Lecture Notes in Electrical Engineering 93

Andrea Cataldo Egidio De Benedetto Giuseppe Cannazza

Broadband Reflectometry for Enhanced Diagnostics and Monitoring Applications

Volume 93

Andrea Cataldo, Egidio De Benedetto, and Giuseppe Cannazza

Broadband Reflectometry for Enhanced Diagnostics and Monitoring Applications

Ing. Andrea Cataldo University of Salento Dept. Innovation Engineering Via Monteroni 73100 Lecce Italy Ph.: 0039-0832-297823 Fax: 0039-0832-1830127 E-mail: andrea.cataldo@unisalento.it Dr. Giuseppe Cannazza University of Salento Dept. Innovation Engineering Via Monteroni 73100 Lecce Italy E-mail: giuseppe.cannazza@unisalento.it

Ing. Egidio De Benedetto University of Salento Dept. Innovation Engineering Via Monteroni 73100 Lecce Italy E-mail: egidio.debenedetto@unisalento.it

e-ISBN 978-3-642-20233-9

DOI 10.1007/978-3-642-20233-9

ISBN 978-3-642-20232-2

Lecture Notes in Electrical Engineering ISSN 1876-1100

Library of Congress Control Number: 2011925494

© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typeset & Coverdesign: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

987654321

springer.com

To Davide, Federico and Francesca: the ones who motivate me every single day Andrea

To my mother Egidio

Foreword

One of the advantages of microwave techniques for diagnostics and monitoring applications is that microwave signals penetrate within dielectric structures and they are sensitive to the presence of interior flaws and interfaces. Broadband microwave techniques provide additional information either through incorporating finite range resolution or multi-frequency material characterization.

Microwave reflectometry is commonly implemented in a one-sided manner, which in turn makes it more attractive from practical point-of-view. The interest in broadband microwave reflectometry for materials diagnostics and for monitoring physical parameters of materials covers a broad realm of applications including: civil engineering and infrastructure, agriculture and medicine. Broadband microwave reflectometry is an area of engineering and science from which many publications have resulted over the years.

The authors of this monograph have expertly brought together information from many of such papers and by many investigators as well as their own. Of course, this monograph does not reflect all works in this field, nor does it answer all questions with respect to diagnosis and monitoring applications. However, it serves as an excellent summary of important broadband reflectometry approaches including the time domain reflectometry (TDR), the frequency domain reflectometry (FDR) and the TDR/FDR combined approaches. It is also important that their specific applications for the characterization of liquid materials, for monitoring of water content and for antenna measurements are considered in detail.

They include simultaneous measurement of the levels and the dielectric characteristics of liquid materials in layered media with consideration of measurement accuracy improvement using appropriate probe design, custommade fixtures for calibration and a targeted optimization routine. through TDR/FDR combined approach. Though these methods and techniques are developed for soil measurements, they can also be applied for varieties of materials. I believe this monograph will be useful to scientists, researchers and prac-

I believe this monograph will be useful to scientists, researchers and practitioners as well as students for future comprehensive studies, investigations and applications.

Rolla (MO), February 2011 Prof. Sergey Kharkovsky Missouri University of Science and Technology Rolla (MO)

Preface

Monitoring and diagnostics are essential in many application fields: for the industry, for laboratory applications, as well as for countless other areas. Therefore, over the years, considerable research effort has been devoted to explore innovative technologies and methods that could guarantee increasingly reliable and accurate monitoring solutions. In this regard, electromagnetic methods have attracted great interest, also thanks to their vast potential for nondestructive testing. In particular, broadband microwave reflectometry (BMR) has established as a powerful tool for monitoring purposes; in fact, this technique can balance several contrasting requirements, such as the versatility of the system, low implementation cost, real-time response, possibility of remote control, reliability, and adequate measurement accuracy.

On such bases, the central topic of this book is the investigation of innovative BMR-based methods for monitoring applications. More specifically, throughout the book, the different approaches of this technique will be considered (i.e., time domain reflectometry - TDR, frequency domain reflectometry - FDR, and the TDR/FDR combined approach) and several applications will be thoroughly investigated. For each considered application, particular attention will be focused on innovative strategies and procedures that can be adopted to enhance the overall measurement accuracy. There are many application areas where TDR and FDR (or the combination of the two) have proved useful and promising. Therefore, it comes as no surprise that the applications considered herein are very diverse from each other and cover different fields. The present book is structured as follows.

In Chapt. , a brief overview of the contexts in which monitoring has assumed a paramount importance is given.

Chapt. 2 introduces the theoretical principles that are at the basis of BMR, and describes the parameters of interest in this technique. Furthermore, this chapter introduces to dielectric spectroscopy, which is one of the pivotal applications of BMR (in fact, as well known, many of the applications of BMR often descend from dielectric spectroscopy measurements).

In Chapt. [3] the TDR, FDR, and TDR/FDR combined approaches are thoroughly discussed, and the related advantages and shortcomings are addressed. In particular, some effective strategies for enhancing the accuracy of BMR measurements; all these strategies basically aim at compensating for the effect of systematic errors.

