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Preface

This book is devoted to the study of value distribution of functions which are mero-
morphic on the complex plane or in an angular domain with vertex at the origin. We
characterize such meromorphic functions in terms of distribution of some of their
value points. The study, together with certain related topics, is known as theory of
value distribution of meromorphic functions. The theory is too vast to be justified
within a single work. Therefore we selected and organized the content based on their
significant importance to our understanding and interests in this book. I gladly ac-
knowledge my indebtedness in particular to the books of M. Tsuji, A. A. Goldberg
and I. V. Ostrovskii, Yang L. and the papers of A. Eremenko.

An outline of the book is provided below. The introduction of the Nevanlinna
characteristic to the study of meromorphic functions is a new starting symbol of
the theory of value distribution. The Nevanlinna characteristic is powerful, and its
thought has been used to produce various characteristics such as the Nevanlinna
characteristic and Tsuji characteristic for an angular domain. And from geometric
point of view, namely the Ahlfors theory of covering surfaces, the Ahlfors-Shimizu
characteristic have also been introduced. These characteristics are real-valued func-
tions defined on the positive real axis. Therefore, in the first chapter, we collect the
basic results about positive real functions that are often used in the study of mero-
morphic function theory. Some of these results are distributed in other books, some
in published papers, and some have been newly established in order to serve our
specific objectives in the book.

In the present book, we discuss value distribution not only in the complex plane,
but also in an angular domain. Therefore, we introduce, in the second chapter, var-
ious characteristics of a meromorphic function: The Nevanlinna characteristic for
a disk, the Nevanlinna characteristic for an angle, the Tsuji characteristic and the
Ahlfors-Shimizu characteristic for an angle. Although they were distributed in an-
other books, we collected all of them, and more importantly, we carefully compared
them with one another to reveal their relations that enabled us to produce new re-
sults and applications. We establish the first and second fundamental theorems for
the various characteristics and the corresponding integrated counting functions, and
provide an estimate of the error term related to the Nevanlinna characteristic for an
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angle in terms of the Nevanlinna characteristic in a larger angle. We discuss in an
angle the growth order of a meromorphic function and exponent of convergence of
its a-points by means of the Ahlfors-Shimizu characteristic. We establish unique
theorems in an angular domain with the help of the Tsuji characteristic, which is a
new topic, because this has never been touched before while only the case of the
whole complex plane was discussed.

After providing a brief overview of the characteristics in Chapter 2, we carefully
investigate, in the third chapter, a new singular direction of a meromorphic function
called T direction, which is different from the Julia, Borel and Nevanlinna direc-
tions. A singular direction is characterized essentially with the help of a property
that in any angle containing it, the function assumes abundantly any value possibly
except at most two values. The word “abundantly” is expressed by “infinitely often”
for the Julia directions and by the growth order of the function for the Borel direc-
tions. The definition of T directions is to compare the integrated counting function
in an angle to the characteristic and so it does not depend on the growth order, which
is different from the Borel directions. So we can naturally consider T directions of
meromorphic functions with zero order or infinite order. The second fundamental
theorem of Nevanlinna is considered as the background of T directions. The follow-
ing inequality

limsup
r→∞

N(r,C, f = a)
T (r, f )

> 0

always holds for all but at most two values of a. For a T direction, we consider
the above inequality in any angle containing it instead of the whole complex plane.
First we discuss the existence of T directions including the case of small functions
in our consideration, next do relationship with the Borel directions, then common
T directions of the function and its derivatives including the Hayman T directions.
The singular directions of meromorphic solutions of linear differential equations
possess some special properties, which are carefully studied and finally, we survey
the results on the uniqueness and singular directions of an algebroid function.

The book includes discussion of argument distribution as well as modulo dis-
tribution and their relations. In the fourth chapter, we reveal relations between the
numbers of deficient values and T directions. The results established there are new
and unpublished elsewhere. The essential idea for discussion of this topic comes
from observation that if the function assumes two values a and b at few points and
is in close proximity to a complex number c �= a,b at enough points in a bounded
domain, then it is close to c in the whole domain possibly outside a small set and
that if the function is analytic, in view of the two constant theorem for the harmonic
measure, we can use the modulo of the function on some part of the boundary of the
domain to control the function modulo inside the domain. In the final section, we
make a survey on this topic.

