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Preface

This book gives an introductory treatment of the method of normal forms. This
technique has its application in many branches of engineering, physics, and ap-
plied mathematics. Approximation techniques such as these are important for peo-
ple working with dynamical problems and are a valuable tool they should have in
their tool box.

The exposition is largely by means of examples. The readers need not understand
the physical bases of the examples used to describe the techniques. However, it is
assumed that they have a knowledge of basic calculus as well as the elementary
properties of ordinary differential equations. For most of the examples, the results
obtained with the method of normal forms are shown to be equivalent to those
obtained with other perturbation methods, such as the methods of multiple scales
and averaging. As such, new sections are added treating some of the examples with
these methods. Moreover, exercises are added to most chapters.

Because the normal forms of maps and differential equations are very useful in
bifurcation analysis, I added in this edition three chapters dealing with the normal
forms and bifurcations of maps, continuous systems, and retarded systems. The
normal forms of continuous systems are constructed using the method of multi-
ple scales, a combination of center-manifold reduction and the method of normal
forms, and the new method of projection, which is developed first in this edition.
Also, the normal forms of retarded systems are constructed using center-manifold
reduction and the method of multiple scales. In the center-manifold reduction, we
represent the retarded equations as operator differential equations, decompose the
solution space of their linearized form into stable and center subspaces, define an
inner product, determine the adjoint of the operator equations, calculate the center
manifold, carry out details of the projection using the adjoint of the center sub-
space, and finally calculate the normal form on the center manifold.
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I am very much indebted to my late parents, Hasan and Khadrah, who in spite
of their lack of formal education insisted that all their sons obtain the highest de-
grees. If it were not for their incredible foresight on the value of an education even
under the most severe conditions, I would not have finished secondary school. This
book and its second edition would not have been written without the patience and
continuous encouragement of my wife, Samirah.

Blacksburg, VA, December 2010 Ali Hasan Nayfeh



1

Introduction

The method of normal forms dates back to the days of Euler, Delaunay, Poincaré,
Dulac, and Birkhoff. Moreover, the concept of using coordinate transformations to
simplify mathematical problems involving algebraic, ordinary differential, partial
differential, integral, and integro-differential equations has been used for a long
time, as illustrated by the following examples.

As a first example, we consider Bessel’s equation of order one-half; that is,

x2u00 C x u0 C �
x2 � 1

4

�
u D 0

Using the transformation x�1/2v (x ), we transform this equation into the simple
equation

v 00 C v D 0

whose solution is

v D c1 cos x C c2 sin x

where c1 and c2 are arbitrary constants. Hence, Bessel’s function of order one-half
J1/2(x ) is given by

J1/2(x ) D x�1/2 (c1 cos x C c2 sin x )

As a second example, we consider the vibrations of an n degree-of-freedom sys-
tem governed by the following set of n coupled, linear equations of motion:

Rx C K x D 0

where x is a column vector of length n and K is an n�n constant symmetric matrix.
Using the transformation x D P v , we obtain

Rv C P�1K P v D 0

Assuming the eigenvalues λ1, λ2, . . . , and λn of K to be distinct and choosing the
columns of P to be the orthonormal eigenvectors of K, we find that P�1K P is a

The Method of Normal Forms, Second Edition. Ali Hasan Nayfeh
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2011 by WILEY-VCH Verlag GmbH & Co. KGaA



2 Introduction

diagonal matrix Λ with entries λ1, λ2, . . . , λn . Hence, the system of equations can
be written as

Rv C Λv D 0

or in the decoupled form

Rvi C λ i vi D 0 and i D 1, 2, . . . , n

which is called the normal-modal form of

Rx C K x D 0

As a third example, we consider the system

Pa D �μa � 1
2 a sin 2�

a P� D � 1
2 σa � 1

2 a cos 2�

where μ and σ are constants, which describes the time variation of the amplitude
and phase of a parametrically excited linear oscillator in the case of a principal
parametric resonance (Nayfeh and Mook, 1979). This system is nonlinear and its
solution is not apparent. However, using the nonlinear transformation x D a cos �
and y D a sin �, we transform the nonlinear system into the following linear sys-
tem:

