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Preface

Sobolev spaces, i.e., the classes of functions with derivatives in L,, occupy
an outstanding place in analysis. During the last half-century a substantial
contribution to the study of these spaces has been made; so now solutions to
many important problems connected with them are known.

In the present monograph we consider various aspects of theory of Sobolev
spaces in particular, the so-called embedding theorems. Such theorems, orig-
inally established by S.L. Sobolev in the 1930s, proved to be a useful tool in
functional analysis and in the theory of linear and nonlinear partial differential
equations.

A part of this book first appeared in German as three booklets of Teubner-
Texte fiir Mathematik [552, 555]. In the Springer volume of “Sobolev Spaces”
[556] published in 1985, the material was expanded and revised.

As the years passed the area became immensely vast and underwent im-
portant changes, so the main contents of the 1985 volume had the potential
for further development, as shown by numerous references. Therefore, and
since the volume became a bibliographical rarity, Springer-Verlag offered me
the opportunity to prepare the second, updated edition of [556].

As in [556], the selection of topics was mainly influenced by my involvement
in their study, so a considerable part of the text is a report on my work in the
field. In comparison with [556], the present text is enhanced by more recent
results. New comments and the significantly augmented list of references are
intended to create a broader and modern view of the area. The book differs
considerably from the monographs of other authors dealing with spaces of
differentiable functions that were published in the last 50 years.

Each of the 18 chapters of the book is divided into sections and most of
the sections consist of subsections. The sections and subsections are numbered
by two and three numbers, respectively (3.1 is Sect. 1 in Chap. 3, 1.4.3 is
Subsect. 3 in Sect. 4 in Chap. 1). Inside subsections we use an independent
numbering of theorems, lemmas, propositions, corollaries, remarks, and so
on. If a subsection contains only one theorem or lemma then this theorem
or lemma has no number. In references to the material from another section

vii



viii Preface

or subsection we first indicate the number of this section or subsection. For
example, Theorem 1.2.1/1 means Theorem 1 in Subsect. 1.2.1, (2.6.6) denotes
formula (6) in Sect. 2.6.

The reader can obtain a general idea of the contents of the book from
the Introduction. Most of the references to the literature are collected in the
Comments. The list of notation is given at the end of the book.

The volume is addressed to students and researchers working in functional
analysis and in the theory of partial differential operators. Prerequisites for
reading this book are undergraduate courses in these subjects.

Acknowledgments
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Introduction

In [711-713] Sobolev proved general integral inequalities for differentiable
functions of several variables and applied them to a number of problems of
mathematical physics. Sobolev considered the Banach space WIZ)(Q) of func-
tions in L,(£2), p > 1, with generalized derivatives of order I integrable with
power p. In particular, using these theorems on the potential-type integrals as
well as an integral representation of functions, Sobolev established the embed-
ding of W}(£2) into L,(£2) or C(£2) under certain conditions on the exponents
p, I, and ¢.!

Later the Sobolev theorems were generalized and refined in various ways
(Kondrashov, IIin, Gagliardo, Nirenberg, et al.). In these studies the domains
of functions possess the so-called cone property (each point of a domain is
the vertex of a spherical cone with fixed height and angle which is situated
inside the domain). Simple examples show that this condition is precise, e.g.,
if the boundary contains an outward “cusp” then a function in Wz} (§2) is not,
in general, summable with power pn/(n — p), n > p, contrary to the Sobolev
inequality. On the other hand, looking at Fig. 1, the reader can easily see that
the cone property is unnecessary for the embedding Wpl(()) C Lap/2—p) (£2),
2 > p. Indeed, by unifying (2 with its mirror image, we obtain a new domain
with the cone property for which the above embedding holds by the Sobolev
theorem. Consequently, the same is valid for the initial domain although it
does not possess the cone property.

