, linear operation on 2n real numbers (or complex numbers,
although the Hadamard matrices themselves are purely real). The Hadamard trans-
form can be regarded as being built out of size-2 DFTs and is in fact equivalent
to a multidimensional DFT of size 2 × 2 × · · · × 2 × 2. It decomposes an arbitrary
input vector into a superposition of Walsh functions. The Hadamard transform can
be computed in n log n operations, using the fast Hadamard transform algorithm.

Many quantum algorithms use the Hadamard transform as an initial step, since
it maps n qubits initialized with |0〉 to a superposition of all 2n orthogonal states in
the |0〉, |1〉 basis with equal weight.
7 Phase shifter gates operate on a single qubit. They are represented by 2×2 matrices
of the form

R(θ) =

[
1 0

0 e2πiθ

]
,

where θ is the phase shift.



8 1 Introduction

gorithms as it provides the theoretical basis to the phase estimation procedure.
This procedure is the key to quantum algorithms such as Shor’s algorithm,
the order finding algorithm and the hidden subgroup problem.

Quantum computers are different from other computers such as DNA com-
puters8 and traditional computers based on transistors. Some computing ar-
chitectures such as optical neural networks9 may use classical superposition

8 DNA computing is a form of computing which uses DNA, biochemistry and molec-
ular biology, instead of the traditional silicon-based computer technologies. DNA
computing, or, more generally, molecular computing, is a fast developing interdisci-
plinary area. Research and development in this area concerns theory, experiments
and applications of DNA computing. This field was initially developed by L. Adle-
man of the University of Southern California, in 1994 [Adl94]. Adleman demon-
strated a proof-of-concept use of DNA as a form of computation which solved the
seven-point Hamiltonian path problem. Since the initial Adleman experiments, ad-
vances have been made and various Turing machines have been proven to be con-
structible. DNA computing is fundamentally similar to parallel computing in that it
takes advantage of the many different molecules of DNA to try many different pos-
sibilities at once. For certain specialized problems, DNA computers are faster and
smaller than any other computer built so far. But DNA computing does not provide
any new capabilities from the standpoint of computability theory, the study of which
problems are computationally solvable using different models of computation.
9 An optical neural network is a physical implementation of an artificial neural
network (ANN, see Sect. 2.2 below) with optical components. Some ANNs that
have been implemented as optical neural networks include the Hopfield net [YLS04]
and the Kohonen self-organizing map with liquid crystals [LYG05]. While biolog-
ical neural networks function on an electrochemical basis, optical neural networks
use electromagnetic waves. Optical interfaces to biological neural networks can be
created with optogenetics, but is not the same as an optical neural networks. In
biological neural networks there exist a lot of different mechanisms for dynamically
changing the state of the neurons, these include short-term and long-term synaptic
plasticity. Synaptic plasticity is among the electrophysiological phenomena used to
control the efficiency of synaptic transmission, long-term for learning and memory,
and short-term for short transient changes in synaptic transmission efficiency. Im-
plementing this with optical components is difficult, and ideally requires advanced
photonic materials. Properties that might be desirable in photonic materials for op-
tical ANNs include the ability to change their efficiency of transmitting light, based
on the intensity of incoming light. There is one recent (2007) model of Optical Neu-
ral Network: the Programmable Optical Array/Analogic Computer (POAC). It had
been implemented in the year 2000 and reported based on modified Joint Fourier
Transform Correlator (JTC) and Bacteriorhodopsin (BR) as a holographic optical
memory. Full parallelism, large array size and the speed of light are three promises
offered by POAC to implement an optical CNN. They had been investigated during
the last years with their practical limitations and considerations yielding the design
of the first portable POAC version. POAC is a general purpose and programmable
array computer that has a wide range of applications including: image processing;
pattern recognition; target tracking; real-time video processing; document security;
and optical switching.
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of electromagnetic waves. However, it is conjectured that an exponential ad-
vantage over conventional computers is not possible without some specifically
quantum mechanical resources such as entanglement [BCJ99].