Px D �μx C 1
2 (σ � 1) y

Py D �μ y � 1
2 (σ C 1) x

whose closed-form solution is readily obtainable.
As a fourth example, we consider the nonlinear system

Px D y C (ax C b y )
�
x2 C y 2�

Py D �x C (ay � bx )
�
x2 C y 2�

where a and b are constants, which describes the motion near a Hopf bifurca-
tion point (Marsden and McCracken, 1976; Wiggins, 1990), as described in Sec-
tion 4.4.5. Again the solution of this system is not apparent. However, using the
nonlinear transformation x D r cos � and y D �r sin �, we transform the system
into

Pr D ar3

P� D 1 C br2

whose closed-form solution is readily obtainable.
As a fifth example, we consider the linear partial differential equation

u t t � c2u x x D f 0 (x � c t) f 00 (x � c t)
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where f is a known twice differential function, the prime denotes the derivative
with respect to the argument (x � c t), and subscripts denote partial derivatives.
The general solution of this equation can be readily obtained if we express the
independent variables x and t in terms of the characteristics

� D x � c t and η D x C c t

Thus, this partial differential equation is transformed into

�4c2u � η D f 0(� ) f 00(� )

whose general solution is

u D � 1
8c2 f 02(� )η C g(� ) C h(η)

where g(� ) and h(η) are general functions of � and η.
As a sixth example, we consider the nonlinear partial differential equation

u t C uu x D v u x x

where v is a constant, which is known as Burger’s equation (Whitham, 1974). Re-
placing u with ψx and integrating the result once yields

ψt C 1
2 ψ2

x D v ψx x

Then, using the nonlinear transformation ψ D �2v ln(φ), Hopf (1950) and Cole
(1951) transformed the nonlinear equation into the linear heat transfer equation

φ t D v φx x

which can be solved much more easily than the original nonlinear equation.
As a seventh example, we consider the steady, incompressible, high-Reynolds

number flow over a flat plate aligned with the oncoming uniform stream. The
boundary layer approximation to the stream function ψ(x , y ) is governed by Van
Dyke (1964)

ψy y y C ψx ψy y � ψy ψx y D 0

ψ(x , 0) D 0

ψy (x , 0) D 0 and 0 < x < 1
ψy (x , 1) D 1

This nonlinear partial differential equation can be reduced to an ordinary differen-
tial equation by using the similarity transformation

ψ(x , y ) D p
2x f (η) , η D y/

p
2x

With this transformation, the boundary layer problem becomes

f 000 C f f 00 D 0 , f (0) D 0 , f 0(0) D 0 , f 0(1) D 1

which is the Blasius problem.
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In the preceding examples, transformations were introduced to transform a dif-
ficult problem into a more readily solvable problem. Next, we consider cases in
which a transformation is used to transform the problem into a new “approximate”
problem for which the exact solution can be readily obtained. Specifically, we con-
sider the Liouville equation

y 00 C λ2q(x )y D 0 when λ � 1

where λ is a constant, q(x ) is a known function, and the prime denotes the deriva-
tive with respect to x. To determine an approximate solution of this equation when
λ � 1, we transform both of the dependent and independent variables as

z D φ(x ) and v (z) D ψ(x )y (x )

With this transformation, the Liouville equation becomes

d2v
dz2

C 1
φ02

�
φ00 � 2φ0ψ0

ψ

�
dv
dz

C
�

λ2q
φ02 � ψ00

ψφ02 C 2ψ02

ψ2φ02

�
v D 0

We choose φ and ψ so that the dominant part of the transformed equation has the
simplest possible form and, at the same time, has solutions that have qualitatively
the same behavior as the solutions of the original equations. In other words, we
have to insist on the transformation being regular everywhere in the interval of
interest. To this end, we force the coefficient of dv/dz to be zero; that is,

φ00 � 2φ0ψ0

ψ
D 0

Hence, ψ D p
φ0. In order that the transformation be regular, ψ must be regular

and have no zeros in the interval of interest. Then, because ψ D p
φ0, φ0 must be

regular and have no zeros in the interval of interest. Consequently, we set

λ2q D φ02� (z)

so that the transformed equation becomes

d2v
dz2 C � (z)v D �δv

and choose the simplest possible function � (z) that yields a nonsingular trans-
formation. In order that φ0 be regular and have no zeros in the interval of inter-
est, � (z) must have the same number, type, and order of singularities and zeros
as q.

