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Automatic speech recognition (ASR) systems are fi nding increasing use in everyday 
life. Many of the commonplace environments where the systems are used are noisy, 
for example users calling up a voice search system from a busy cafeteria or a street. 
This can result in degraded speech recordings and adversely affect the performance 
of speech recognition systems.  As the use of ASR systems increases, knowledge 
of the state of the art in techniques to deal with such problems becomes critical 
to system and application engineers, and researchers who work with or on ASR 
technologies. This book presents a comprehensive survey of the latest techniques 
used to improve the robustness of speech recognition systems to these degrading 
external infl uences.

Key features:

•   Reviews all the main noise robust ASR approaches, including signal separation, 
voice activity detection, robust feature extraction, model compensation and 
adaptation, missing data techniques and recognition of reverberant speech.

•   Acts as a timely exposition of the topic in light of more widespread use in the 
future of ASR technology in challenging environments.

•   Addresses robustness issues and signal degradation which are both key 
requirements for practitioners of ASR.

•   Includes contributions from top ASR researchers from leading research units 
in the fi eld.
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University of Le Mans, France

Jasha Droppo
Microsoft Research, USA

Yannick Estève
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1
Introduction
Tuomas Virtanen1, Rita Singh2, Bhiksha Raj2

1Tampere University of Technology, Finland
2Carnegie Mellon University, USA

1.1 Scope of the Book

The term “computer speech recognition” conjures up visions of the science-fiction capabil-
ities of HAL2000 in 2001, A Space Odessey, or “Data,” the anthropoid robot in Star Trek,
who can communicate through speech with as much ease as a human being. However, our
real-life encounters with automatic speech recognition are usually rather less impressive, com-
prising often-annoying exchanges with interactive voice response, dictation, and transcription
systems that make many mistakes, frequently misrecognizing what is spoken in a way that
humans rarely would. The reasons for these mistakes are many. Some of the reasons have to
do with fundamental limitations of the mathematical framework employed, and inadequate
awareness or representation of context, world knowledge, and language. But other equally
important sources of error are distortions introduced into the recorded audio during recording,
transmission, and storage.

As automatic speech-recognition—or ASR—systems find increasing use in everyday life,
the speech they must recognize is being recorded over a wider variety of conditions than ever
before. It may be recorded over a variety of channels, including landline and cellular phones,
the internet, etc. using different kinds of microphones, which may be placed close to the mouth
such as in head-mounted microphones or telephone handsets, or at a distance from the speaker,
such as desktop microphones. It may be corrupted by a wide variety of noises, such as sounds
from various devices in the vicinity of the speaker, general background sounds such as those
in a moving car or background babble in crowded places, or even competing speakers. It may
also be affected by reverberation, caused by sound reflections in the recording environment.
And, of course, all of the above may occur concurrently in myriad combinations and, just to
make matters more interesting, may change unpredictably over time.

Techniques for Noise Robustness in Automatic Speech Recognition, First Edition.
Edited by Tuomas Virtanen, Rita Singh, and Bhiksha Raj.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



2 Techniques for Noise Robustness in Automatic Speech Recognition

For speech-recognition systems to perform acceptably, they must be robust to the distorting
influences. This book deals with techniques that impart such robustness to ASR systems.
We present a collection of articles from experts in the field, which describe an array of
strategies that operate at various stages of processing in an ASR system. They range from
techniques for minimizing the effect of external noises at the point of signal capture, to methods
of deriving features from the signal that are fundamentally robust to signal degradation,
techniques for attenuating the effect of external noises on the signal, and methods for modifying
the recognition system itself to recognize degraded speech better.

The selection of techniques described in this book is intended to cover the range of ap-
proaches that are currently considered state of the art. Many of these approaches continue to
evolve, nevertheless we believe that for a practitioner of the field to follow these developments,
he must be familiar with the fundamental principles involved. The articles in this book are
designed and edited to adequately present these fundamental principles. They are intended
to be easy to understand, and sufficiently tutorial for the reader to be able to implement the
described techniques.