In particular, a so-called trapped ion quantum computer is a type of quan-
tum computer, in which ions (charged atomic particles) can be confined and
suspended in free space using electromagnetic fields. Qubits are stored in sta-
ble electronic states of each ion, and quantum information can be processed
and transferred through the collective quantized motion of the ions in the
trap (interacting through the Coulomb force). Lasers are applied to induce
coupling between the qubit states (for single qubit operations) or coupling
between the internal qubit states and the external motional states (for entan-
glement between qubits). The fundamental operations of a quantum computer
have been demonstrated experimentally with high accuracy (or ‘high fidelity’
in quantum computing language) in trapped ion systems and a strategy has
been developed for scaling the system to arbitrarily large numbers of qubits
by shuttling ions in an array of ion traps. This makes the trapped ion quan-
tum computer system one of the most promising architectures for a scalable,
universal quantum computer. As of June 2008, the largest number of entan-
gled particles ever achieved in any quantum computer is eight calcium ions
by way of the trapped ion method first achieved in 2005.

Generic Components of a Quantum Computer

A quantum computer has the following generic components:

1. Qubits: Any two-level quantum system can form a qubit, and there are
two ways to form a qubit using the electronic states of an ion: (i) two
ground state hyperfine levels (these are called ‘hyperfine qubits’); and
(ii) a ground state level and an excited level (these are called the ‘opti-
cal qubits’). Hyperfine qubits are extremely long-lived (decay time of the
order of thousands to millions of years) and phase/frequency stable (tra-
ditionally used for atomic frequency standards). Optical qubits are also
relatively long-lived (with a decay time of the order of a second), compared
to the logic gate operation time (which is of the order of microseconds).
The use of each type of qubit poses its own distinct challenges in the
laboratory.

2. Initialization: Ions can be prepared in a specific qubit state using a process
called optical pumping. In this process, a laser couples the ion to some
excited states which eventually decay to one state which is not coupled
to by the laser. Once the ion reaches that state, it has no excited levels
to couple to in the presence of that laser and, therefore, remains in that
state. If the ion decays to one of the other states, the laser will continue to
excite the ion until it decays to the state that does not interact with the
laser. This initialization process is standard in many physics experiments
and can be performed with extremely high fidelity (> 99.9%).
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3. Measurement: Measuring the state of the qubit stored in an ion is quite
simple. Typically, a laser is applied to the ion that couples only one of the
qubit states. When the ion collapses into this state during the measure-
ment process, the laser will excite it, resulting in a photon being released
when the ion decays from the excited state. After decay, the ion is contin-
ually excited by the laser and repeatedly emits photons. These photons
can be collected by a photomultiplier tube (PMT) or a charge-coupled
device (CCD) camera. If the ion collapses into the other qubit state, then
it does not interact with the laser and no photon is emitted. By counting
the number of collected photons, the state of the ion may be determined
with a very high accuracy (> 99.9%).

4. Arbitrary rotation of single qubit: One of the requirements of universal
quantum computing is to coherently change the state of a single qubit. For
example, this can transform a qubit starting out in 0 into any arbitrary
superposition of 0 and 1 defined by the user. In a trapped ion system,
this is often done using magnetic dipole transitions or stimulated Raman
transitions for hyperfine qubits and electric quadrupole transitions for
optical qubits. Gate fidelity can be greater than 99%.

5. Two-qubit entangling gates: Besides the controlled-NOT gate proposed
by Cirac and Zoller in 1995, many equivalent, but more robust, schemes
have been proposed and implemented experimentally since. Recent theo-
retical work has shown that there are no fundamental limitations to the
speed of entangling gates, but gates in this impulsive regime (faster than
1 microsecond) have not yet been demonstrated experimentally (current
gate operation time is of the order of microseconds). The fidelity of these
implementations has been greater than 97%.