For example, when q > 0 everywhere in the interval of interest, the solutions of
the original equation are oscillatory, and hence φ and ψ must be chosen so that
the dominant part of the transformed equation is

d2v
dz2

C v D 0
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which is the simplest possible equation with oscillatory solutions. When q < 0
everywhere in the interval of interest, one of the solutions of the original equation
grows exponentially with x and the other decays exponentially with x. Hence, φ
and ψ must be chosen so that the dominant part of the transformed equation is

d2v
dz2 � v D 0

which is the simplest possible equation with exponentially growing and decaying
solutions.

When q changes sign once in the interval of interest, the solutions of the original
equation are oscillatory on one side of the sign change and exponentially growing
and decaying on the other side. For example, if q D 1 � x3, the solutions of the
original equation are oscillatory for x < 1 and exponential for x > 1. Hence, φ
and ψ must be chosen so that the dominant part of the transformed equation has
solutions whose behavior changes from oscillatory to exponentially growing and
decaying at a given point. The simplest possible equation with these properties is
the Airy equation

d2v
dz2 � zv D 0

When z > 0 the solutions of this equation are growing and decaying with z, and
when z < 0 they are oscillatory. In other words, if q(x ) is regular and has only a
simple zero (simple turning point) such as 1 � x3, then � (z) must be chosen to be
regular and have only a simple zero. The simplest possible function that satisfies
these requirements is � (z) D z. If q(x ) is regular and has only a double zero at a
point in the interval of interest (i.e., turning point of order 2), � (z) must be chosen
to be regular and have only a double zero. The simplest possible function satisfying
these requirements is � (z) D z2. If q(x ) is regular and has only a zero of order n
(i.e., turning point of order n), � (z) must be chosen to be z n . If q(x ) has two zeros
at x D a and b, where b > 1, of order m and n, then one uses

� (z) D z m(1 � z)n

In analyzing oscillations of a weakly nonlinear system, the method of variation of
parameters is usually used to transform the equations governing these oscillations
into the standard form

Px D f (x I �) D
1X

mD0

�m

m!
f m(x )

where

f m (x) D @m f
@�m

ˇ̌̌
ˇ
�D0

Here x and f are vectors with N components. The vector x may represent, for
example, the amplitudes and phases of the system. If we denote the components
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of the vector f m by f mn, then a component xk of the vector x is said to be a rapidly
rotating phase if f 0k ¤ 0.

To analyze this standard system, we introduce a near-identity transformation

x D X (y I �) D y C � X 1(y ) C �2 X 2(y ) C � � �

from x to y such that the system is transformed into

Py D g(y I �) D
1X

nD0

�n

n!
gn(y )

where the gn contain long-period terms only. Using the generalized method of av-
eraging (Nayfeh, 1973), one determines the X n and gn by substituting the transfor-
mation into the standard system and separating the short- and long-period terms
assuming that the X n contain short-period terms only.

Alternatively, we can define the transformation x D X (y I �) as the solution of
the N differential equations

dx
d�

D W (x I �) , x (� D 0) D y

The vector W is called the generating vector. This equation generates the so-called
Lie transforms (Kamel, 1970), which are invertible because they are close to the
identity. It seems at first that we are going in circles because we are proposing to
simplify the original system of differential equations by solving a system of N dif-
ferential equations. This is not the case, because we are interested in the solution of
the original system for large t, whereas we need the solution of the transformation
for small �, which is a significant simplification.

These examples clearly show that linear and nonlinear coordinate transforma-
tions can be used to simplify linear and nonlinear problems. A powerful method for
systematically constructing these transformations is the method of normal forms.
The basic idea underlying the method of normal forms is the use of “local” co-
ordinate transformations to “simplify” the equations describing the dynamics of
the system under consideration. In other words, with the method of normal forms,
one seeks a near-identity coordinate transformation in which the dynamical system
takes the “simplest” or so-called normal form. The transformations are generated
in a neighborhood of a known solution, such as a fixed point (constant, stationary,
or equilibrium solution) or a periodic orbit (limit cycle) of a system. In this text, the
normalization is usually carried out with respect to a perturbation parameter.