1.2 Outline

Robustnesss techniques for ASR fall into a number of different categories. This book is divided
into five parts, each focusing on a specific category of approaches. A clear understanding
of robustness techniques for ASR requires a clear understanding of the principles behind
automatic speech recognition and the robustness issues that affect them. These foundations
are briefly discussed in Part One of the book. Chapter 2 gives a short introduction to the
fundamentals of automatic speech recognition. Chapter 3 describes various distortions that
affect speech signals, and analyzes their effect on ASR.

Part Two discusses techniques that are aimed at minimizing the distortions in the speech
signal itself.

Chapter 4 presents methods for voice-activity detection (VAD), noise estimation, and noise-
suppression techniques based on filtering. A VAD analyzes which signal segments correspond
to speech and which to noise, so that an ASR system does not mistakenly interpret noise as
speech. VAD can also provide an estimate of the noise during periods of speech inactivity. The
chapter also reviews methods that are able to track noise characteristics even during speech
activity. Noise estimates are required by many other techniques presented in the book.

Chapter 5 presents two approaches for separating speech from noises. The first one uses
multiple microphones and an assumption that speech and noise signals are statistically inde-
pendent of each other. The method does not use a priori information about the source signals,
and is therefore termed blind source separation. Statistically independent signals are separated
using an algorithm called independent component analysis. The second approach requires only
a single microphone, but it is based on a priori information about speech or noise signals. The
presented method is based on factoring the spectrogram of noisy speech into speech and noise
using nonnegative matrix factorization.

Chapter 6 discusses methods that apply multiple microphones to selectively enhance speech
while suppressing noise. They assume that the speech and noise sources are located in spatially
different positions. By suitably combining the signals recorded by each microphone they are
able to perform beamforming, which can selectively enhance signals from the location of the
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speech source. The chapter first presents the fundamentals of conventional linear microphone
arrays, then reviews different criteria that can be used to design them, and then presents
methods that can be used in the case of spherical microphone arrays.

Part Three of the book discusses methods that attempt to minimize the effect of distortions
on acoustic features that are used to represent the speech signal.

Chapter 7 reviews conventional feature extraction methods that typically parameterize the
envelope of the spectrum. Both methods based on linear prediction and cepstral processing
are covered. The chapter then discusses minimum variance distortionless response or warping
techniques that can be applied to make the envelope estimates more reliable for purposes of
speech recognition. The chapter also studies the effect of distortions on the features.

Chapter 8 approaches the noise robustness problem from the point of view of human speech
perception. It first presents a series of auditory measurements that illustrate selected properties
of the human auditory system, and then discusses principles that make the human auditory
system less sensitive to external influences. Finally, it presents several computational auditory
models that mimic human auditory processes to extract noise robust features from the speech
signal.

Chapter 9 presents methods that reduce the effect of distortions on features derived from
speech. These feature-enhancement techniques can be trained to map noisy features to clean
ones using training examples of clean and noisy speech. The mapping can include a criterion
which makes the enhanced features more discriminative, i.e., makes them more effective for
speech recognition. The chapter also presents methods that use an explicit model for additive
noises.

Chapter 10 focuses on the recognition of reverberant speech. It first analyzes the effect
of reverberation on speech and the features derived from it. It gives a review of different
approaches that can be used to perform recognition of reverberant speech and presents methods
for enhancing features derived from reverberant speech based on a model of reverberation.

Part Four discusses methods which modify the statistical parameters employed by the
recognizer to improve recognition of corrupted speech.

Chapter 11 presents adaptation methods which change the parameters of the recognizer
without assuming a specific kind of distortion. These model-adaptation techniques are fre-
quently used to adapt a recognizer to a specific speaker, but can equally effectively be used to
adapt it to distorted signals. The chapter also presents training criteria that makes the statistical
models in the recognizer more discriminative, to improve the recognition performance that
can be obtained with them.

