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Preface to the second edition

The meltdown of financial assets in the fall of 2008 made the consequences of
financial crisis clearly visible to the broad public. The rapid loss of value of asset
backed securities, collateralized debt obligations and other structured products
was caused by devaluation of complex financial products. We therefore found
it important to revise our book and present up-to-date research in financial
statistics and econometrics.

We have dropped several chapters, thoroughly revised other and added a lot of
new material. In the Finance part, the revised chapter on stable laws (Chap-
ter 1) seamlessly guides the Reader not only through the computationally in-
tensive techniques for stable distributions, but also for tempered stable and
generalized hyperbolic laws. This introductory chapter is now complemented
by a new text on Expected Shortfall with fat-tailed and mixture distributions
(Chapter 2). The book then continues with a new chapter on adaptive het-
eroscedastic time series modeling (Chapter 3), which smoothly introduces the
Reader to Chapter 4 on stochastic volatility modeling with the Heston model.
The quantitative analysis of new products like weather derivatives and variance
swaps is conducted in two new chapters (5 and 6, respectively). Finally, two
different powerful classification techniques - learning machines for bankruptcy
forecasting and the distance matrix method for market structure analysis - are
discussed in the following two chapters (7 and 8, respectively).

In the Insurance part, two classical chapters on building loss models (Chapter
9) and on ruin probabilities (Chapter 10) are followed by a new text on property
and casualty insurance with GLMs (Chapter 11). We then turn to products
linking the finance and insurance worlds. Pricing of catastrophe bonds is dis-
cussed in Chapter 12 and a new chapter introduces into the pricing and cost
structures of equity linked retirement plans (Chapter 13).
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The majority of chapters have quantlet codes in Matlab or R. These quantlets
may be downloaded from the Springer.com page or from www.quantlet.de.
Finally, we would like to thank Barbara Choros, Richard Song, and Weining
Wang for their help in the text management.

Pavel Čı́žek, Wolfgang Karl Härdle, and Rafa�l Weron

Tilburg, Berlin, and Wroclaw, January 2011

http://www.quantlet.de


Preface

This book is designed for students, researchers and practitioners who want to
be introduced to modern statistical tools applied in finance and insurance. It
is the result of a joint effort of the Center for Economic Research (CentER),
Center for Applied Statistics and Economics (C.A.S.E.) and Hugo Steinhaus
Center for Stochastic Methods (HSC). All three institutions brought in their
specific profiles and created with this book a wide-angle view on and solutions
to up-to-date practical problems.

The text is comprehensible for a graduate student in financial engineering as
well as for an inexperienced newcomer to quantitative finance and insurance
who wants to get a grip on advanced statistical tools applied in these fields. An
experienced reader with a bright knowledge of financial and actuarial mathe-
matics will probably skip some sections but will hopefully enjoy the various
computational tools. Finally, a practitioner might be familiar with some of
the methods. However, the statistical techniques related to modern financial
products, like MBS or CAT bonds, will certainly attract him.

