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PREFACE

This book has a genesis: It started as internal training material for engineers working in
Canaan Microelectronics Corp. Ltd. It is also a monograph because it presents the outcome
of our research and teaching activities in the field of temperature independent circuit design
at both the Canaan Microelectronics Corp. Ltd. and the City University of Hong Kong. Many
unpublished works are included in this book. Numerous design examples are also presented
together with detailed discussions on design principles, performance analysis, and the potential
problems of each circuit topology. This book is intended to be course material for senior and
graduate level courses, training material for engineers, and also a reference text for readers
who are working in the field of temperature independent circuit design.

The book is divided into eight chapters. The first chapter offers an introduction of device
physics focusing on the temperature properties of individual devices, which introduces just
enough material for voltage reference circuit design and analysis. Details of general device
physics may be gathered from existing literature, such as the textbooks by Chenming C. Hu,
(Modern Semiconductor Devices for Integrated Circuits, Prentice Hall, 2010), and S.M. Sze,
(Physics of Semiconductor Devices, Wiley, 1969) that offer detailed discussions on the device
physics for bipolar transistors, MOS transistors, and other passive components manufactured in
the CMOS process. Besides the physics, towards the end of Chapter 1, we also discuss practical
issues in CMOS circuit design. The device matching problem is introduced. Computer simu-
lation for circuit design with process variations is discussed. Finally, the device noise models
that describe the noises associated with CMOS devices are presented. Chapter 2 presents the
performance characterization of voltage reference circuits. The presented characterization will
be used throughout the book in the analytical discussions and performance comparisons of
individual voltage reference circuits. A general voltage reference circuit framework of opamp
based β-multiplier bandgap voltage reference is presented in Chapter 3. The presented voltage
reference circuit is silicon proven, and has been applied to a power management IC of Canaan
Microelectronics Corp. Ltd.: the micrograph of the die is shown on the front page of this book.
Every building block within the voltage reference circuit is discussed analytically together with
layout details. Various error sources of the circuit are identified, and analyzed in Chapter 4.
Methods to remedy each problem together with their pros and cons are discussed in detail in
Chapter 4. The basic PTAT-CTAT temperature compensation technique discussed in Chapter 4
will be extended to voltage reference circuits using various temperature dependent devices
and topologies in Chapter 5. Analytical derivation to determine the component values of each
device within the voltage reference circuit, together with the important design considerations
of each circuit and topology will be discussed. Chapter 6 discusses the design of voltage



xii Preface

reference circuits with sub-1V supply, and voltage reference circuits with sub-1V reference
voltage. Notice that the design of the voltage reference circuit with a sub-1V reference voltage
is different from that of the voltage reference circuit with a sub-1V supply voltage. A voltage
reference circuit with a sub-1V supply voltage is also a voltage reference circuit with a sub-1V
reference voltage. The voltage reference circuit with sub-1V reference voltage being able to
operate with a sub-1V supply voltage is important in modern CMOS circuit design where the
supply voltage keeps reducing for power reduction and silicon size shrinkage. A number of
sub-1V voltage reference circuits will be discussed in this chapter.

High order curvature compensated voltage reference circuits are presented in Chapter 7,
which are important to applications that require a reference voltage with low temperature
sensitivity. A number of high accuracy voltage reference circuit topologies, including high
order curvature compensation, inverted temperature compensation, and piecewise temperature
compensation etc. are discussed. This book concludes in Chapter 8 with a discussion on
a type of special voltage reference circuit that does not require resistors. Such a voltage
reference circuit has the advantage of compact layout. The performance of a resistor free
voltage reference circuit can be further optimized with applications of piecewise temperature
compensation technique to lower the temperature sensitivity of the circuit. Post-fabrication
trimming circuits are discussed to reduce the reference voltage variation.

A detailed summary of the state of the art development with respect to the topic of each
chapter is presented in the “Summary” section of each chapter. Homework problems are
presented in the “Exercise” section in individual chapter. The homework includes both analytic
problems, and SPICE based computer simulation exercises. While the process parameters used
in this book and also in developing the exercises may not be the same as those in your institution,
it is our hope that the exercises will provide you with general guidelines, analysis, design and
layout experience for the design of the voltage reference circuits with the help of SPICE. The
experience will further address the performance evaluation of the voltage reference circuit
which will help you to achieve a thorough consideration of the voltage reference circuit before
the actual design.