7

1
SDOF Autonomous Systems

1.1
Introduction

In this chapter, we describe the method of normal forms using single-degree-
of-freedom (SDOF) autonomous systems that can be modeled by the following
second-order nonlinear ordinary differential equation:

Ru C ω2u D f (u, Pu) (1.1)

where f (u, Pu) can be developed in a power series in terms of u and Pu. In what
follows, we will refer to Pu C ω2u D 0 as the unperturbed system and (1.1) as the
perturbed system. We assume that (1.1) has an equilibrium at u D 0 and Pu D 0.
Equation 1.1 can be cast as a system of two first-order equations by letting

x1 D u and x2 D Pu (1.2)

The result is

Px1 D x2 (1.3)

Px2 D �ω2x1 C f (x1, x2) (1.4)

It is clear that the unperturbed system

Px1 D x2 and Px2 D �ω2x1

has a simple pair of purely imaginary eigenvalues ˙i ω.
The main idea underlying the method of normal forms is to introduce a near-

identify transformation

x1 D y1 C h1(y1, y2) (1.5a)

x2 D y2 C h2(y1, y2) (1.5b)

from (x1, x2) to (y1, y2) into (1.3) and (1.4) to produce the simplest possible equa-
tions (the so-called normal form). We call the transformation (1.5) near-identity

The Method of Normal Forms, Second Edition. Ali Hasan Nayfeh
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2011 by WILEY-VCH Verlag GmbH & Co. KGaA



8 1 SDOF Autonomous Systems

because x1(t) � y1(t) and x2(t) � y2(t) are small; that is, o(x1(t), x2(t)). This proce-
dure is also called normalization. To this end, we substitute (1.5) into (1.3) and (1.4)
and obtain

Py1 D y2 C h2 � @h1

@y1
Py1 � @h1

@y2
Py2 (1.6a)

Py2 D �ω2 y1 � ω2 h1 C f (y1 C h1, y2 C h2) � @h2

@y1
Py1 � @h2

@y2
Py2 (1.6b)

Then, we choose h1 and h2 such that (1.6) assume their simplest form. This task is
accomplished in steps. If one decomposes f (x1, x2) as

f (x1, x2) D
NX

nD1

f n(x1, x2) (1.7)

where f n is a polynomial of degree n in x1 and x2, then one chooses h1 and h2 to
simplify the terms resulting from the lowest-order polynomial f m(x1, x2), where
m � 2, in f (x1, x2). In the next step, one chooses a second near-identity transfor-
mation to simplify the polynomial terms of degree m C 1, and so on.

It turns out that, because the unperturbed system (1.3) and (1.4) represents an os-
cillator, the governing equations can conveniently be expressed as a single complex-
valued equation. To this end, we follow steps similar to those used in the method
of variation of parameters (Nayfeh, 1981). When f � 0, the solution of (1.1) can
be expressed as

u D B ei ω t C NB e�i ω t (1.8)

where B is a constant and NB is the complex conjugate of B. Hence,

Pu D i ω
�
B ei ω t � NBe�i ω t� (1.9)

When f ¤ 0, we continue to represent the solution of (1.1) as in (1.8) subject to
the constraint (1.9) but with time-varying rather than constant B. Next, we replace
B ei ω t with 
 (t) and rewrite (1.8) and (1.9) as

u D 
 (t) C N
 (t) and Pu D i ω
�

 (t) � N
 (t)

�
(1.10)

Hence, solving for 
 and N
 , we obtain


 D 1
2

�
u � i

ω
Pu
�

and N
 D 1
2

�
u C i

ω
Pu
�

(1.11)

Differentiating (1.11) with respect to t yields

P
 D 1
2

�
Pu � i

ω
Ru
�

D 1
2

�
Pu C i ωu � i

ω
f
�

(1.12)

on account of (1.1). Hence,

P
 D 1
2

i ω
�

u � i
ω

Pu
�

� i
2ω

f (u, Pu) (1.13)
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which, upon using (1.10), becomes

P
 D i ω
 � i
2ω

f
�

 C N
 , i ω

�

 � N
�� (1.14)

Next, we consider different polynomial forms for f.