“Statistical Tools for Finance and Insurance” consists naturally of two main
parts. Each part contains chapters with high focus on practical applications.
The book starts with an introduction to stable distributions, which are the stan-
dard model for heavy tailed phenomena. Their numerical implementation is
thoroughly discussed and applications to finance are given. The second chapter
presents the ideas of extreme value and copula analysis as applied to multivari-
ate financial data. This topic is extended in the subsequent chapter which
deals with tail dependence, a concept describing the limiting proportion that
one margin exceeds a certain threshold given that the other margin has already
exceeded that threshold. The fourth chapter reviews the market in catastro-
phe insurance risk, which emerged in order to facilitate the direct transfer of
reinsurance risk associated with natural catastrophes from corporations, insur-
ers, and reinsurers to capital market investors. The next contribution employs
functional data analysis for the estimation of smooth implied volatility sur-
faces. These surfaces are a result of using an oversimplified market benchmark
model – the Black-Scholes formula – to real data. An attractive approach to
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overcome this problem is discussed in chapter six, where implied trinomial trees
are applied to modeling implied volatilities and the corresponding state-price
densities. An alternative route to tackling the implied volatility smile has led
researchers to develop stochastic volatility models. The relative simplicity and
the direct link of model parameters to the market makes Heston’s model very
attractive to front office users. Its application to FX option markets is cov-
ered in chapter seven. The following chapter shows how the computational
complexity of stochastic volatility models can be overcome with the help of
the Fast Fourier Transform. In chapter nine the valuation of Mortgage Backed
Securities is discussed. The optimal prepayment policy is obtained via optimal
stopping techniques. It is followed by a very innovative topic of predicting cor-
porate bankruptcy with Support Vector Machines. Chapter eleven presents a
novel approach to money-demand modeling using fuzzy clustering techniques.
The first part of the book closes with productivity analysis for cost and fron-
tier estimation. The nonparametric Data Envelopment Analysis is applied to
efficiency issues of insurance agencies.

The insurance part of the book starts with a chapter on loss distributions. The
basic models for claim severities are introduced and their statistical properties
are thoroughly explained. In chapter fourteen, the methods of simulating and
visualizing the risk process are discussed. This topic is followed by an overview
of the approaches to approximating the ruin probability of an insurer. Both
finite and infinite time approximations are presented. Some of these methods
are extended in chapters sixteen and seventeen, where classical and anomalous
diffusion approximations to ruin probability are discussed and extended to
cases when the risk process exhibits good and bad periods. The last three
chapters are related to one of the most important aspects of the insurance
business – premium calculation. Chapter eighteen introduces the basic concepts
including the pure risk premium and various safety loadings under different
loss distributions. Calculation of a joint premium for a portfolio of insurance
policies in the individual and collective risk models is discussed as well. The
inclusion of deductibles into premium calculation is the topic of the following
contribution. The last chapter of the insurance part deals with setting the
appropriate level of insurance premium within a broader context of business
decisions, including risk transfer through reinsurance and the rate of return on
capital required to ensure solvability.

Our e-book offers a complete PDF version of this text and the corresponding
HTML files with links to algorithms and quantlets. The reader of this book
may therefore easily reconfigure and recalculate all the presented examples
and methods via the enclosed XploRe Quantlet Server (XQS), which is also
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available from www.xplore-stat.de and www.quantlet.com. A tutorial chapter
explaining how to setup and use XQS can be found in the third and final part
of the book.
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Pavel Čı́žek, Wolfgang Härdle, and Rafa�l Weron

Tilburg, Berlin, and Wroc�law, February 2005

http://www.xplore-stat.de
http://www.quantlet.com




Frequently used notation

x
def
= . . . x is defined as ...

[x] integer part of x
x ≈y x is approximately equal to y
A� transpose of matrix A
(F ◦G)(x) F{G(x)} for functions F and G
I indicator function
R real numbers
an, bn, . . . sequences of real numbers of vectors
αn = O(βn) αn/βn −→ const. as n −→ ∞
αn = o(βn) αn/βn −→ 0 as n −→ ∞
X ∼ D the random variable X has a distribution D
P(A) probability of a set A
E(X) expected value of random variable X
Var(X) variance of random variable X
Cov(X,Y ) covariance of two random variables X and Y
N(μ,Σ)

a similar notation is used if Σ is the correlation matrix
Φ standard normal cumulative distribution function
ϕ standard normal density function
χ2
p chi-squared distribution with p degrees of freedom
tp t-distribution (Student’s) with p degrees of freedom
Wt Wiener process
Ft
An, Bn, . . . sequences of random variables
An = Op(Bn) ∀ε > 0 ∃M, ∃N such that P[|An/Bn| > M ] < ε, ∀n > N
An = op(Bn) ∀ε > 0 : limn→∞ P[|An/Bn| > ε] = 0

the information set generated by all information available at time t

normal distribution with expectation μ and covariance matrix Σ;
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Finance