The development of voltage reference circuits is still continuing and therefore a book, such
as this one, cannot be definitive or complete. It is hoped, however, that this book will fill
an important gap; students embarking upon mixed-signal circuit design should be able to
learn sufficient basics before tackling journal papers, researchers and engineers in the field
of temperature independent/dependent circuit design should be able to use it as reference to
assist their circuit design tasks, and current researchers in the field should be able to get a
broad perspective on what has been achieved. The subject area is introduced, some major
developments are recorded, and enough successes as well as challenges are noted here for
readers to look into other voltage independent/dependent circuit design problems and generate
solutions for their own problems.

Chi-Wah Kok and Wing-Shan Tam
February 2012
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NOMENCLATURE

SoC System-On-Chip
ATE Automatic test equipment
J Joule
Col Coulomb
K Kelvin
◦C degree Celsius
VT Thermal voltage, kT/q
VDD Positive supply voltage
VSS Negative supply voltage
BJT Bipolar Junction Transistor
IB Base Current of Bipolar Transistor
IC Collector Current of Bipolar Transistor
IE Emitter Current of Bipolar Transistor
IS Saturation Current of Bipolar Transistor
JC Collector Current Density of Bipolar Transistor
JS Saturation Current Density of Bipolar Transistor
VBE Base-Emitter Voltage of a BJT
VCE Collector-Emitter Voltage of a BJT
RB Zero-bias base ohmic resistance
RE Emitter resistance
RC Collector resistance
VG0 Silicon Bandgap Voltage Extrapolated at 0 K
AE Emitter Area of Bipolar Transistor
WB BJT base width
β Forward current gain
VD Forward-bias diode voltage
MOSFET Metal Oxide Semiconductor Field Effect Transistor
NMOS N-Channel MOSFET
PMOS P-Channel MOSFET
CMOS Complementary Metal Oxide Semiconductor
W MOSFET Gate Width
L MOSFET Gate Length
S Channel Width to Length Ratio (W/L) of a MOSFET
IDS Drain to Source Current of a MOSFET



xvi Nomenclature

ID,sub Drain to Source Current of a MOSFET biased in subthreshold mode
ID,lin Drain to Source Current of a MOSFET biased in triode mode
ID,sat Drain to Source Current of a MOSFET biased in saturation mode
ID,leak Drain to Source Leakage Current or Off Current of a MOSFET in cutoff

mode
Îleak Unit Drain to Source Current Normalized by S
ζ Subthreshold Slope
ζn Subthreshold Slope of a n-channel MOSFET
ζp Subthreshold Slope p-channel MOSFET
CD Depletion capacitance of a MOSFET
Cox Gate oxide capacitance per unit area of a MOSFET
tox Thickness of gate oxide
Vth Threshold voltage of a MOSFET
VGS Gate source voltage of a MOSFET
VDS Drain source voltage of a MOSFET
RDS,sub Drain source resistance of a MOSFET in subthreshold mode
VDS,sub Drain source voltage of a MOSFET in subthreshold mode
VDS,lin Drain source voltage of a MOSFET in linear mode
VDS,sat Drain source voltage of a MOSFET in saturation mode
RDS Drain source resistance of a MOSFET
RDS,lin Drain source resistance of a MOSFET in linear mode
gm Transconductance of a MOSFET
RDS,sat Drain source resistance of a MOSFET in saturation mode
μ Mobility of the charge carrier
CTAT Complementary to Absolute Temperature
PTAT Proportional to Absolute Temperature
VCTAT CTAT Voltage
ICTAT CTAT Current
VPTAT PTAT Voltage
IPTAT PTAT Current
VIN Input voltage to the voltage reference circuit
VIN(nom) Nominal input voltage to the voltage reference circuit
VIN(min) Minimum input voltage for proper operation of the voltage reference

circuit
VIN(max) Maximum input voltage for proper operation of the voltage reference

circuit
VREF Output voltage of the voltage reference circuit
VDD(min) Minimum operating supply voltage
VDD(nom) Nominal supply voltage
VREF(nom),T Output voltage of the voltage reference circuit at specific temperature T

with respect to a range of input voltages
VREF(min),T Output voltage of the voltage reference circuit at VIN(min) and temperature