6. Scalable trap designs: Several groups have successfully fabricated ion traps
with multiple trap regions and have shuttled ions between different trap
zones. Ions can be separated from the same interaction region to individ-
ual storage regions and brought back together without losing the quantum
information stored in their internal states. Ions can also be made to turn
corners at a ‘T’ junction, allowing a two dimensional trap array design.
Semiconductor fabrication techniques have also been employed to man-
ufacture the new generation of traps, making the ‘ion trap on a chip’ a
reality. These developments bring great promise to making a ‘quantum
charged-coupled device’ (QCCD) for quantum computation using a large
number of qubits.

Considerable interest has been generated in quantum computing since Shor
[Sho97] showed that numbers can be factored in polynomial time on a quan-
tum computer. From a practical viewpoint, Shor’s result shows that a working
quantum computer can violate the security of transactions that use the RSA
protocol, a standard for secure transactions on the Internet. From a theo-
retical viewpoint, the result seemingly violates the polynomial version of the
Church–Turing thesis; it is generally believed that factoring cannot be done
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in polynomial time on a deterministic or probabilistic Turing machine. What
makes Shor’s breakthrough result possible on a quantum Turing machine is
that exponentially many computations can be performed in parallel in one
step and certain quantum steps enable one to extract the desired information.

Even though simple quantum computers have been built, enormous prac-
tical issues remain for larger-scale machines. The problems seem to be exac-
erbated with more qubits and more computation steps. In this section, we
initiate the study of quantum computing within the constraints of using a
polylogarithmic (O(logk n), k ≥ 1) number of qubits and a polylogarithmic
number of computation steps. The current research in the literature has fo-
cused on using a polynomial number of qubits. Recently, researchers have ini-
tiated the study of quantum computing using a polynomial number of qubits
and a polylogarithmic number of steps [MN98, Moo99, GHP00, CW00].

The concept of quantum neural networks (QNNs) was initially built in
[GZ01] upon Deutsch’s model of quantum computational network [Deu89].
The QNN model introduces a nonlinear, irreversible, and dissipative operator,
called D gate, similar to the speculative operator introduced by [AL98]. We
also define the precise dynamics of this operator and while giving examples
in which nonlinear Schrödinger’s equations are applied, we speculate on the
possible implementation of the D gate.

Within a general framework of size, depth, and precision complexity, we
study the computational power of QNNs. We show that QNNs of logarithmic
size and constant depth have the same computational power as threshold
circuits, which are used for modeling ANNs. QNNs of polylogarithmic size and
polylogarithmic depth can solve the problems in NC, the class of problems
that have theoretically fast parallel solutions. Thus, the new model subsumes
the computation power of various theoretical models of parallel computation.

We believe that the true advantage of quantum computation lies in over-
coming the communication bottleneck that has plagued the implementation
of various theoretical models of parallel computation. For example, NC cir-
cuits elegantly capture the class of problems that can be theoretically solved
fast in parallel using simple gates. While fast implementations of individual
gates have been achieved with semiconductors and millions of gates have been
put on a single chip, we do not have the implementation of full NC circuits
because of the communication and synchronization costs involved in wiring a
polynomial number of gates. We believe that this hurdle can be overcome us-
ing the nonlocal interactions present in quantum systems—there is no need to
explicitly wire the entangled units and the synchronization is instantaneous.
This advantage is manifest in the standard unitary operator, where operations
on one qubit can affect probability amplitudes on all the qubits, without re-
quiring explicit physical connections and a global clock. Thus, the new model
has the potential to overcome the practical problems associated with both
quantum computing as well as classical parallel computing.

There are two equivalent models for quantum computing, quantum Turing
machines [Deu85, BV93] based on reversible Turing machines [Ben73, Ben89]
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and quantum computational network [Deu89]. We briefly review the latter
here. The basic unit in quantum computation is a qubit , a superposition of
two independent states |0〉 and |1〉, denoted α0|0〉 + α1|1〉, where α0, α1 are
complex numbers such that |α0|2 + |α1|2 = 1. A system with n qubits is
described using 2n independent states |i〉, 0 ≤ i ≤ 2n−1, each associated with
probability amplitude αi, a complex number, as follows:

∑2n −1
i=0 αi|i〉, where∑2n −1

i=0 |αi|2 = 1. The direction of αi on the complex plane is called the phase
of state |i〉 and the absolute value |αi| is called the intensity of state |i〉 [GZ01].