1.2
Duffing Equation

The Duffing equation is

Ru C ω2u D αu3

so that, in this case, f D αu3 and (1.14) becomes

P
 D i ω
 � i α
2ω

�

 C N
�3

(1.15)

We introduce a near-identity transformation from 
 to η in the form


 D η C h (η, Nη) (1.16)

and obtain

Pη D i ωη C i ωh � @h
@η

Pη � @h
@ Nη

PNη � i α
2ω

�
η C h C Nη C Nh

	3
(1.17)

Because the nonlinearity is cubic, we assume that h is third order in η and Nη; that
is,

h D Λ1η3 C Λ2η2 Nη C Λ3η Nη2 C Λ4 Nη3 (1.18)

and choose the Λ i so that (1.17) takes the simplest possible (normal) form.
In the first step, we eliminate Pη and PNη from the right-hand side of (1.17). This

task is accomplished by iteration. To the first approximation, it follows from (1.17)
that

Pη D i ωη and PNη D �i ω Nη (1.19)

Next, we replace Pη and PNη on the right-hand side of (1.17) using (1.19), use (1.18),
keep up to third-order terms, and obtain

Pη D i ωη � i ω
�

2Λ1 C α
2ω2

�
η3 � 3i α

2ω
η2 Nη C i ω

�
2Λ3 � 3α

2ω2

�
η Nη2

C i ω
�

4Λ4 � α
2ω2

�
Nη3 (1.20)
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Next, we choose Λ1, Λ3, and Λ4 to eliminate the terms involving η3, η Nη2, and Nη3;
that is,

Λ1 D � α
4ω2 , Λ3 D 3α

4ω2 , Λ4 D α
8ω2 (1.21)

However, because Λ2 does not appear in (1.20), the term involving η2 Nη cannot be
eliminated; it is called a resonance term. Consequently, to the second approximation,
the simplest possible form for Pη is

Pη D i ωη � 3i α
2ω

η2 Nη (1.22)

To show that η2 Nη is a resonance term, we find a solution for (1.22) by iteration.
To the first approximation, η D Aei ω t, where A is a constant. Then, (1.22) becomes

Pη D i ωη � 3i α
2ω

A2 NAei ω t

whose solution can be written as

η D Aei ω t � 3α
2ω

A2 NAtei ω t (1.23a)

It is clear that this expansion, which is also a straightforward expansion, is nonuni-
form for large t because of the presence of a secular term created by η2 Nη. Alter-
natively, we can demonstrate that the term 
2 N
 is a resonance term in the original
equation (1.15). To the first approximation, we neglect the nonlinear term in (1.15)
and find that 
 D Aei ω t. Then, to the second approximation, (1.15) becomes

P
 D i ω
 � i α
2ω

�
A3e3i ω t C 3A2 NAei ω t C 3A NA2e�i ω t C NA3e�3i ω t�

whose solution can be written as


 D Aei ω t � α
4ω2

A3e3i ω t � 3i α
2ω

A2 NAtei ω t C 3α
4ω2

A NA2e�i ω t

C α
8ω2

NA3e�3i ω t (1.23b)

It is clear that this expansion is nonuniform because of the presence of a secular
term created by 
2 N
 . The other three terms proportional to A3e3i ω t , A NA2e�i ω t , and
NA3e�3i ω t created by 
3, 
 N
2, and N
3 do not produce secular terms and hence they

are nonresonance. Consequently, one can choose a near-identity transformation to
eliminate them.