1 Models for heavy-tailed asset
returns

Szymon Borak, Adam Misiorek, and Rafa�l Weron

1.1 Introduction

Many of the concepts in theoretical and empirical finance developed over the
past decades – including the classical portfolio theory, the Black-Scholes-Merton
option pricing model or the RiskMetrics variance-covariance approach to Value
at Risk (VaR) – rest upon the assumption that asset returns follow a normal
distribution. But this assumption is not justified by empirical data! Rather,
the empirical observations exhibit excess kurtosis, more colloquially known as
fat tails or heavy tails (Guillaume et al., 1997; Rachev and Mittnik, 2000). The
contrast with the Gaussian law can be striking, as in Figure 1.1 where we il-
lustrate this phenomenon using a ten-year history of the Dow Jones Industrial
Average (DJIA) index.

In the context of VaR calculations, the problem of the underestimation of risk
by the Gaussian distribution has been dealt with by the regulators in an ad
hoc way. The Basle Committee on Banking Supervision (1995) suggested that
for the purpose of determining minimum capital reserves financial institutions
use a 10-day VaR at the 99% confidence level multiplied by a safety factor
s ∈ [3, 4]. Stahl (1997) and Danielsson, Hartmann and De Vries (1998) argue
convincingly that the range of s is a result of the heavy-tailed nature of asset
returns. Namely, if we assume that the distribution is symmetric and has finite
variance σ2 then from Chebyshev’s inequality we have P(Loss ≥ ε) ≤ 1

2σ
2ε2.

Setting the right hand side to 1% yields an upper bound for VaR99% ≤ 7.07σ.
On the other hand, if we assume that returns are normally distributed we
arrive at VaR99% ≤ 2.33σ, which is roughly three times lower than the bound
obtained for a heavy-tailed, finite variance distribution.
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Figure 1.1: Left panel : Returns log(Xt+1/Xt) of the DJIA daily closing values
Xt from the period January 3, 2000 – December 31, 2009. Right
panel : Gaussian fit to the empirical cumulative distribution func-
tion (cdf) of the returns on a double logarithmic scale (only the left
tail fit is displayed).
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Being aware of the underestimation of risk by the Gaussian law we should
consider using heavy-tailed alternatives. This chapter is intended as a guide
to such models. In Section 1.2 we describe the historically oldest heavy-tailed
model – the stable laws. Next, in Section 1.3 we briefly characterize their re-
cent lighter-tailed generalizations, the so-called truncated and tempered stable
distributions. In Section 1.4 we study the class of generalized hyperbolic laws,
which – like tempered stable distributions – can be classified somewhere be-
tween infinite variance stable laws and the Gaussian distribution. Finally, in
Section 1.5 we provide numerical examples.

1.2 Stable distributions

1.2.1 Definitions and basic properties

The theoretical rationale for modeling asset returns by the Gaussian distribu-
tion comes from the Central Limit Theorem (CLT), which states that the sum
of a large number of independent, identically distributed (i.i.d.) variables –
say, decisions of investors – from a finite-variance distribution will be (asymp-
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Figure 1.2: Left panel : A semi-logarithmic plot of symmetric (β = μ = 0)
stable densities for four values of α. Note, the distinct behavior of
the Gaussian (α = 2) distribution. Right panel : A plot of stable
densities for α = 1.2 and four values of β.
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totically) normally distributed. Yet, this beautiful theoretical result has been
notoriously contradicted by empirical findings. Possible reasons for the fail-
ure of the CLT in financial markets are (i) infinite-variance distributions of
the variables, (ii) non-identical distributions of the variables, (iii) dependences
between the variables or (iv) any combination of the three. If only the finite
variance assumption is released we have a straightforward solution by virtue
of the generalized CLT, which states that the limiting distribution of sums of
such variables is stable (Nolan, 2010). This, together with the fact that stable
distributions are leptokurtic and can accommodate fat tails and asymmetry,
has led to their use as an alternative model for asset returns since the 1960s.