In the fifth chapter, we discuss the growth of the meromorphic functions that have
two radially distributed values and a Nevanlinna deficient value. We first consider
the growth of the meromorphic functions without any restriction imposed on their
order and then those with the finite lower order. We attain our purpose in terms of
the Nevanlinna characteristic for an angle, as Goldberg and Ostrovskii did, but our
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starting point is to establish an estimate of the Nevanlinna characteristic for a disk
centered at the origin in terms of Bα,β (r, f ) under an observation of the Nevanlinna
deficient value, and then Bα,β (r, f ) is estimated by two Cα,β (r,∗) which may deal
with the derivatives with help of fundamental inequalities for the Nevanlinna char-
acteristic for an angle, and finally, Cα,β (r,∗) are replaced by the integrated counting
functions N(r,Ω ,∗) in terms of the relations between them. Thus the Nevanlinna
characteristic for a disk can be estimated by two N(r,Ω ,∗) and we reduce the study
of this subject to estimation of Bα,β in terms of Cα,β . However, this comes from the
study of fundamental inequality for the Nevanlinna characteristic for an angle. As
we know, most of the fundamental inequalities for a disk can be validly and easily
transferred to the case of an angle and therefore, we give out a simple and elemen-
tary approach to the discussions of this subject. When the function is of the finite
lower order, we use the Baernstein spread relation to discuss the estimation of the
Nevanlinna characteristic for a disk in terms of Bα,β (r, f ) and hence we can attain
deeper results for this subject.

In the sixth chapter, we collect and develop results about singularities of the
inverse of a meromorphic function. A transcendental meromorphic function is
equipped with a parabolic simply connected Riemann surface. The boundary points
of the Riemann surface correspond to transcendental singularities of the inverse of
the function, that is, asymptotic values of the function, and vice versa. We discuss re-
lationships between the number of direct singularities and the growth (lower) order.
The isolated transcendental singularity is logarithmic, and hence we observe that an
asymptotic value over which the singularity is not logarithmic is a limit of other sin-
gular values. For a meromorphic function of finite order, such an asymptotic value is
a limit point of critical values , which is the Bergweiler-Eremenko’s result. We show
Eremenko’s construction of a transcendental meromorphic function with the finite
given order which has every value on the extended complex plane as its asymptotic
value, and next discuss the fixed points of bounded-type meromorphic functions,
that is, meromorphic functions whose singular value set are bounded, from which
we obverse that meromorphic functions possess special characters if their singular
values are suitably restricted.

The final chapter is mainly devoted to the Eremenko’s proof of the famous
F. Nevanlinna conjecture on meromorphic functions with maximum total sum of
Nevanlinna deficiencies. The conjecture was proved first by David Drasin, but his
proof is very complicated. A. Eremenko used the potential theory to give a simple
proof to the conjecture, from which we see the power of the potential theory in the
study of value distribution of meromorphic functions. The theory to study subhar-
monic functions is the potential theory. The defence of two subharmonic functions is
called δ -subharmonic. The logarithm of modulo of a meromorphic function is a δ -
subharmonic function. Therefore, some problems about value distribution of mero-
morphic functions can be transferred to those about subharmonic functions. And
the limit functions of a sequence of subharmonic functions produced by the sub-
harmonic function in question are easier to be characterized than the meromorphic
functions. The property or behavior of the limit functions can be used to describe the
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meromorphic functions. This is one of the approaches in which the potential theory
are used to discuss problems about meromorphic functions.

For the benefit of readers, and for our intent to introduce and develop the po-
tential theory in value distributions, we introduce and gather the basic knowledge
about the potential theory including the normality of subharmonic function family
in the sense of Lloc and the Nevanlinna theory of subharmonic functions which con-
sist of works of Anderson, Baernstein, Eremenko, Sodin, and others. The works of
these mathematicians are very special and very important, and in our opinion, rep-
resent one aspect of value distribution theory which is worth further investigating
and developing.