Now we note that, even before the Sobolev results, it was known that cer-
tain integral inequalities hold under fairly weak requirements on the domain.
For instance, the Friedrichs inequality ([292], 1927)

/ Wdr < K</ (gradu)de—i—/ u2ds)
Q 10 80

1A sketch of a fairly rich prehistory of Sobolev spaces can be found in Naumann
[624].
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was established under the sole assumption that {2 is a bounded domain for
which the Gauss—Green formula holds. In 1933, Nikodym [637] gave an exam-
ple of a domain {2 such that the square integrability of the gradient does not
imply the square integrability of the function defined in (2. The monograph
of Courant and Hilbert [216], Chap. 7, contains sufficient conditions for the
validity of the Poincaré inequality

1 2
/ wdr < K/ (gradu)de—l— (/ udx)
Q n mn2\Jo

(see [663, p. 76] and [664, pp. 98-104]) and of the Rellich lemma [672] on the
compactness in Lo (§2) of the set bounded in the metric

/ [(grad u)® + u?] dz.
2

The previous historical remarks naturally suggest the problem of describ-
ing the properties of domains that are equivalent to various properties of
embedding operators.

Starting to work on this problem in 1959 as a fourth-year undergraduate
student, I discovered that Sobolev-type theorems for functions with gradients
in L,(£2) are valid if and only if some isoperimetric and isocapacitary inequal-
ities hold. Such necessary and sufficient conditions appeared in the early 1960s
in my works [527-529, 531, 533, 534]. For p = 1 these conditions coincide with
isoperimetric inequalities between the volume and the area of a part of the
boundary of an arbitrary subset of the domain.

For p > 1, geometric functionals such as volume and area prove to be
insufficient for an adequate description of the properties of domains. Here
inequalities between the volume and the p-capacity or the p-conductivity arise.
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Similar ideas were applied to complete characterizations of weight func-
tions and measures in the norms involved in embedding theorems. Moreover,
the method of proof of the criteria does not use specific properties of the Eu-
clidean space. The arguments can be carried over to the case of Riemannian
manifolds and even abstract metric spaces. A considerable part of the present
book (Chaps. 2-9 and 11) is devoted to the development of this isoperimetric
and isocapacitary ideology.

However, this theory does not exhaust the material of the book even con-
ceptually. Without aiming at completeness, I mention that other areas of the
study in the book are related to the following questions. How massive must a
subset e of a domain (2 be in order that the inequality

lullz,2) < ClIViulr, @)

holds for all smooth functions vanishing on e? How does the class of domains
admissible for integral inequalities depend upon additional requirements im-
posed upon the behavior of functions at the boundary? What are the con-
ditions on domains and measures involved in the norms ensuring density of
a space of differentiable functions in another one? We shall study the crite-
ria of compactness of Sobolev-type embedding operators. Sometimes the best
constants in functional inequalities will be discussed. The embedding and ex-
tension operators involving Birbaum—Orlicz spaces, the space BV of functions
whose gradients are measures, and Besov and Bessel potential spaces of func-
tions with fractional smoothness will also be dealt with.

The investigation of the above-mentioned and similar problems is not only
of interest in its own right. By virtue of well-known general considerations it
leads to conditions for the solvability of boundary value problems for elliptic
equations and to theorems on the structure of the spectrum of the correspond-
ing operators. Such applications are also included.

I describe briefly the contents of the book. More details can be found in
the Introductions to the chapters.

Chapter 1 gives prerequisites to the theory. Along with classical facts this
chapter contains certain new results. It addresses miscellaneous topics related
to the theory of Sobolev spaces. Some of this material is of independent in-
terest and some (Sects. 1.1-1.3) will be used in the sequel. The core of the
chapter is a generalized version of Sobolev embedding theorems (Sect. 1.4).
We also deal with various extension and approximation theorems (Sects. 1.5
and 1.7), and with maximal algebras in Sobolev spaces (Sect. 1.8). Section 1.6
is devoted to inequalities for functions vanishing on the boundary along with
their derivatives up to some order.

The idea of the equivalence of isoperimetric and isocapacitary inequalities
on the one hand and embedding theorems on the other hand is crucial for
Chap. 2. Most of this chapter deals with the necessary and sufficient conditions
for the validity of integral inequalities for gradients of functions that vanish
at the boundary. Of special importance for applications are multidimensional
inequalities of the Hardy—Sobolev type proved in Sect. 2.1. The basic results
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of Chap. 2 are applied to the spectral theory of the Schrodinger operator in
Sect. 2.5.