Stable laws – also called α-stable, stable Paretian or Lévy stable – were intro-
duced by Paul Lévy in the 1920s. The name ‘stable’ reflects the fact that a
sum of two independent random variables having a stable distribution with the
same index α is again stable with index α. This invariance property holds also
for Gaussian variables. In fact, the Gaussian distribution is stable with α = 2.

For complete description the stable distribution requires four parameters. The
index of stability α ∈ (0, 2], also called the tail index, tail exponent or char-
acteristic exponent, determines the rate at which the tails of the distribution
taper off, see the left panel in Figure 1.2. The skewness parameter β ∈ [−1, 1]
defines the asymmetry. When β > 0, the distribution is skewed to the right, i.e.

http://www.quantlet.com/mdstat/codes//STFstab02.html
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the right tail is thicker, see the right panel in Figure 1.2. When it is negative,
it is skewed to the left. When β = 0, the distribution is symmetric about the
mode (the peak) of the distribution. As α approaches 2, β loses its effect and
the distribution approaches the Gaussian distribution regardless of β. The last
two parameters, σ > 0 and μ ∈ R, are the usual scale and location parameters,
respectively.

A far-reaching feature of the stable distribution is the fact that its probability
density function (pdf) and cumulative distribution function (cdf) do not have
closed form expressions, with the exception of three special cases. The best
known of these is the Gaussian (α = 2) law whose pdf is given by:

fG(x) =
1√
2πσ

exp

{
− (x− μ)2

2σ2

}
. (1.1)

The other two are the lesser known Cauchy (α = 1, β = 0) and Lévy (α = 0.5,
β = 1) laws. Consequently, the stable distribution can be most conveniently
described by its characteristic function (cf) – the inverse Fourier transform of
the pdf. The most popular parameterization of the characteristic function φ(t)
of X ∼ Sα(σ, β, μ), i.e. a stable random variable with parameters α, σ, β and
μ, is given by (Samorodnitsky and Taqqu, 1994; Weron, 1996):

logφ(t) =

⎧⎪⎨⎪⎩
−σα|t|α{1 − iβsign(t) tan πα

2 } + iμt, α 
= 1,

−σ|t|{1 + iβsign(t) 2
π log |t|} + iμt, α = 1.

(1.2)

Note, that the traditional scale parameter σ of the Gaussian distribution is not
the same as σ in the above representation. A comparison of formulas (1.1) and
(1.2) yields the relation: σGaussian =

√
2σ.

For numerical purposes, it is often useful to use Nolan’s (1997) parameteriza-
tion:

logφ0(t) =

⎧⎪⎨⎪⎩
−σα|t|α{1 + iβsign(t) tan πα

2 [(σ|t|)1−α − 1]} + iμ0t, α 
= 1,

−σ|t|{1 + iβsign(t) 2
π log(σ|t|)} + iμ0t, α = 1,

(1.3)
which yields a cf (and hence the pdf and cdf) jointly continuous in all four
parameters. The location parameters of the two representations (S and S0)
are related by μ = μ0 − βσ tan πα

2 for α 
= 1 and μ = μ0 − βσ 2
π log σ for α = 1.
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The ‘fatness’ of the tails of a stable distribution can be derived from the fol-
lowing property: the pth moment of a stable random variable is finite if and
only if p < α. Hence, when α > 1 the mean of the distribution exists (and is
equal to μ). On the other hand, when α < 2 the variance is infinite and the
tails exhibit a power-law behavior (i.e. they are asymptotically equivalent to a
Pareto law). More precisely, using a CLT type argument it can be shown that
(Janicki and Weron, 1994a; Samorodnitsky and Taqqu, 1994):{

limx→∞ x
α
P(X > x) = Cα(1 + β)σα,

limx→∞ x
α
P(X < −x) = Cα(1 + β)σα,

(1.4)

where Cα =
(
2
∫∞
0
x−α sin(x)dx

)−1
= 1

πΓ(α) sin πα
2 . The convergence to the

power-law tail varies for different α’s and is slower for larger values of the tail
index. Moreover, the tails of stable cdfs exhibit a crossover from an approximate
power decay with exponent α > 2 to the true tail with exponent α. This
phenomenon is more visible for large α’s (Weron, 2001).