The first draft of this book was finished at the end of 2006, and main content of
the book, except the seventh chapter was lectured in the summer course for post-
graduated students held at Jiang Xi Normal University in the summer of 2007. I am
indebted to Professor Yi Caifeng for her organizing the summer school, to Professor
He Yuzhan for his comments and offering me some important materials, and to Pro-
fessor Ye Zhuang for his support of this book. I would like to send many thanks to
others including my students who pointed out some mistakes or some tough state-
ments in the original draft when they read. This book has been partially supported
by the National Natural Science Foundation of China.

Jianhua Zheng
Beijing,

December, 2009



Contents

1 Preliminaries of Real Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Functions of a Real Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Order and Lower Order of a Real Function . . . . . . . . . . . 1
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Chapter 1

Preliminaries of Real Functions

Jianhua Zheng
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China

jzheng@math.tsinghua.edu.cn

Abstract: The various characteristics of meromorphic functions are main tool in
the study of value distribution of meromorphic functions this book will introduce.
They are real-valued functions defined on the positive real axis. In this chapter, we
discuss certain properties of such real functions for application in later chapters.
We begin with the order and the lower order of such functions which include the
proximate order and the type function. We discuss the existence of the Pólya peak
sequence. Also, we identify a sequence of positive numbers with some of the Pólya
peak properties. We mainly introduce a result of Edrei and Fuchs for the regularity,
thereby, improving the lemma of Borel and quasi-invariance of inequalities of two
real functions under differentiation and integration. Finally, we exhibit the Green
formula and collect several integral inequalities.

Key words: Real functions, Proximate order, Pólya peak, Regularity, Quasi-
invariance

1.1 Functions of a Real Variable

In investigation of theory of meromorphic functions, we often meet the study of
some properties of functions of a real variable, because various characteristics of
meromorphic functions are such functions. Therefore, in this section, we collect the
main properties of such functions which will be frequently used in the sequel.

1.1.1 The Order and Lower Order of a Real Function

Let T (r) be a non-negative continuous function on [r0,∞) for some r0 � 0 and define
log+ x = logmax{1,x}. For T (r), we define its lower order μ and order λ in turn as
follows:
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μ = μ(T ) = liminf
r→∞

log+ T (r)
logr

and

λ = λ (T ) = limsup
r→∞

log+ T (r)
logr

.

We concentrate mainly on the function T (r) which tends to infinity as r does. The
order of a positive increasing continuous function can be characterized in term of an
integral value.

Lemma 1.1.1. Let T (r) be a continuous, non-decreasing and positive function on
[r0,∞). Then for each ρ < λ (T ), we have∫ ∞ T (t)

tρ+1 dt = ∞;

Conversely, if the above equation holds for certain ρ , then λ (T ) � ρ.

Proof. Suppose that the integral is finite, and then for all r � r0,

K >
∫ 2r

r

T (t)
tρ+1 dt � T (r)

(2r)ρ+1 r = 2−ρ−1T (r)r−ρ ,

where K =
∫ ∞

r0

T (t)
tρ+1 dt. This immediately deduces λ (T ) � ρ and the former half part

of the lemma follows.
If λ (T ) < ρ , then for each s with λ (T ) < s < ρ , we have T (r) < rs for all

sufficiently large r. Thus T (r)r−ρ−1 < r−(ρ−s)−1, which yields the integral
∫ ∞ T (t)

tρ+1 dt
is convergent.

This completes the proof of Lemma 1.1.1. ��
A continuous function may be too complicated to grasp, and thus sometime it

is necessary to modify it by preserving, roughly speaking, only the values of r at
which T (r) can be approximately written into rλ . The precise statement is as under

Theorem 1.1.1. Let T (r) be a continuous and positive function for r � r0 > 0 and
tend to infinity as r →∞ with λ = λ (T ) <∞. Then, there exists a function λ (r) with
the following properties:

(1) λ (r) is a monotone and piecewise continuous differentiable function for r �
r0 with lim

r→∞
λ (r) = λ ;

(2) lim
r→∞

λ ′(r)r logr = 0;

(3) limsup
r→∞

T (r)
rλ (r) = 1;

(4) for each positive number d,

lim
r→∞

U(dr)
U(r)