T
VREF(max),T Output voltage of the voltage reference circuit at VIN(max) and temperature

T
Vη Noise source



Nomenclature xvii

VREFCONV Reference voltage generated by conventional VBE − VT temperature com-
pensation voltage reference circuit

VDROP Dropout voltage defined as the voltage difference between the input and
output voltage

Tnom Nominal temperature
Vη( f ) Noise voltage at frequency f
Tmin Minimum temperature for proper operation of the voltage reference circuit
Tmax Maximum temperature for proper operation of the voltage reference

circuit
VREF(nom),VIN(nom) Output voltage of the voltage reference circuit at nominal input voltage

with respect to a temperature range [Tmin, Tmax ]
VREF(max),VIN(nom) The maximum output voltage of the voltage reference circuit at nominal

input voltage in the temperature range [Tmin, Tmax]
VREF(min),VIN(nom) The maximum output voltage of the voltage reference circuit at nominal

input voltage in the temperature range [Tmin, Tmax]
Iq The quiescent current of the voltage reference circuit
T C Temperature Coefficient
P S R R Power supply rejection ratio
BW System bandwidth of the voltage reference circuit
VOS Offset voltage
SP SR R Power-supply rejection ratio that the variation of the reference voltage

with a particular frequency in the input voltage
S y

x Sensitivity of parameter y with respect to a change in parameter x
SLR Linear regulation measure of variation of reference voltage with respect

to a charge in input voltage to the voltage reference circuit
STC Temperature coefficient measure of variation of reference voltage with

respect to a change in operation temperature of the voltage reference
circuit

Table 1 Physical Constant

Parameter Description Typical Values

k Boltzmann’s Constant 1.38 × 102 J/K
q Electron’s Charge 1.62 × 10−19 Col
VT Thermal Voltage kT/q = 26 mV at 300 K
BG0 Silicon Bandgap Voltage

Extrapolated at 0 K
1.206 V

VBE Base Emitter Voltage of NPN 0.73 mV at 300 K
VBE Base Emitter Voltage of PNP 0.76 mV at 300 K





1
Warm Up

The voltage reference circuits discussed in this book require you to work on electron devices
by connecting together transistors, resistors, and capacitors. Therefore you need to understand
the properties and limitations of each device in some detail. The easiest way to learn about
electron devices is to study their physical models, although they are usually very complex. For
example, the Gummel and Poon model of a bipolar transistor lists 45 parameters (Gummel
and Poon, 1970) and yet still is not accurate enough to simulate the saturation or junction
breakdown behaviors. The BSIM 3.3 model of a MOS transistor has more than 50 coefficients
(Liu, 2001) not counting noise and gate leakage parameters. Although all of these variables
are useful for the design of voltage reference circuits, only very few numbers and equations
have to be remembered for creative work, and the shapes of a few dependencies and some
qualitative relationships (not how much, but more or less, increasing or decreasing) of these
parameters are much more important.

The following sections will present, from the authors’ point of view, the most important
electron device parameters necessary for voltage reference circuit design. Detailed descriptions
of the operations of individual electron device can be found in textbooks on analog circuit
design or device modeling (Hu, 2010; Sze, 1969). In particular, a large part of this book
presents the design and analysis of a special kind of voltage reference circuit, the bandgap
voltage reference. It is useful to know which parameters of the practical model dominate the
behavior of each electron devices in the case of bandgap reference circuit design.

The well-known Gummel and Poon model for bipolar transistors, and BSIM 3.3 model
for MOSFETs used in SPICE, will form the basis for the design and analysis of bandgap
references. In particular HSPICE (HSPICE R©Simulation and Analysis User Guide 2006), a
typical SPICE simulator, will be used to produce all the simulation results presented in this
book based on a 0.18 μm mixed signal CMOS process SPICE model. However, instead of
going through SPICE, a minimum set of key parameters will be presented in the follow-
ing sections which allow us to analytically describe the relation between various electron
devices behaviors and their application to temperature insensitive circuit design. We shall
start our discussions with the active components first, which include the bipolar transistors,
MOSFETs, and diode, and then the passive components, which are the resistors made by
different CMOS processes.