The computation unit in Deutsch’s model consists of quantum gates whose
inputs and outputs are qubits. A gate can perform any local unitary operation
on the inputs. It has been shown that one-qubit gates together with two-qubit
controlled NOT gates are universal [BBC95].

The quantum gates are interconnected by wires. A quantum computational
network is a computing machine consisting of quantum gates with synchro-
nized steps. By convention, the computation proceeds from left to right. The
outputs of some of the gates are connected to the inputs of others. Some
of the inputs are used as the input to the network. Other inputs are con-
nected to source gates for 0 and 1 qubits. Some of the outputs are connected
to sink gates, where the arriving qubits are discarded. An output qubit can
be measured along state |0〉 or |1〉, and is observed based on the probability
amplitudes associated with the qubit [GZ01].

Even though simple quantum computers have been built, enormous prac-
tical issues remain for larger-scale machines. Landauer [Lan95] exposes three
main problems: decoherence, localization, and manufacturing defects. Deco-
herence is the process by which a quantum system decays to a classical state
through interaction with the environment. In the best case, coherence is main-
tained for some 104 seconds, and, in the worst case, for about 10−10 seconds
for single qubits. Some decoherence models show the coherence time declin-
ing exponentially as the number of qubits increases [Unr95]. Furthermore,
the physical media that allow fast operations are also the ones with short
coherence times.

The computation may also suffer from localization, that is, from reflection
of the computational trajectory, causing the computation to turn around.
Landauer points out that this problem is largely ignored by the research com-
munity [Lan95]. The combination of decoherence and localization makes the
physical realization of quantum computation particularly difficult. On the one
hand, we need to isolate a quantum computing system from the environment
to avoid decoherence, and on the other hand, we need to control it externally
to compel it to run forward to avoid reflection. Finally, minor manufacturing
defects can engender major errors in the computations.

Introduction of the techniques of error-correcting codes and fault-tolerant
computation to quantum computation has generated considerable optimism
for building quantum computers, because these techniques can alleviate the
problems of decoherence and manufacturing defects [GZ01]. Though this line
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of research is elegant and exciting, the codes correct only local errors. For ex-
ample, one qubit can be encoded into the nonlocal interactions among three
qubits to correct one qubit errors. However, in principle, any (nonlocal) uni-
tary operator can be applied to all the qubits. These nonlocal errors eas-
ily subvert the error-correcting codes. Also, nonlocal interactions provide the
exponential speed-ups in quantum computing. The hope that nature might
allow computational speed-ups via nonlocal interactions, while errors are con-
strained to occur only locally, seems unavailing. For an excellent exposition
on error-correcting codes and fault-tolerant quantum computing, the reader
is referred to [Pre97].

It has been shown that one-qubit gates together with two-qubit controlled
NOT gates are universal [BBC95]; that is, any 2n×2n unitary operator can be
decomposed into a polynomial number of one and two qubit operators. How-
ever, in general, any error operator can be applied in one step that cannot even
be detected without observing all the involved qubits. Having the ability to
operate on many qubits does not solve the problem, for error-correcting codes
for k qubit errors can be subverted by a (k + 1)-qubit error operator. Even-
tually, construction of a 2n × 2n operator will itself be more time consuming
than the actual computation.

There are some additional difficulties with computing using a polynomial
number of qubits for a polynomial number of steps that are not discussed in
the literature. For example, if n = 1000 and an O(n2) quantum algorithm is
used, we need one million uniquely identifiable but identical carriers of quan-
tum information. Clearly, the carriers need to be uniquely identifiable because
we are not using their statistical properties, but encoding 2O(n2) computations
in their interactions. However, the carriers need to be absolutely identical for
the following reason. In describing the Hamiltonian for the whole system, there
is a phase oscillation associated with each carrier. If all carriers have the same
frequency, it does not affect the computation, which essentially changes the
state relative to the global oscillation. But each qubit is likely to be encoded in
carriers with a much larger state space, and even slight frequency differences
can result in substantial errors over a polynomial number of steps. The task
of preparing one million absolutely identical carriers, while exploiting the 2106

interactions, most of which are nonlocal, for speeding-up computation appears
insurmountable. Controlling a polynomial number of entangled qubits for a
polynomial number of steps, while compelling the computation forward, seems
hard even with the help of error-correcting codes. To address the above prob-
lems, we initiate the study of quantum computation under the constraints of
a poly-logarithmic number of qubits and a poly-logarithmic number of steps
[GZ01].
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1.4 Topological Quantum Computers