= dλ , U(r) = rλ (r). (1.1.1)
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We shall call the function λ (r) the proximate order of T (r) and the function
U(r) the type function of T (r). It is obvious that the proximate order and the type
function of a real function are not unique. As λ > 0, U(r) = eλ (r) logr is increasing
for all larger r. A simple calculation implies that a monotone increasing function
T (r) satisfying (1.1.1) must have μ(T ) = λ (T ) = λ . The formula (1.1.1) is the key
point of Theorem 1.1.1 and it makes sense essentially for the limit being finite. This
explains the necessity for the condition that a function T (r) in question is of finite
order. However, in the case of infinite order, we have the following

Theorem 1.1.2. Let T (r) be a continuous and positive function for r � r0 > 0
and tend to infinity as r → ∞ with λ = λ (T ) = ∞. Assume that ω(r) is a positive,
continuous and non-increasing function with

∫ ∞
1

ω(t)
t dt < +∞.

Then, there exists a function λ (r) with the following properties
(1) λ (r) is non-decreasing and continuous and tends to infinity as r → ∞;
(2) limsup

r→∞

T (r)
rλ (r) = 1;

(3) Set U(r) = rλ (r) and

lim
r→∞

U(r +ω(U(r)))
U(r)

= 1. (1.1.2)

The proofs of Theorem 1.1.1 and Theorem 1.1.2 can be found in Chuang [2].
The following result will be used often in the next chapters.

Lemma 1.1.2. Let T (r) be a non-negative and non-decreasing function in 0 < r <
∞. If

liminf
r→∞

T (dr)
T (r)

� c > 1

for some d > 1, then ∫ r

1

T (t)
t

dt � 2c logd
c−1

T (r)+O(1);

If

liminf
r→∞

T (dr)
T (r)

> dω

for some d > 1 and ω > 0, then∫ r

1

T (t)
tω+1 dt � K

T (r)
rω

+O(1),

where K is a positive constant.

Proof. Write s = c+1
2 and we can find a natural number N such that for r � r0 = dN ,

we have T (d−1r) < s−1T (r). Then for each r � r0 = dN , we have n � N such that
dn � r < dn+1, and let us estimate the following integral
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r0

T (t)
t

dt =
n−1

∑
k=N

∫ dk+1

dk

T (t)
t

dt +
∫ r

dn

T (t)
t

dt

�
n−1

∑
k=N

T (dk+1) logd +T (r) logd

= T (dn) logd
n−1

∑
k=N

T (dk+1)
T (dn)

+T (r) logd

< T (dn) logd
∞

∑
k=0

s−k +T (r) logd

� 2c logd
c−1

T (r).

This yields the first desired inequality.
Now, we come to the proof of the second part of Lemma 1.1.2. Under the given

assumption, for r � r0 = dN and some ε > 0 we have T (d−1r) < (d + ε)−ωT (r).
Thus, it follows that∫ r

r0

T (t)
tω+1 dt =

n−1

∑
k=N

∫ dk+1

dk

T (t)
tω+1 dt +

∫ r

dn

T (t)
tω+1 dt

�
n−1

∑
k=N

T (dk+1)
1
ω

(
1

dkω − 1
d(k+1)ω

)
+T (r)

1
ω

(
1

dnω − 1
rω

)
<

1
ω

T (dn)
n−1

∑
k=N

(d + ε)−ω(n−k−1)
(

1
dkω − 1

d(k+1)ω

)
+

1
ω

T (r)
dnω

<
dω −1
ω

T (dn)
(d + ε)nω

( d+ε
d

)(n+1)ω −1( d+ε
d

)ω −1
+

1
ω

T (r)
dnω

� K0
T (r)
dnω < K0dω T (r)

rω
,

where K0 = dω−1
ω

(d+ε)ω
(d+ε)ω−dω + 1

ω .
This completes the proof of Lemma 1.1.2. ��

1.1.2 The Pólya Peak Sequence of a Real Function

In this subsection, we consider the Pólya peak for a T (r), which was first introduced
by Edrei [6].