As a second alternative, starting with the original equation (1.15), we break the
nonlinear part f (
 , N
 ) into two parts as

f (
 , N
 ) D f1(
 , N
 ) C f2(
 , N
 )

where

e�i ω t f1
�
e i ω t , e�i ω t�
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is time invariant, whereas

e�i ω t f2
�
e i ω t, e�i ω t�

is not time invariant. In the present case,

f D �

 C N
�3

, f1 D 3
2 N
 , f2 D 
3 C 3
 N
2 C N
3

Thus,

e�i ω t f1
�
e i ω t, e�i ω t� D e�i ω t �3e2 i ω t e�i ω t� D 3

which is time invariant, whereas

e�i ω t f2
�
e i ω t, e�i ω t� D e2 i ω t C 3e�2 i ω t C e�4 i ω t

which does not contain any time-invariant terms.
Substituting (1.16) and (1.18) into (1.10), using (1.21), and setting Λ2 D 0 be-

cause it is arbitrary yields

u D η C Nη � α
8ω2

�
η3 C Nη3�C 3α

4ω2

�
η Nη2 C η2 Nη� (1.24)

where η is given by (1.22). Next, we separate the fast from the slow variations in η
by introducing the transformation

η D A(t)e i ω t

where ω is the natural frequency of the system and A is a function of time, into
(1.22) and (1.24) and obtain

PA D � 3i α
2ω

A2 NA (1.25)

u D Aei ω t C NAe�i ω t � α
8ω2

�
A3e3i ω t C NA3e�3i ω t�

C 3α
4ω2

�
A2 NAei ω t C NA2Ae�i ω t�C � � � (1.26)

Expressing A in the polar form

A D 1
2 aei � (1.27)

where a and � are functions of t, we rewrite (1.26) as

u D
�

a C 3α
16ω2 a3

�
cos(ω t C �) � αa3

32ω2 cos(3ω t C 3�) C � � � (1.28)

Substituting (1.27) into (1.25) and separating real and imaginary parts, we have

Pa D 0 (1.29)

a P� D � 3α
8ω

a3 (1.30)
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In determining the normal form (1.22), we had to use an ordering scheme to
indicate the relative magnitudes of the different terms in (1.15). We based the or-
dering scheme on the fact that 
 and N
 are small and hence 
3, 
2 N
 , 
 N
2, and N
3

are much smaller than 
 and N
 . In other words, we based the ordering scheme on
the degree of the terms. This worked well in this example, but there are many phys-
ical systems where the ordering does not follow from the degree of the polynomial
but from the presence of certain parameters in their models. We consider such an
example in the next section.

Next, we treat (1.15) by using the method of multiple scales. To this end, we
introduce a small nondimensional parameter � as a bookkeeping device and rewrite
(1.15) as

P
 D i ω
 � i�α
2ω

�

 C N
�3 (1.31)

Then, we seek an approximate solution of (1.31) in the form


 (tI �) D 
0 (T0, T1) C �
1 (T0, T1) C � � � (1.32)

where Tn D �n t and

d
d t

D @

@T0
C �

@

@T1
C � � � D D0 C �D1 C � � � (1.33)

Substituting (1.32) and (1.33) into (1.31) and equating coefficients of like powers of
� yields

Order (�0)

D0
0 � i ω
0 D 0 (1.34)

Order (�)

D0
1 � i ω
1 D �D1
0 � i α
2ω

�

0 C N
0

�3 (1.35)

The solution of (1.34) can be expressed as


0 D A(T1)e i ωT0 (1.36)

Then, (1.35) becomes

D0
1 � i ω
1 D �A0e i ωT0 � i α
2ω

�
A3e3i ωT0 C 3A2 NAei ωT0

C 3A NA2e�i ωT0 C NA3e�3i ωT0
�

(1.37)

Eliminating the terms that lead to secular terms from (1.37), we have

A0 D � 3i α
2ω

A2 NA (1.38)



1.3 Rayleigh Equation 13

Then, a particular solution of (1.37) can be expressed as


1 D � α
4ω2 A3e3i ωT0 C 3α

4ω2 A NA2e�i ωT0 C α
8ω2

NA3e�3i ωT0 (1.39)

Substituting (1.36) and (1.39) into (1.10), we obtain

u D Aei ω t C NAe�i ω t � �α
8ω2

�
A3e3i ω t C NA3e�3i ω t�

C 3�α
4ω2

�
A2 NAei ω t C A NA2e�i ω t�C � � � (1.40)

Equations 1.38–1.40 are in full agreement with (1.25) and (1.26) obtained with the
method of normal forms because T1 D � t and � can be set equal to unity.