1.2.2 Computation of stable density and distribution functions

The lack of closed form formulas for most stable densities and distribution
functions has far-reaching consequences. Numerical approximation or direct
numerical integration have to be used instead of analytical formulas, leading
to a drastic increase in computational time and loss of accuracy. Despite a
few early attempts in the 1970s, efficient and general techniques have not been
developed until late 1990s.

Mittnik, Doganoglu and Chenyao (1999) exploited the pdf–cf relationship and
applied the fast Fourier transform (FFT). However, for data points falling
between the equally spaced FFT grid nodes an interpolation technique has
to be used. The authors suggested that linear interpolation suffices in most
practical applications, see also Rachev and Mittnik (2000). Taking a larger
number of grid points increases accuracy, however, at the expense of higher
computational burden. Setting the number of grid points to N = 213 and the
grid spacing to h = 0.01 allows to achieve comparable accuracy to the direct
integration method (see below), at least for typically used values of α > 1.6.

As for the computational speed, the FFT based approach is faster for large
samples, whereas the direct integration method favors small data sets since
it can be computed at any arbitrarily chosen point. Mittnik, Doganoglu and
Chenyao (1999) report that for N = 213 the FFT based method is faster



26 1 Models for heavy-tailed asset returns

for samples exceeding 100 observations and slower for smaller data sets. We
must stress, however, that the FFT based approach is not as universal as the
direct integration method – it is efficient only for large alpha’s and only as far
as the pdf calculations are concerned. When computing the cdf the former
method must numerically integrate the density, whereas the latter takes the
same amount of time in both cases.

The direct integration method, proposed by Nolan (1997, 1999), consists of
a numerical integration of Zolotarev’s (1986) formulas for the density or the
distribution function. Set ζ = −β tan πα

2 . Then the density f(x;α, β) of a
standard stable random variable in representation S0, i.e. X ∼ S0

α(1, β, 0),
can be expressed as (note, that Zolotarev (1986, Section 2.2) used another
parametrization):

• when α 
= 1 and x 
= ζ:

f(x;α, β) =
α(x− ζ)

1
α−1

π | α− 1 |

∫ π
2

−ξ
V (θ;α, β) exp

{
−(x− ζ)

α
α−1V (θ;α, β)

}
dθ,

(1.5)
for x > ζ and f(x;α, β) = f(−x;α,−β) for x < ζ,

• when α 
= 1 and x = ζ:

f(x;α, β) =
Γ(1 + 1

α ) cos(ξ)

π(1 + ζ2)
1
2α

,

• when α = 1:

f(x; 1, β) =

⎧⎪⎪⎨⎪⎪⎩
1

2|β|e
πx
2β
∫ π

2

−π
2
V (θ; 1, β) exp

{
−e πx

2β V (θ; 1, β)
}
dθ, β 
= 0,

1
π(1+x2) , β = 0,

where

ξ =

{
1
α arctan(−ζ), α 
= 1,
π
2 , α = 1,

(1.6)

and

V (θ;α, β) =

⎧⎨⎩(cosαξ)
1

α−1

(
cos θ

sinα(ξ+θ)

) α
α−1 cos{αξ+(α−1)θ}

cos θ , α 
= 1,

2
π

(
π
2 +βθ

cos θ

)
exp

{
1
β (π2 + βθ) tan θ

}
, α = 1, β 
= 0.