Definition 1.1.1. A sequence of positive numbers {rn} is called a sequence of Pólya
peaks of order β for T (r) (outside a set E) provided that there exist four sequences
{r′n}, {r′′n}, {εn} and {ε ′n} such that

(1) rn �∈ E, r′n → ∞, rn
r′n
→ ∞, r′′n

rn
→ ∞, εn → 0, ε ′n → 0 (n → ∞);
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(2) liminf
n→∞

logT (rn)
logrn

� β ;

(3) T (t) < (1+ εn)
(

t
rn

)β
T (rn), t ∈ [r′n,r′′n ];

(4) T (t)/tβ−ε ′n � KT (rn)/rβ−ε ′n
n , 1 � t � r′′n and for a positive constant K.

Actually, it is easy to see that (2) follows from (4). It is obvious that any subse-
quence of a Pólya peak sequence is still a sequence of the Pólya peak. Please note
that the above definition of the Pólya peaks has some differences from that in other
literatures where a sequence of Pólya peak is only required to satisfy (1) and (3)
listed in Definition 1.1.1. The sequence {rn} is called a sequence of relaxed Pólya
peaks of order β for a constant C > 1, provided that (1), (2) and (4) in Definition
1.1.1 hold and (3) does for C in place of “(1 + εn)”. It is easily seen that for a se-
quence {rn} of Pólya peak and d � 1, {drn} must be a sequence of the relaxed Pólya
peak.

The following is a modifying version of well-known result which can be found
in Section 8.1 of Yang [12].

Theorem 1.1.3. Let T (r) be a non-negative and non-decreasing continuous func-
tion in 0 < r < ∞ with 0 � μ(T ) < ∞ and 0 < λ (T ) � ∞. Then for arbitrary finite
and positive number β satisfying μ � β � λ and a set F with finite logarithmic
measure, i.e.,

∫
F t−1dt < ∞, there exists a sequence of the Pólya peaks of order β

for T (r) outside F.

Proof. We choose a sequence of positive numbers {εn} with εn → 0 as n → ∞.
By induction, we seek the desired Pólya peak sequence {rn}. Suppose we have rn−1
and want to find rn.

First of all consider the case when β = λ (T ) < ∞. It is easy to see that for n,

limsup
t→∞

T (t)
tβ−εn

= ∞ and lim
t→∞

T (t)
tβ+εn

= 0.

Therefore, we can find a real number u > max{nε−1
n ,rn−1} such that

T (u)u−β+εn = max
1�t�u

{T (t)t−β+εn}

and a v � u such that

T (v)v−β−εn = max
t�u

{T (t)t−β−εn}.

We choose rn with u � rn � v such that

T (rn)r−β+εn
n = max

u�t�v
{T (t)t−β+εn} � T (u)u−β+εn .

Thus for t � v, we have

T (rn)r−β+εn
n � T (t)t−β+εn (1.1.3)
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and for t � rn

T (t)t−β−εn � T (v)v−β−εn � T (rn)r−β+εn
n v−2εn � T (rn)r−β−εn

n

and, therefore, for rn � t � rn/εn,

T (t)t−β+εn = T (t)t−β−εnt2εn � T (rn)r−β−εn
n t2εn

= T (rn)r−β+εn
n

(
t
rn

)2εn

(1.1.4)

�
(

1
εn

)2εn

T (rn)r−β+εn
n .

Combining (1.1.3) and (1.1.4) deduces that rn satisfies (4) for r′′n = rn/εn. This also
immediately yields

T (t) � e−2εn logεn

(
t
rn

)β
T (rn) for εnrn � t � ε−1

n rn. (1.1.5)

Now let us consider the case when μ � β < λ . Assume without any loss of
generalities that εn < λ −β . Then

limsup
t→∞

T (t)
tβ+εn

= ∞ and liminf
t→∞

T (t)
tβ+εn/2 = 0.