Chapt. I presents some innovative BMR-based solutions for the simultaneous monitoring of qualitative and quantitative characteristics of liquids. This is quite a broad application area, and the investigated applications cover diverse sectors: from the monitoring of stratified liquids (particularly useful for the industry of petrochemicals) to the analysis on edible liquids (useful, for example, for anti-adulteration control on vegetable oils).

Chapt. S is focused on the qualitative analysis of granular materials and on moisture measurements. This last application, which is particularly useful in soil science and agriculture, can be extended also to different areas. In fact, the qualitative status in the production of agrofoods, in the production of inert materials, and in the fertilizer industry (just to name a few of the investigated application fields) is strongly related to the amount of water content of these materials.

Finally, Chapt. **6** deals with the characterization of antennas through BMR. In particular, some useful guidelines for antenna characterization are presented. More specifically, the proposed procedures can help obtaining a higher measurement accuracy even when measurements are not performed in dedicated facilities (i.e., anechoic chambers).

In all the described procedures and methods, the ultimate goal is to endow them with a significant performance enhancement in terms of measurement accuracy, low cost, versatility, and practical implementation possibility, so as to unlock the strong potential of BMR.

Lecce (Italy), February 2011 Andrea Cataldo Egidio De Benedetto Giuseppe Cannazza

Acknowledgements

With great pleasure we express our deepest gratitude to all the people that have contributed, either directly or indirectly, to the completion of this book.

First and former, we thank Dr. Emanuele Piuzzi (Sapienza University, Rome, Italy): without his continuous support and considerable scientific contribution, this book would have not seen the light of the day.

We would also like to thank Prof. Mario Savino, Prof. Amerigo Trotta, and Prof. Filippo Attivissimo (Polytechnic of Bari, Bari, Italy), for their invaluable guidance. Their wisdom and farsightedness have been more than helpful throughout the years. A big thank you also to all the people of the *Electric and Electronic Measurements Group* of the Polytechnic of Bari for the constant exchange of ideas and the fruitful collaborations.

We deeply thank Prof. Luciano Tarricone, Dr. Luca Catarinucci, and Dr. Giuseppina Monti (*Electromagnetic Field Group*, University of Salento, Lecce, Italy) for constantly providing sensible advice; we hold them in high regard and we deeply thank them for their insightful suggestions.

We also thank Dr. Antonio Masciullo for his contribution in transforming many of the experiments from ambitious ideas into reality.

Furthermore, we would like to acknowledge the huge help provided by Dr. Agoston Agoston (Hyperlabs Inc., Beaverton, OR), who has been tireless and always available for providing constructive advice.

Finally, we also thank Prof. Sergey Kharkovsky (Missouri University of Science and Technology, Rolla, MO) for reading the manuscript and for giving us the privilege to host his foreword.

Contents

1	Int	roduction	1
	1.1	The Concept Behind This Book	1
	1.2	Survey of Typical Applications of BMR	3
		1.2.1 Electrical Components Characterization:	
		Testing and Localization of Faults	3
		1.2.2 Measurements on Soil for Agricultural and	
		Geotechnical Purposes	4
		1.2.3 Civil Engineering and Infrastructural Monitoring	4
		1.2.4 Dielectric Spectroscopy Measurements	5
		1.2.5 Applications in Industrial Monitoring	5
	1.3	Organization and Content of the Book	5
	Refe	erences	7
2	Bas	sic Physical Principles	11
-	2.1	Transmission Line Basics	11
		2.1.1 Coaxial Transmission Line	12
		2.1.2 Bifilar Transmission Line	14
		2.1.3 Microstrip Line	14
	2.2	Reflected Waves	15
	2.3	Characteristic Parameters of Electrical Networks	16
	2.4	Reflectometry Measurements for Dielectric Spectroscopy	19
		2.4.1 Dielectric Relaxation Models	20
	Refe	erences	23
3	Bro	adband Reflectometry: Theoretical Background	25
0	3.1	Broadband Microwave Reflectometry: Theoretical	20
	0.1	Background	25
	3.2	Time Domain Reflectometry (TDR)	26 26
	0.2	3.2.1 Typical TDR Measurements	20 29
		J Prost i Die filosoficities	-0