Chapters 3 and 4 briefly address the so-called conductor and capacitary
inequalities, which are stronger than inequalities of the Sobolev type and are
valid for functions defined on quite general topological spaces.

The space L,(£2) of functions with gradients in L,({2) is studied in
Chaps. 5-8. Chapter 5 deals with the case p = 1. Here, the necessary and
sufficient conditions for the validity of embedding theorems stated in terms of
the classes _#, characterized by isoperimetric inequalities are found. We also
check whether some concrete domains belong to these classes. In Chaps. 6
and 7 we extend the presentation to the case p > 1. Here the criteria are
formulated in terms of the p-conductivity. In Chap. 6 we discuss theorems
on embeddings into Lq(f2) and L,(0(2). Chapter 7 concerns embeddings into
Loo(2) N C(£2). In particular, we present the necessary and sufficient con-
ditions for the validity of the previously mentioned Friedrichs and Poincaré
inequalities and of the Rellich compactness lemma. In Chap. 9 we study the
essential norm and other noncompactness characteristics of the embedding
operator L (2) — Lq(£2).

Throughout the book and especially in Chaps. 5-8 we include numerous
examples of domains that illustrate possible pathologies of embedding opera-
tors. For instance, in Sect. 1.1 we show that the square integrability of second
derivatives and of the function do not imply the square integrability of the
first derivatives. In Sect. 7.5 we consider the domain for which the embedding
operator of W, (£2) into Lo (£2) N C(£2) is continuous without being com-
pact. This is impossible for domains with “good” boundaries. The results of
Chaps. 5-7 show that not only the classes of domains determine the parame-
ters p, ¢, and so on in embedding theorems, but that a feedback takes place.
The criteria for the validity of integral inequalities are applied in Chap. 6 to
the theory of elliptic boundary value problems. The exhaustive results on em-
bedding operators can be restated as necessary and sufficient conditions for
the unique solvability and for the discreteness of the spectrum of boundary
value problems, in particular, of the Neumann problem.

Chapter 9, written together with Yu.D. Burago, is devoted to the study
of the space BV ({2) consisting of the functions whose gradients are vector
charges. Here we present a necessary and sufficient condition for the existence
of a bounded nonlinear extension operator BV (£2) — BV (R™). We find nec-
essary and sufficient conditions for the validity of embedding theorems for
the space BV (£2), which are similar to those obtained for Li(2) in Chap. 5.
In some integral inequalities we obtain the best constants. The results of
Sects. 9.5 and 9.6 on traces of functions in BV ({2) make it possible to dis-
cuss boundary values of “bad” functions defined on “bad” domains. Along
with the results due to Burago and the author in Chap. 9 we present the
De Giorgi—Federer theorem on conditions for the validity of the Gauss—Green
formula.
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Chapters 2-9 mainly concern functions with first derivatives in L,, or in C*.
This restriction is essential since the proofs use the truncation of functions
along their level surfaces. The next six chapters deal with functions that have
derivatives of any integer, and sometimes of fractional, order.

In Chap. 10 we collect (sometimes without proofs) various properties of
Bessel and Riesz potential spaces and of Besov spaces in R™. In Chap. 10 we
also present a review of the results of the theory of (p,l)-capacities and of
nonlinear potentials.

In Chap. 11 we investigate necessary and sufficient conditions for the va-
lidity of the trace inequality

lall iy < Cllullss, u e Cgo(R™), (0.0.1)

where L, () is the space with the norm ([ |u|?du)'/?, p is a measure, and
S;) is one of the spaces just mentioned. For ¢ > p, (0.0.1) is equivalent to the
isoperimetric inequality connecting the measure p and the capacity generated
by the space Sll,. This result is of the same type as the theorems in Chaps. 2-9.
It immediately follows from the capacitary inequality

| can(ai st ar < claly,
0 p

where A = {z : |u(z)| > t}. Inequalities of this type, initially found by the
author for the spaces Ly (£2) and [D/IQ)(R") [543], have proven to be useful in a
number of problems of function theory and were intensively studied.