Unfortunately, quantum computers seem to be extremely difficult to build.
The qubits are typically expressed as certain quantum properties of trapped
particles, such as individual atomic ions or electrons. But their superposi-
tion states are exceedingly fragile and can be spoiled by the tiniest stray
interactions with the ambient environment, which includes all the material
making up the computer itself. If qubits are not carefully isolated from their
surroundings, such disturbances will introduce errors into the computation.
Most schemes to design a quantum computer therefore focus on finding ways
to minimize the interactions of the qubits with the environment. Researchers
know that if the error rate can be reduced to around one error in every 10,000
steps, then error-correction procedures can be implemented to compensate
for decay of individual qubits. Constructing a functional machine that has a
large number of qubits isolated well enough to have such a low error rate is a
daunting task that physicists are far from achieving [Col06].

For this reason, a few researchers are pursuing a very different, topological
way to build a quantum computer. In their approach the delicate quantum
states depend on topological properties of a quantum system.10 The so-called
topological quantum computer is a theoretical quantum computer that employs
2D quasi-particles called anyons, whose world lines cross over one another to
form braids11 (see Fig. 1.2) in a (1 + 2)-space-time.

These braids form the logic gates that make up the quantum computer.
The advantage of a quantum computer based on quantum braids over us-
ing trapped quantum particles is that the former is much more stable. While
the smallest perturbations can cause a quantum particle to decohere and in-
troduce errors in the computation, such small perturbations do not change
the topological properties of the quantum braids (see Fig. 1.3). This is like
the effort required to cut a string and reattach the ends to form a different
braid, as opposed to a ball (representing an ordinary quantum particle in
10 Recall that topology is called a rubber-sheet geometry, i.e., a geometrical study of
properties that are unchanged when an object is smoothly deformed, by actions such
as stretching, squashing and bending but not by cutting or joining. It embraces such
subjects as knot theory , in which small perturbations do not change a topological
property. For example, a closed loop of string with a knot tied in it is topologically
different from a closed loop with no knot. The only way to change the closed loop
into a closed loop plus knot is to cut the string, tie the knot and then reseal the
ends of the string together. Similarly, the only way to convert a topological qubit to
a different state is to subject it to some such violence.
11 In topology, braid theory is an abstract geometric theory studying the everyday
braid concept, and some generalizations. The idea is that braids can be organized
into groups, in which the group operation is ‘do the first braid on a set of strings, and
then follow it with a second on the twisted strings’. Such groups may be described
by explicit presentations, as was shown by E. Artin. Braid groups may also be
given a deeper mathematical interpretation: as the fundamental group of certain
configuration spaces (see Appendix, Sect. 7.2.1).
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Fig. 1.2. Braiding: two anyons can encounter a clockwise swap (top) and a coun-
terclockwise swap (bottom). These two moves in a plane generate all the possible
braidings of the world lines of a pair of anyons (modified and adapted from [Col06]).

Fig. 1.3. Computing with braids of anyons. First, pairs of anyons are created and
lined up in a row to represent the qubits, or quantum bits, of the computation.
The anyons are moved around by swapping the positions of adjacent anyons in a
particular sequence. These moves correspond to operations performed on the qubits.
Finally, pairs of adjacent anyons are brought together and measured to produce the
output of the computation. The output depends on the topology of the particular
braiding produced by those manipulations. Small disturbances of the anyons do not
change that topology, which makes the computation impervious to normal sources
of errors (modified and adapted from [Col06]).
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4D space-time) simply bumping into a wall. While the elements of a topo-
logical quantum computer originate in a purely mathematical realm, recent
experiments indicate these elements can be created in the real world using
semiconductors made of gallium arsenide near absolute zero and subjected to
strong magnetic fields.