1.3
Rayleigh Equation

The Rayleigh equation is

Ru C ω2u D �
� Pu � 1

3 Pu3� (1.41)

where � is a small, positive nondimensional parameter. Here

f D �
� Pu � 1

3 Pu3�
and (1.14) becomes

P
 D i ω
 C 1
2 �
h


 � N
 C 1
3 ω2 �
 � N
�3

i
(1.42)

In this example, the ordering is not based on the degree of the polynomial, but
on the small nondimensional parameter �. Normalization is carried out in terms
of the small parameter �. In fact, the perturbation contains linear as well as cubic
terms.

Using the transformation (1.16), we rewrite (1.42) as

Pη D i ωη C i ωh � @h
@η

Pη � @h
@ Nη

PNη C 1
2

�



η � Nη C h � Nh

C1
3

ω2
�

η � Nη C h � Nh
	3
�

(1.43)

Because the perturbation in (1.43) involves linear and cubic terms, we express h in
the form

h D �
�
Δ1η C Δ2 Nη C Λ1η3 C Λ2η2 Nη C Λ3η Nη2 C Λ4 Nη3� (1.44)

Moreover, to the first approximation, Pη and PNη are given by (1.19). Then, substituting
(1.19) and (1.44) into the right-hand side of (1.43) and keeping terms up to O(�),
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we obtain

Pη D i ωη C 2 i�ω
�

Δ2 C i
4ω

�
Nη C 1

2
�η � i�ω

�
2Λ1 C 1

6
i ω
�

η3

� 1
2

�ω2η2 Nη C i�ω
�

2Λ3 � 1
2

i ω
�

η Nη2 C i�ω
�

4Λ4 C 1
6

i ω
�

Nη3

(1.45)

We note that (1.45) is independent of Δ1 and Λ2 and hence they are arbitrary.
Moreover, the terms proportional to �η and �η2 Nη are resonance terms and hence
cannot be eliminated from (1.45). Next, we choose Δ2, Λ1, Λ3, and Λ4 to eliminate
the terms involving Nη, η3, η Nη2, and Nη3, thereby producing the simplest possible
equation for η. Thus, we have

Δ2 D � i
4ω

, Λ1 D � 1
12

i ω , Λ3 D 1
4

i ω , Λ4 D � 1
24

i ω (1.46)

With this choice, (1.45) takes the normal form

Pη D i ωη C 1
2 �η � 1

2 �ω2η2 Nη (1.47)

Again, in this case, we could have identified the resonance terms in (1.42) by one
of the procedures described in Section 1.2. Because the solution of the unperturbed
problem is proportional to e i ω t, the resonance terms in

f (
 , N
 ) D 
 � N
 C 1
3 ω2(
 � N
 )3

are the terms proportional to e i ω t or the time-invariant terms in

e�i ω t f
�
e i ω t � e�i ω t , i ω

�
e i ω t � e�i ω t��

A simple calculation shows that the term 1/2�(
 � ω2
2 N
 ) is the only resonance
term. Hence, keeping only the resonance terms in (1.42), we have

P
 D i ω
 C 1
2 �
�

 � ω2
2 N
�C � � �

which is formally equivalent to (1.47).
Next, we treat (1.42) with the method of multiple scales. To this end, we substitute

(1.32) and (1.33) into (1.42), equate coefficients of equal powers of �, and obtain

Order (�0)

D0
0 � i ω
0 D 0 (1.48)

Order (�)

D0
1 � i ω
1 D �D1
0 C 1
2

h

0 � N
0 C 1

3 ω2 �
0 � N
0
�3
i

(1.49)
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The solution of (1.48) can be expressed as


0 D A(T1)e i ωT0 (1.50)

Then, (1.49) becomes

D0
1 � i ω
1 D �A0e i ωT0 C 1
2 Aei ωT0 � 1

2
NAe�i ωT0 C 1

6 ω2A3e3i ωT0

� 1
2 ω2A2 NAei ωT0 C 1

2 ω2A NA2e�i ωT0 � 1
6 ω2 NA3e�3i ωT0

(1.51)

Eliminating the terms that lead to secular terms from (1.51), we have

A0 D 1
2 A � 1

2 ω2A2 NA (1.52)

Letting η D Aei ω t in (1.47), we obtain (1.52) because T1 D � t.