For ¢ > p > 1 the criteria for the validity of (0.0.1), presented in Chap. 11
do not contain a capacity. In this case the measure of any ball is estimated
by a certain function of the radius.

Chapter 12 is devoted to pointwise interpolation inequalities for derivatives
of integer and fractional order.

Further, in Chap. 13 we introduce and study a certain kind of capacity. In
comparison with the capacities defined in Chap. 10, here the class of admissible
functions is restricted, they equal the unity in a neighborhood of a compactum.
(In the case of the capacities in Chap. 10, the admissible functions majorize
the unity on a compactum.) If the order [ of the derivatives in the norm of the
space equals 1, then the two capacities coincide. For [ # 1 they are equivalent,
which is proved in Sect. 13.3.

The capacity introduced in Chap. 13 is applied in subsequent chapters to
prove various embedding theorems. An auxiliary inequality between the L -
norm of a function on a cube and a certain Sobolev seminorm is studied in
detail in Chap. 14. This inequality is used to justify criteria for the embedding
of Li,(.Q) into different function spaces in Chap. 15. By Lé(()) we mean the
completion of the space C§°(§2) with respect to the norm |[Viul|z, (o). It is
known that this completion is not embedded, in general, into the distribution
space 2. In Chap. 15 we present the necessary and sufficient conditions for the
embeddings of L, (£2) into 2', Ly(£2,1oc), and L,(42). For p = 2, these results
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can be interpreted as necessary and sufficient conditions for the solvability of
the Dirichlet problem for the polyharmonic equation in unbounded domains
provided the right-hand side is contained in 2’ or in L,(£2). In Chap. 16
we find criteria for the boundedness and the compactness of the embedding
operator of the space L, (12, v) into W] (£2), where v is a measure and L. (£2,v)
is the completion of C§°(§2) with respect to the norm

1/p
</ |Vlu\pdx+/ |u|pd1/> .
2 Q

The topic of Chap. 17 is a necessary and sufficient condition for density
of C§°(£2) in a certain weighted Sobolev space which appears in applications.
Finally, Chap. 18 contains variations on the theme of Molchanov’s discreteness
criterion for the spectrum of the Schrédinger operator as well as two-sided
estimates for the first Dirichlet-Laplace eigenvalue.

Obviously, it is impossible to describe such a vast area as Sobolev spaces
in one book. The treatment of various aspects of this theory can be found
in the books by Sobolev [713]; R.A. Adams [23]; Nikolsky [639]; Besov, I'in,
and Nikolsky [94]; Gel’'man and Maz’ya [305]; Gol’dshtein and Reshetnyak
[316]; Jonsson and Wallin [408]; Ziemer [813]; Triebel [758-760]; D.R. Adams
and Hedberg [15]; Maz’ya and Poborchi [576]; Burenkov [155]; Hebey [361];
Haroske, Runst, and Schmeisser [354]; Hajlasz [342]; Saloff-Coste [687]; At-
touch, Buttazzo, and Michaille [54]; Tartar [744]; Haroske and Triebel [355];
Leoni [486]; Maz’ya and Shaposhnikova [588]; Maz’ya [565]; and A. Laptev
(Ed.) [479].



1

Basic Properties of Sobolev Spaces

The plan of this chapter is as follows. Sections 1.1 and 1.2 contain the prereq-
uisites on Sobolev spaces and other function analytic facts to be used in the
book. In Sect. 1.3 a complete study of the one-dimensional Hardy inequality
with two weights is presented. The case of a weight of unrestricted sign on
the left-hand side is also included here, following Maz’ya and Verbitsky [593].
Section 1.4 contains theorems on necessary and sufficient conditions for the
L, integrability with respect to an arbitrary measure of functions in Wll)(Q)
These results are due to D.R. Adams, p > 1, [2, 3] and the author, p = 1,
[551]. Here, as in Sobolev’s papers, it is assumed that the domain is “good,”
for instance, it possesses the cone property. In general, in requirements on a
domain in Chap. 1 we follow the “all or nothing” principle. However, this rule
is violated in Sect. 1.5 which concerns the class preserving extension of func-
tions in Sobolev spaces. In particular, we consider an example of a domain for
which the extension operator exists and which is not a quasicircle.