CMOS Voltage References: An Analytical and Practical Perspective, First Edition. Chi-Wah Kok and Wing-Shan Tam.
© 2013 John Wiley & Sons Singapore Pte. Ltd. Published 2013 by John Wiley & Sons Singapore Pte. Ltd.



2 CMOS Voltage References

1.1 Bipolar Junction Transistors

The bipolar junction transistor (BJT), is a vital component in the voltage reference circuit and
is commonly used for the generation of temperature dependent voltage, whereas the generation
of controllable temperature dependent voltage is the first step towards obtaining a temperature
insensitive reference voltage. The BJTs can be implemented in a standard CMOS process. The
simplified cross-view of a vertical NPN transistor and a vertical PNP transistor implemented
in CMOS process are shown in Figure 1.1(a) and (b), respectively; while Figure 1.1(c) and
(d) are the layouts of the transistors in Figure 1.1(a) and (b), respectively. In general, the
NPN transistor is preferred because of its higher collector-current efficiency and the highly
doped base region which can achieve a low series base resistance. The awkward effect of the
base resistance will be discussed in Section 4.3.2. Besides, there are other limitations on the
application of PNP transistor in voltage reference circuit. Consider the vertical PNP transistor
illustrated in Figure 1.1(b), where the emitter is formed by a P-type region, the base is formed
by a N -well, and the collector is formed by a P-type substrate. There are two limitations
imposed on such BJT implementation. First, the collector is formed by the substrate, which is
permanently tied to the lowest supply voltage. Second, the current gain of the transistor, β, is
very low when compared to its NPN counterpart, which is defined as

β = IC

IB
, (1.1)

Figure 1.1 Integrated bipolar transistor in N -well CMOS processes: (a) a vertical NPN transistor
and (b) a vertical PNP transistor. Layout examples of (c) NPN transistor in (a) and (d) PNP

transistor in (b).
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with IC and IB being the currents flowing into the collector and base of the BJT, respectively.
To effectively alleviate the base resistance as a source of error in voltage reference circuit
design, a high current gain (β ≥ 100) is desired. As a result, the vertical PNP transistor is
only applicable to voltage reference circuit design if we make it large to achieve a small base
resistance. The last but not least, problem associated with the vertical PNP BJT is that it cannot
be used in cascode structure because the collector is required to connect to the ground, and
thus cannot be connected to the emitter of another BJT. Despite the above limitations, both
the NPN and the PNP BJTs can be used in the voltage reference circuit.

The BJT applied in a voltage reference circuit is usually configured in a diode-connected
structure (i.e., the base terminal and the collector terminal are connected together), such
that the base-emitter voltage, VBE, is used to provide a fixed junction voltage. However, the
junction voltage is temperature sensitive, and thus cannot be used as reference voltage by
itself. The thermal analysis of the BJT, and in particular the VBE, has been widely discussed
in the literature (Massobrio and Antognetti, 1993; Tsividis, 1980). The theory and notation
of the NPN transistor are applicable to the PNP transistor with a few obvious modifications.
Therefore, all the symbols and notations of these two types of BJTs are used interchangeably
in our discussions.

If we neglect the Early effect, the collector current of a NPN transistor biased in the forward
active region is given by

JC (T )AE = JS(T )AE exp

(
VBE

VT

)
,

IC (T ) = IS(T ) exp

(
VBE

VT

)
, (1.2)

where AE is the base-emitter junction area, T is the absolute temperature in K, IC (T ) is
the temperature dependent collector current, JS(T ) is the saturation current density, which
relates to the temperature dependent saturation current IS(T ) as IS(T ) = JS(T )AE . Finally,
the thermal voltage VT is given by

VT = kT

q
, (1.3)

with q = 1.6 × 10−19 Col being the electron charge, and k = 1.38 × 10−23J/◦C being the
Boltzmann constant. As an example, at T = 300 K, VT (300) = 0.0259 V. Without going into
further details of the semiconductor physics of BJT, we shall quote the base-emitter voltage
function of the BJT from (Johns and Martin 1997).