1.4
Duffing–Rayleigh–van der Pol Equation

The Duffing, Rayleigh, and van der Pol equations are special cases of

Ru C ω2u D �
�
μ Pu C α1u3 C α2u2 Pu C α3u Pu2 C α4 Pu3� (1.53)

so that

f D �
�
μ Pu C α1u3 C α2u2 Pu C α3u Pu2 C α4 Pu3�

and (1.14) becomes

P
 D i ω
 � i�
2ω

h
i μω

�

 � N
�C α1

�

 C N
�3 C i ωα2

�

 C N
�2 �


 � N
�
�ω2α3

�

 C N
� �
 � N
�2 � i ω3α4

�

 � N
�3

i
(1.54)

Using the transformation (1.16), where h D O(�), we rewrite (1.54) as

Pη D i ωη C i ωh � @h
@η

Pη � @h
@ Nη

PNη

� i�
2ω

�
i μω (η � Nη) C i ωα2 (η C Nη)2 (η � Nη)

Cα1 (η C Nη)3 � ω2α3 (η C Nη) (η � Nη)2 � i ω3α4 (η � Nη)3� (1.55)

where terms of O(�2) and higher have been neglected.
Again, because the perturbation contains linear as well as third-order terms, h

has the form (1.44). Moreover, to the first approximation, Pη and PNη are given by
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(1.19). Hence, substituting (1.19) and (1.44) into (1.55) yields

Pη D i ωη C 2 i�ω
�

Δ2 C i μ
4ω

�
Nη

� i�
2ω

�
3α1 C i ωα2 C ω2α3 C 3i ω3α4

�
η2 Nη

C 1
2

�μη C i�ω


�2Λ1 � 1

2ω2

�
α1 C i ωα2 � ω2α3 � i ω3α4

��
η3

C i�ω



2Λ3 � 1
2ω2

�
3α1 � i ωα2 C ω2α3 � 3i ω3α4

��
η Nη2

C i�ω



4Λ4 � 1
2ω2

�
α1 � i ωα2 � ω2α3 C i ω3α4

�� Nη3 (1.56)

We note that Δ1 and Λ2 do not appear in (1.56) and hence they are arbitrary and
the terms η and η2 Nη are resonance terms. To produce the simplest form for (1.56),
we choose Δ2, Λ1, Λ3, and Λ4 to eliminate the terms involving Nη, η3, η Nη2, and Nη3;
that is,

Δ2 D � i μ
4ω

(1.57)

Λ1 D � 1
4ω2

�
α1 C i ωα2 � ω2α3 � i ω3α4

�
(1.58)

Λ3 D 1
4ω2

�
3α1 � i ωα2 C ω2α3 � 3i ω3α4

�
(1.59)

Λ4 D 1
8ω2

�
α1 � i ωα2 � ω2α3 C i ω3α4

�
(1.60)

With these choices, (1.56) assumes the simple form

Pη D i ωη C 1
2

�μη � i�
2ω

�
3α1 C i ωα2 C ω2α3 C 3i ω3α4

�
η2 Nη (1.61)

Again, we did not have to go through the lengthy algebra to arrive at the normal
form (1.61). Because the solution of the unperturbed problem (1.54) is proportional
to e i ω t , we could have replaced 
 with e i ω t in the perturbation and identified the
terms proportional to e i ω t. In this case, they are

1
2

�μ
 � i�
2ω

�
3α1 C i ωα2 C ω2 α3 C 3i ω3α4

�

2 N


Hence, keeping only the resonance terms in (1.54), we obtain the normal form

P
 D i ω
 C 1
2

�μ
 � i�
2ω

�
3α1 C i ωα2 C ω2α3 C 3i ω3α4

�

2 N


which is formally equivalent to (1.61).