Chapter 12 focuses on compensating for the effect of interfering sound sources on the
recognizer. Based on a model of interfering noises and a model of the interaction process
between speech and noise, these model-compensation techniques can be used to derive a
statistical model for noisy speech. In order to find a mapping between the models for clean
and noisy speech, the techniques use various approximations of the interaction process.

Chapter 13 discusses a methodology that can be used to find the parameters of an ASR
system to make it more robust, given any signal or feature enhancement method. These noise-
adaptive-training techniques are applied in the training stage, where the parameters the ASR
system are tuned to optimize the recognition accuracy.

Part Five presents techniques which address the issue that some information in the speech
signal may be lost because of noise. We now have a problem of missing data that must be
dealt with.
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Chapter 14 first discusses the general taxonomy of different missing-data problems. It then
discusses the conditions under which speech features can be considered reliable, and when
they may be assumed to be missing. Finally, it presents methods that can be used to perform
robust ASR when there is uncertainty about which parts of the signal are missing.

Chapter 15 presents methods that produce an estimate of missing features (i.e., feature
reconstruction) using reliable features. Reconstruction methods based on a Gaussian mixture
model utilize local correlations between missing and reliable features. The reconstruction can
also be done separately for each state of the ASR system. Sparse representation methods
model the noisy observation as a linear combination of a small number of atomic units taken
from a larger dictionary, and the weights of the atomic units are determined using reliable
features only.

Chapter 16 discusses methods that estimate which parts of a speech signal are missing and
which ones are reliable. The estimation can be based either on the signal-to-noise ratio in each
time-frequency component, or on more perceptually motivated cues derived from the signal,
or using a binary classification approach.

Chapter 17 presents approaches which enable the modeling of the uncertainty caused by
noise in the recognition system. It first discusses feature-based uncertainty, which enables
modeling of the uncertainty in enhanced signals or features obtained through algorithms
discussed in the previous chapters of the book. Model-based uncertainty decoding, on the
other hand, enables us to account for uncertainties in model compensation or adaptation
techniques. The chapter also discusses the use of uncertainties with noise-adaptive training
techniques.

We also revisit the contents of the book in the end of Chapter 3, once we have analyzed the
types of errors encountered in automatic speech recognition.

1.3 Notation

The table below lists the most commonly used symbols in the book. Some of the chapters
deviate from the definitions below, but in such cases the used symbols are explicitly defined.

Symbol Definition

a, b, c, . . . Scalar variables
A, B, C, . . . Constants
a,b, c, . . . Vectors
A,B,C, . . . Matrices
⊗ Convolution
N Normal distribution
E{x} Expected value of x
AT Transpose of matrix A
xi:j Set xi, xi+1 , . . . , xj

s Speech signal
n Additive noise signal
x Noisy speech signal
h Response from speaker to microphone
t Time index
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Symbol Definition

f Frequency index
xt Observation vector of noisy speech in frame t
q State variable
qt State at time t
μ Mean vector
Θ,Σ Covariance matrix
P, p Probability
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2.1 Introduction

In order to understand the techniques described later in this book, it is important to understand
how automatic speech-recognition (ASR) systems function. This chapter briefly outlines the
framework employed by ASR systems based on hidden Markov models (HMMs).

Most mainstream ASR systems are designed as probabilistic Bayes classifiers that identify
the most likely word sequence that explains a given recorded acoustic signal. To do so, they use
an estimate of the probabilities of possible word sequences in the language, and the probability
distributions of the acoustic signals for each word sequence. Both the probability distributions
of word sequences, and those of the acoustic signals for any word sequence, are represented
through parametric models. Probabilities of word sequences are modeled by various forms of
grammars or N-gram models. The probabilities of the acoustic signals are modeled by HMMs.