VBE(T ) = VG0

(
1 − T

Tr

)
+ VBE(Tr )

T

Tr
− ρkT

q
ln

(
T

Tr

)
+ kT

q
ln

(
JC (T )

JC (Tr )

)
, (1.4)

where VG0 is the bandgap voltage of silicon at 0 K which equals 1.206 V, ρ is a process
dependent temperature constant and equals 1.93 in the process concerned, and Tr is a reference
temperature. Consider a temperature dependent collector current that can be modeled as

IC (T ) = a × T θ , (1.5)



4 CMOS Voltage References

where a is a constant and θ is the order of temperature dependency, θ = 0 implies the collector
current is independent with temperature, and θ = 1 implies the collect current varies linearly
with temperature, and so on. The collector current density at temperature T with respect to
the collector current density at the reference temperature Tr is given by

JC (T )

JC (Tr )
=

(
T

Tr

)θ

. (1.6)

We can thus simplify VBE(T ) as

VBE(T ) = VG0

(
1 − T

Tr

)
+ VBE(Tr )

T

Tr
− (ρ − θ )

kT

q
ln

(
T

Tr

)
. (1.7)

It can be observed that VBE(T ) is nonlinearly related to temperature. Furthermore, because
of the VBE(Tr ) term in the above equation, VBE(T ) might vary with the biasing condition
(which depends on the collector current) as well as the transistor size (which depends on
the emitter area). Figure 1.2 shows the SPICE simulation of the temperature dependency of
the VBE of a NPN BJT with 25 μm2 emitter area and biased with IC = 6 μA. The VBE is
observed to be 0.73 V at T = 300 K, and it decreases with temperature almost linearly at a
rate of −1.73 mV/K at 300 K. Such a temperature characteristic is known as Complementary
to Absolute Temperature (CTAT), where the rate of change of VBE against temperature is
negative. When biased with different collector currents, the VBE(T ) will vary as shown in the
SPICE simulation result in Figure 1.2. To simplify our discussions in subsequent chapters, we
shall assume that the BJTs are biased appropriately (with IC = 6 μA), such that the VBE(T )
can be approximated as a linear temperature function with high accuracy (unless otherwise

Figure 1.2 VBE vs temperature of a NPN transistor with emitter
area 25 μm2 biased at IC = 3, 6, 12 μA.



Warm Up 5

specified). In particular, the linear temperature dependency approximation of the VBE for the
NPN transistor is given by

∂VBE(T )

∂T
= −1.73 mV/K. (1.8)

Similarly, the VE B(T ) of a PNP transistor has a linear temperature dependency given by

∂VE B(T )

∂T
= −1.39 mV/K. (1.9)

These two linearly approximated temperature characteristics of the VBE(T ) and VE B(T ) volt-
ages will be applied in all our discussions unless stated otherwise. In reality, the CTAT
characteristic of VBE(T ) is not a linear temperature function as depicted in Equation 1.4,
and ∂VBE(T )/∂T is a high order temperature function that will cause curvature error as will
be discussed in later chapters. Nevertheless, the VBE(T ) is the P N junction voltage, which
is a process independent parameter, and is one of the robust parameters in modern CMOS
processes that can be used to construct a stable and precise reference voltage.

1.1.1 Differential VBE

As derived in Equation 1.4, VBE(T ) is a high order function of temperature T . However, the
difference of the VBE(T ) between two BJTs biased with different current densities can be well
represented by a low order function or even as a linear function of the temperature T . Figure 1.3
illustrates a method to extract the differential VBE, �VBE1,2 , from two BJTs Q1 and Q2 with
emitter areas AE1 and AE2 , respectively (readers should note that VBE(T ) and VBE will both
be used in this book and have exactly the same meaning). Assume AE1 : AE2 = 1 : N and the

IC1 IC2

R1

Q2Q1

N1

V1 = V2

ΔVBE1,2

VBE1
VBE2

+

–

+ +

– –

Figure 1.3 Extraction of
�VBE1,2 from NPN

transistors.
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current sources will provide IC1 = IC2 . As a result, the current density JC1 of Q1 is N times
larger than the current density JC2 of Q2. This yields �VBE1,2 as

�VBE1,2 = VBE1 − VBE2 (1.10)