In Sect. 1.6 an integral representation of functions in W} (£2) that vanish
on 0f2 along with all their derivatives up to order k — 1, 2k > [, is obtained.
This representation entails the embedding theorems of the Sobolev type for
any bounded domain (2. In the case 2k < [ it is shown by example that some
requirements on {2 are necessary. Section 1.7 is devoted to an approximation
of Sobolev functions by bounded ones. Here we reveal a difference between
the cases [ = 1 and [ > 1. The chapter finishes with a discussion in Sect. 1.8
of the maximal subalgebra of Wé(()) with respect to multiplication.

1.1 The Spaces L. (£2), V(£2) and W)(£2)
1.1.1 Notation

Let {2 be an open subset of n-dimensional Euclidean space R" = {z}. Con-
nected open sets 2 will be called domains. The notations 942 and {2 stand for
the boundary and the closure of {2, respectively. Let C*°(£2) denote the space

V. Maz’ya, Sobolev Spaces, 1
Grundlehren der mathematischen Wissenschaften 342,
DOI 10.1007/978-3-642-15564-2_1, (© Springer-Verlag Berlin Heidelberg 2011
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2 1 Basic Properties of Sobolev Spaces

of infinitely differentiable functions on §2; by C'°°(§2) we mean the space of
restrictions to {2 of functions in C*>°(R"™).

In what follows 2(£2) or C§°(£2) is the space of functions in C°°(R"™) with
compact supports in §2. The classes C*(£2), C*(£2), and C}(§2) of functions
with continuous derivatives of order k and the classes C*(£2), C*<(£2), and
Cg "“(£2) of functions for which the derivatives of order k satisfy a Holder
condition with exponent « € (0,1] are defined in an analogous way.

Let 2'(£2) be the space of distributions dual to 2(§2) (cf. L. Schwartz [695],
Gel'fand and Shilov [304]). Let L,(£2), 1 < p < oo, denote the space of
Lebesgue measurable functions, defined on (2, for which

1/p
1fllz,2) = </Q |fI? da:) < o0.

We use the notation L., (§2) for the space of essentially bounded Lebesgue
measurable functions, i.e., uniformly bounded up to a set of measure zero. As
a norm of f in L., ({2) one can take its essential supremum, i.e.,

[ fllpo(y = inf{c>0:|f(z)| < c for almost all z € 2}.

By L,(£2,loc) we mean the space of functions locally integrable with power
p in 2. The space L,(f2,loc) can be naturally equipped with a countable
system of seminorms [|ul|z (), where {wy}x>1 is a sequence of domains with
compact closures wy, @y C wry1 C 2, and Y, wr = 2. Then L,(£2,loc)
becomes a complete metrizable space.

If 2 = R™ we shall often omit {2 in notations of spaces and norms. Inte-
gration without indication of limits extends over R™. Further, let supp f be
the support of a function f and let dist(F, E) denote the distance between
the sets ' and E. Let B(z, ) or B,(x) denote the open ball with center x
and radius g, B, = B,(0). We shall use the notation m,, for n-dimensional
Lebesgue measure in R™ and v,, for m,(By).

Let ¢, ¢1, ca, ..., denote positive constants that depend only on “dimen-
sionless” parameters n, p, [, and the like. We call the quantities a and b equiv-
alent and write a ~ b if c1a < b < ¢cga. If o is a multi-index (aq,...,an),
then, as usual, |a| = Zj aj, ol = aql,. 0!, DY = D3 ..., Do, where
D,, = 0/0x;, x* = z7*,..., 2% . The inequality § > « means that 5; > o
for i =1,...,n. Finally, V; = {D*}, where |a| =1 and V = V.

1.1.2 Local Properties of Elements in the Space L;(Q)

Let LL(£2) denote the space of distributions on 2 with derivatives of order
in the space L,(£2). We equip Lé(Q) with the seminorm

IViullr, @) = (/Q<Z |D“u(x)|2)p/2>1/p.

|ae| =1