Anyons are quasi-particles in a 2D space. Anyons are not strictly fermions
or bosons, but do share the characteristic of fermions in that they cannot
occupy the same state. Thus, the world lines of two anyons cannot cross or
merge. This allows braids to be made that make up a particular circuit. In
the real world, anyons form from the excitations in an electron gas in a very
strong magnetic field, and carry fractional units of magnetic flux in a particle-
like manner. This phenomenon is called the fractional quantum Hall effect .12

The electron ‘gas’ is sandwiched between two flat plates of gallium arsenide,
which create the 2D space required for anyons, and is cooled and subjected
to intense transverse magnetic fields.

When anyons are braided, the transformation of the quantum state of the
system depends only on the topological class of the anyons’ trajectories (which
are classified according to the braid group, see Fig. 1.4, as well as Appendix,
Sect. 7.2.1). Therefore, the quantum information which is stored in the state
of the system is impervious to small errors in the trajectories.

In 2005, Fields Medalist Michael Freedman and collaborators from the
Microsoft Station Q proposed a quantum Hall device which would realize a
topological qubit . The original proposal for topological quantum computation
is due to Alexei Kitaev from CalTex in 1997. The problem of finding specific
braids for doing specific computations was tackled in 2005 by N.E. Bonesteel
of Florida State University, along with colleagues from the Bell Laboratories.
The team showed explicitly how to construct a so-called controlled NOT (or
CNOT) gate to an accuracy of two parts in 103 by braiding six anyons (see
Fig. 1.5). A CNOT gate takes two input qubits and produces two output
qubits. Those qubits are represented by triplets (green and blue) of so-called

12 The fractional quantum Hall effect (FQHE) is a physical phenomenon in which a
certain system behaves as if it were composed of particles with charge smaller than
the elementary charge. Its discovery and explanation were recognized by the 1998
Nobel Prize in Physics. The FQHE is a manifestation of simple collective behav-
ior in a 2D system of strongly-interacting electrons. At particular magnetic fields,
the electron gas condenses into a remarkable state with liquid-like properties. This
state is very delicate, requiring high quality material with a low carrier concen-
tration, and extremely low temperatures. As in the integer quantum Hall effect, a
series of plateaus forms in the Hall resistance. Each particular value of the magnetic
field corresponds to a filling factor (the ratio of electrons to magnetic flux quanta)
ν = p/q, where p and q are integers with no common factors. In particular, frac-
tionally charged quasi-particles are neither bosons nor fermions and exhibit anyonic
statistics. The FQHE continues to be influential in theories about topological or-
der. Certain fractional quantum Hall phases appear to have the right properties for
building a topological quantum computer.
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Fig. 1.4. Graphical representation of elements of the braid group. Top: the two
elementary braid operations σ1 and σ2 on three anyons. Middle: non-commutativity
is shown here as σ2σ1 �= σ1σ2; hence the braid group is non-Abelian. Bottom: the
braid relation: σiσi+1σi = σi+1σiσi+1 (modified and adapted from [NSS08]).

Fibonacci anyons. The particular style of braiding, leaving one triplet in place
and moving two anyons of the other triplet around its anyons, simplified the
calculations involved in designing the gate.

Fig. 1.5. Recently, a quantum logic gate known as a CNOT-gate has been produced
by a complicated braiding of six anyons. This braiding produces a CNOT gate that
is accurate to about 10−3 (modified and adapted from [Col06]).

Topological quantum computers are equivalent in computational power to
other standard models of quantum computation, in particular to the quantum
circuit model and to the quantum Turing machine model. That is, any of
these models can efficiently simulate any of the others. Nonetheless, certain
algorithms may be a more natural fit to the topological quantum computer
model. For example, algorithms for evaluating the Jones polynomial were first
developed in the topological model, and only later converted and extended in
the discrete quantum circuit model.