= VT ln

(
IC1

JS AE1

)
− VT ln

(
IC2

JS AE2

)
(1.11)

= VT ln

(
AE2

AE1

)
(1.12)

= VT ln(N ), (1.13)

where VBE1 and VBE2 are the base-emitter voltage of BJTs Q1 and Q2, respectively. It can be
observed that �VBE1,2 is proportional to VT , which is a linear function of T . If we rewrite
Equation 1.13 with respect to VT , we shall obtain

VT = �VBE1,2

ln(N )
, (1.14)

which implies the �VBE1,2 extraction circuit is actually a VT extraction circuit as well.
Note that

∂VT

∂T
=

∂ kT
q

∂T
= k

q
≈ 0.09 mV/K at 300 K. (1.15)

It can be observed from Equation 1.15 that the thermal voltage is an intrinsic linear Proportional
to Absolute Temperature (PTAT) voltage. Figure 1.4 shows the SPICE simulation result of the
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Figure 1.4 Thermal property of VT extracted from �VBE1,2 with
emitter area ratio N = 8 using the circuit shown in Figure 1.3.
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thermal property of VT extracted from �VBE1,2 using the circuit shown in Figure 1.3 with
N = 8, which demonstrates the PTAT nature of VT .

The PTAT voltage VT and the CTAT voltage VBE are commonly used as the thermal elements
to generate a temperature insensitive reference voltage. A zero Temperature Coefficient (T C)
reference voltage can be obtained by compensating the CTAT voltage VBE with a weighted
PTAT voltage VT (The temperature coefficient will be formally defined in Section 2.1.2).
The compensation obtained in the form of voltage sum can be easily implemented by the
resistor network. However, the resistance of the resistor implemented in the CMOS process is
process sensitive, thus imposing another adverse effect on the obtained reference voltage. The
derivation of the weighting factor and the methods to compensate the adverse effects from the
process variation problem will be discussed in Chapter 4.

1.2 Metal-Oxide Semiconductor Field-Effect Transistor

The metal-oxide semiconductor field-effect transistor, MOSFET, has proved extremely popular
compared to the BJT. This is because of the compact layout and simple structure of the
MOSFET. In this text, we shall mainly concentrate on the enhancement-mode MOSFET,
including both the N -channel MOSFET (NMOS) and P-channel MOSFET (PMOS), since
they are the most commonly available MOSFET devices in modern CMOS foundry services.
Other types of MOS transistors will be discussed over the course of voltage reference circuit
development in later chapters when such devices are applied. Showing in Figure 1.5 are the
symbols of the MOSFETs that we shall use in this text. Physically, the MOSFET is a four-
terminal device with a source, drain, gate, and substrate terminals. The substrate terminals of
the NMOS and PMOS transistors are usually connected to GND and VDD, respectively. We
shall use the simplified three-terminal symbols as shown in Figure 1.5 throughout the book.
The arrows beside the MOSFET symbols illustrate the direction of the current that is flowing
through the drain and source terminals. The silicon layout of an NMOS transistor is shown
in Figure 1.5(c). To understand the operation of the MOSFET device, let us consider the
physical structure of a NMOS transistor as shown in Figure 1.6, where the NMOS transistor
is fabricated directly on the P-type substrate, with N+ regions forming the drain and source
terminals, and with electrons as charge carriers. With the source terminal being grounded, and
a positive voltage applied to the gate terminal, the positive voltage at the gate terminal attracts
the negative electrons in the P-type substrate to accumulate under the gate terminal and repel
the positive holes downwards, thus inverting the substrate surface from P-type to N -type. As
a result, this layer is also known as the “inversion” layer, which connects the drain and source
regions. This layer is also known as the N -channel in the NMOS transistor. The N -channel
is completely formed when the NMOS transistor gate-to-source voltage, VGS, is greater than
its threshold voltage Vth,n , where the value of the threshold voltage is determined at device
fabrication. Once the channel is created, there will be IDS flows through the channel from the
drain to the source terminals, where mobile electrons are the majority charge carriers. As a
result, the NMOS transistor can be considered in three modes which depend on the channel
condition, and in turn depend on the voltages across different terminals of the transistors. The
details of different operation modes will be discussed in the next section. In contrast to the
NMOS transistor, the PMOS transistor is fabricated on N -type substrate (in N -well CMOS
process, the N -type substrate of a PMOS transistor is usually defined by the N -well), with P+

regions forming the drain and source terminals, and uses holes as the majority charge carriers.
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Figure 1.5 Symbols for (a) NMOS transistor and (b) PMOS transistor,
and layouts of (c) NMOS transistor and (d) PMOS transistor.