 3.3 Frequency Domain Reflectometry (FDR) 3.4 TD/FD Combined Approach 3.4.1 Preserving Measurement Accuracy in the TDR/FDR Transformation 	. 35 . 36	
3.4.1 Preserving Measurement Accuracy in the	. 36	
TDR/FDR Transformation		
	. 37	
3.5 The Sensing Element		
3.6 Strategies for Enhancing Accuracy in BMR		
Measurements		
3.6.1 Calibration Procedure in Time Domain		
3.6.2 Calibration Procedure in Frequency Domain		
3.6.3 Time-gated Frequency Domain Approach		
3.6.4 Transmission Line Modeling and Inverse Modeling		
References	. 47	
4 Quantitative and Qualitative Characterization of		
Liquid Materials		
4.1 Introduction	. 51	
4.2 Estimation of Levels and Permittivities of Industrial		
Liquids Directly from TDR		
4.2.1 Probe Design and Realization	. 54	
4.2.2 Sources of Errors and Compensation Strategies	2.0	
in TD		
4.2.3 Validation of the Method on Dielectric Liquids	. 58	
4.3 Estimation of Levels and Permittivities of Industrial	00	
Liquids Using the TD/FD Approach	. 60	
4.3.1 Transmission Line Modeling of the Measurement	. 61	
Cell		
4.3.3 Experimental Validation of the Method4.4 Dielectric Spectroscopy of Edible Liquids: The Vegetable	. 04	
0 Oils Case-Study	. 71	
4.4.1 Design of the Measurement Cell and Transmission	. 11	
Line Modeling	. 72	
4.4.2 Experimental Results for Vegetable Oils		
References		
5 Qualitative Characterization of Granular Materials and Moisture Measurements	. 85	
5.1 Introduction		
5.2 Dielectric Models for the Estimation of Water Content		
5.3.1 Details on the Experimental Procedure		
5.3.2 Uncertainty Evaluation for Apparent Dielectric	. 50	
Permittivity Measurement and Individuation of the		
Calibration Curves	. 91	

6

5.3.3 Measurement Results and Instrumental						
Performance Comparison	93					
5.4 Moisture Content Measurements through TD/FD						
Combined Approach and TL Modeling	97					
5.4.1 Moisture Content Measurements through Dielectric						
Mixing Model						
5.4.2 Triple-Short Calibration Procedure	98					
5.5 Enhancements of TDR-Based Static Electrical						
Conductivity Measurement	107					
5.5.1 Traditional TDR-Based Static Electrical						
Conductivity Measurement	108					
5.5.2 Innovative Calibration Strategies: The TLM and						
the ICM Methods	110					
5.5.3 Validation of the Methods	115					
5.5.4 Practical Considerations	119					
5.6 Noninvasive Moisture Content Measurements	119					
5.6.1 Basic Theory of Microstrip Antennas	120					
5.6.2 Experimental Validation of the Method:						
Measurements on Moistened Sand Samples	122					
References	128					
BMR Characterization of Antennas through the						
Combined TD/FD Approach	133					
6.1 Introduction	133					
6.2 Measurement Setup for the Validation of the Method	134					
6.3 Acquisition in Time Domain	135					
6.4 RFId Antenna Results	137					
6.4.1 Practical Guidelines for Retrieving Accurate						
Measurements	138					
6.5 Biconical Antenna Results	145					
References 14						

Acronyms

AC	alternate current
AUT	antenna under test
BMR	broadband microwave reflectometry
DC	direct current
EM	electromagnetic
FD	frequency domain
FDC	frequency domain calibration
FFT	fast Fourier transform
FTIR	Fourier transform infrared
FDR	frequency domain reflectometry
GBNM	globalized bounded Nelder-Mead
ICM	independent capacitance measurement
IF	intermediate frequency
IFFT	inverse fast Fourier transform
LO	local oscillator
LUT	liquid under test
MUT	material under test
NMR	nuclear magnetic resonance
PCA	principal component analysis
\mathbf{RF}	radio frequency
RFID	radio frequency identification
rmse	root mean square error
SMA	sub-miniature A
SNR	signal to noise ratio
SOL	short open load
SUT	system under test
TD	time domain

TDR	time domain reflectometry
TEM	transverse electromagnetic
TL	transmission line
TLM	transmission line method
TM	transverse magnetic
TSC	triple-short calibration
VNA	vector network analyzer
VSWR	voltage standing wave ratio

Chapter 1 Introduction

'Common sense is the collection of prejudices acquired by age eighteen'. Albert Einstein

Abstract. This chapter introduces to broadband microwave reflectometry (BMR), which is the expression used in this book to indicate an electromagnetic technique used for monitoring and diagnostics purposes. The adjective *broadband* emphasizes the fact that the analysis can be carried out over a wide frequency range. A brief survey of the typical applications of BMR is also provided.

1.1 The Concept Behind This Book

Under the term monitoring, the Cambridge dictionary states the following definition

to watch and check a situation carefully for a period of time in order to discover something about it.

Similarly, the word diagnosis indicates

a judgment about what a particular illness or problem is, made after examining it.

Such broad, and yet unambiguous definitions seem to emphasize the urgency associated with the terms themselves [1]]. As a matter of fact, now more than ever, 'keeping the situation under control', for cognitive or predictive purposes, is a transversal need in a number of interdisciplinary sectors, especially in industrial, environmental, civil, and agricultural areas. As a direct consequence, strict regulations have been enforced and guidelines have been issued that dictate specific standards (either qualitative or quantitative) that should be complied with, in order to ensure the suitability of the 'product' or of the 'process'. In this scenario, monitoring and diagnosis procedures are used for the optimization of process and for triggering possible corrective actions, or for checking the compliance of the product with pre-established quality standards.

In general, a monitoring program gathers data for several purposes, such as

- to draw comparisons against standard or target *status*;
- to make comparisons between different conditions or to conduct analyses;