In the rest of this chapter, we will briefly describe the components and process of ASR
as outlined above, as a prelude to explaining the circumstances under which it may perform
poorly, and how that relates to the remaining chapters of this book. Since this book primarily
addresses factors that affect the acoustic signal, we will only pay cursory attention to the manner
in which word-sequence probabilities are modeled, and elaborate mainly on the modeling of
the acoustic signal.

In Section 2.2, we outline Bayes classification, as applied to speech recognition. The
fundamentals of HMMs—how to calculate probabilities with them, how to find the most
likely explanation for an observation, and how to estimate their parameters—are given in
Section 2.3. Section 2.4 describes how HMMs are used in practical ASR systems. Several
issues related to practical implementation are addressed. Recognition is not performed with

Techniques for Noise Robustness in Automatic Speech Recognition, First Edition.
Edited by Tuomas Virtanen, Rita Singh, and Bhiksha Raj.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



10 Techniques for Noise Robustness in Automatic Speech Recognition

the speech signal itself, but on features derived from it. We give a brief review of the most
commonly used features in Section 2.4.1. Feature computation is covered in greater detail
in Chapters 7 and 8 of the book. The number of possible word sequences that must be
investigated in order to determine the most likely one is potentially extremely large. It is
infeasible to explicitly characterize the probability distributions of the acoustics for each and
every word sequence. In Sections 2.4.2 and 2.4.3, we explain how we can nevertheless explore
all of them by composing the HMMs for word sequences from smaller units, and how the set
of all possible word sequences can be represented as compact graphs that can be searched.

Before proceeding, we note that although this book largely presents speech recognition and
robustness issues related to it from the perspective of HMM-based systems, the fundamental
ideas presented here, and many of the algorithms and techniques described both in this chapter
and elsewhere in the book, carry over to other formalisms that may be employed for speech
recognition as well.

2.2 Speech Recognition Viewed as Bayes Classification

At their core, state-of-art ASR systems are fundamentally Bayesian classifiers. The Bayesian
classification paradigm follows a rather simple intuition: the best guess for the explanation
of any observation (such as a recording of speech) is the most likely one, given any other
information we have about the problem at hand. Mathematically, it can be stated as follows:
let C1 , C2 , C3 , . . . represent all possible explanations for an observation X. The Bayesian
classification paradigm chooses the explanation Ci such that

P (Ci |X, θ) ≥ P (Cj |X, θ) ∀j �= i, (2.1)

where P (Ci |X, θ) is the conditional probability of class Ci given the observation X, and θ

represents all other evidence, or information known a priori. In other words, it chooses the
a posteriori most probable explanation Ci , given the observation and all prior evidence.

For the ASR problem, the problem is now stated as follows. Given a speech recording X,
the sequence of words ŵ1 , ŵ2 , · · · that were spoken is estimated as

ŵ1 , ŵ2 , · · · = argmax
w 1 ,w 2 ,···

P (w1 , w2 , · · · |X, Λ). (2.2)

Here, Λ represents other evidence that we may have about what was spoken. Equation (2.2)
states that the “best guess” word sequence ŵ1 , ŵ2 · · · is the word sequence that is a posteriori
most probable, after consideration of both the recording X and all other evidence represented
by Λ.

In order to implement Equation (2.2) computationally, the problem is refactored using
Bayes’ rule as follows:

ŵ1 , ŵ2 , · · · = argmax
w 1 ,w 2 ,···

P (X|w1 , w2 , · · ·)P (w1 , w2 , · · · |Λ). (2.3)

In the term P (X|w1 , w2 , · · ·), we assume that the speech signal X becomes independent of all
other factors, once the sequence of words is given. The true distribution of X for any word
sequence is not known. Instead it is typically modeled by a hidden Markov model (HMM)
[2]. Since the term P (X|w1 , w2 , · · ·) models the properties of the acoustic speech signal, is it
termed an acoustic model.