An example layout of the PMOS transistor is shown in Figure 1.5(d). The PMOS transistor
operates similarly as its NMOS transistor counterpart, except that VGS, VDS, and the threshold
voltage Vth,p are negative. Moreover, the current flowing through the channel enters from the
source terminal and leaves through the drain terminal, and thus is known as ISD .

As discussed, the threshold voltage Vth , particularly Vth,n for the NMOS transistor and
Vth,p for the PMOS transistor, is an important parameter which defines the minimum gate
voltage required to accumulate sufficient numbers of charge carriers to form the inversion
channel in the MOSFET. Showing in Figure 1.7 is the relationship of IDS and VGS of a NMOS
transistor obtained from SPICE simulation with 2 μm channel width and 1 μm channel length
at VDS = 0.1 V. It can be observed from Figure 1.7 that the positive gate voltage VGS of the
NMOS transistor must be larger than Vth,n before a conducting channel is induced. In this case,
the MOSFET is said to be biased at strong inversion. Similarly, a PMOS transistor requires a
gate voltage that is more negative than Vth,p to induce the conducting channel with holes as
charge carriers. For the process under attention in this book

Vth,n = 0.48 V, (1.16)

Vth,p = −0.47 V. (1.17)
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Figure 1.6 NMOS device structure biased in weak inversion and strong inversion.

Figure 1.7 The IDS versus VGS of a NMOS transistor with
S = W/L = 2 μm/1 μm.
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Table 1.1 Summary of channel conditions and operation modes of NMOS transistor.

Voltage Condition Channel Condition MOS Operation Mode

VGS = 0 No Inversion Cutoff

0 < VGS < Vth,n Weak Inversion Subthreshold

0 < VGS < Vth,n

VDS < 4Vth,n
Weak Inversion Triode, Linear

VGS ≥ Vth,n

VDS < VGS − Vth,n
Strong Inversion Triode, Linear

VGS ≥ Vth,n

VDS ≥ VGS − Vth,n
Strong Inversion Saturation

Note that subthreshold conduction is possible even though the current IDS is very small. In
this case the MOSFET is biased at weak inversion with 0 < VGS < Vth,n .

In addition to the inversion condition of the channel, the operation of the MOSFET is also
classified into different operation regions with respect to the VGS and VDS voltage conditions.
Table 1.1 and Table 1.2 summarize the operation modes and the corresponding channel
conditions of the NMOS transistor and PMOS transistor, respectively. As discussed, the
physical operation of the NMOS transistor and PMOS transistor are more or less the same with
the only difference being that the voltage and current polarity are reversed. To avoid confusion,
the use of notation in Table 1.1 and Table 1.2 is the same as the absolute values of the voltages
under concern for the case of the PMOS device. In the following sections, we shall discuss the
four operation modes of NMOS transistor in detail and in particular we shall emphasize its
physical operation and thermal properties which are applicable to bandgap voltage reference
circuit design. Since the PMOS transistor exhibits similar properties as that of the NMOS
transistor, the physical operation details for PMOS transistor will be skipped. However, to
complete our discussions, the relevant analytical relationship of the PMOS transistor will also
be presented. In particular, the subscript “sub”, “lin”, and “sat” will be appended to VGS and

Table 1.2 Summary of channel conditions and operation modes of PMOS transistor.

Voltage Condition Channel Condition MOS Operation Mode

VGS = 0 No Inversion Cutoff

|VGS| < |Vth,p| Weak Inversion Subthreshold

|VGS| < |Vth,p|
|VDS| < |4Vth,p| Weak Inversion Triode, Linear

|VGS| ≥ |Vth,p|
|VDS| < |VGS − Vth,p| Strong Inversion Triode, Linear

|VGS| ≥ |Vth,p|
|VDS| ≥ |VGS − Vth,p| Strong Inversion Saturation