Application of a theorem of Edrei [6] deduces the existence of rn with rn >

max{rn−1,ε
− 2β+εn

εn
n } such that

T (t) �
(

t
rn

)β+εn

T (rn)

for 1 � t � r
β+εn
β+εn/2
n . This immediately implies (1.1.5) and rn satisfies (4), because

for 1 � t � ε−1
n rn(< r

β+εn
β+εn/2
n ), (

t
rn

)2εn

� e2εn| logεn|

and the quantity on the right side is bounded and tends to 1.
Thus, we have gotten a sequence {rn} satisfying (1.1.5) and (4) in Definition

1.1.1.
Put dn = 1+1/n and V = ∪∞

n=1[rn,dnrn]. V has the infinite logarithmic measure
and, therefore, there exist a subsequence of {[rn,dnrn]}, each member of which con-
tains at least a point outside F . Without any loss of generalities we can assume for
each n a r̂n ∈ [rn,dnrn]\F . Then for ε̂nr̂n � t � r̂n/ε̂n with ε̂n = dnεn, we have



1.1 Functions of a Real Variable 7

T (t) �
(

t
rn

)β+εn

T (rn) � (dn)β+εn

(
t
r̂n

)β+εn

T (r̂n)

� (dn)β+εn

(
1
ε̂n

)2εn ( t
r̂n

)β
T (r̂n),

this implies that {r̂n} satisfies (3) in Definition 1.1.1. It is easy to show {r̂n} satisfies
other conditions of the Pólya peak.

This completes the proof of Theorem 1.1.3. ��
Chuang considered in [4] the type function and in [3] the Pólya peak sequence

of a continuous real function and revealed some relations between the type function
and the Pólya peak sequence by demonstrating their existence simultaneously start-
ing from a basic theorem, that is, Theorem 1 of [3] or Lemma 4.4 of [4]. In fact, we
easily obtain a sequence of the Pólya peak of order λ (T ) from the type function, for
an example, a careful calculation implies that a sequence of positive real numbers
{rn} with U(rn) = (1+o(1))T (rn) must be a Pólya peak sequence of T (r) of order
λ (T ). Drasin and Shea [5] obtained a necessary and sufficient condition for exis-
tence of a sequence of Pólya peaks of order β which satisfies only (1) and (3) listed
in Definition 1.1.1. Set

λ ∗(T ) = sup

{
τ : limsup

x,A→∞

T (Ax)
AτT (x)

= ∞

}

and

μ∗(T ) = inf
{
τ : liminf

x,A→∞

T (Ax)
AτT (x)

= 0
}

.

It is proved in [5] that μ∗(T ) � μ(T ) � λ (T ) � λ ∗(T ) and if μ∗ < ∞, then a se-
quence of Pólya peaks of order β satisfying only (1) and (3) listed in Definition
1.1.1 exists if and only if μ∗ � β � λ ∗ and β <∞. However, we do not know if this
condition is sufficient to the existence of our Pólya peak sequence. Usually, we call
λ ∗ and μ∗ respectively the Pólya order and Pólya lower order of T (r).

Generally, there exists no Pólya peak sequence of T (r) whose lower order is
of infinite order. However, we have the following, which will be often used in the
sequel.

Lemma 1.1.3. Let T (r) be an increasing and non-negative continuous function
with the infinite order and F a set of positive real numbers having finite logarith-
mic measure. Then given a sequence {sn} of positive real numbers, there exists an
unbounded sequence {rn} of positive real numbers outside F such that

T (t)
tsn

� e
T (rn)

rsn
n

, 1 � t � rn.

Proof. Since T (r) is of infinite order, for a fixed sn we have
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limsup
t→∞

T (t)
tsn

= ∞

and it is easy to see that we can find a sequence {r̂m} such that r̂m > 2nm and r̂m+1 >
e1/sn r̂m and

T (t)
tsn

� T (r̂m)
r̂sn

m
, 1 � t � r̂m.

Set

Fn =
∞⋃

m=1

[r̂m,e1/sn r̂m].

Then ∫
Fn

dt
t

=
∞

∑
m=1

∫ e1/sn r̂m

r̂m

dt
t

=
∞

∑
m=1

1
sn

= ∞

so that Fn \F has the infinite logarithmic measure. We can find a rn ∈ Fn \F such
that for some m, r̂m � rn � e1/sn r̂m and choose a r′n in [r̂m,rn] such that

T (r′n)
r′sn

n
= max

{
T (t)
tsn

: r̂m � t � rn

}
.

Thus for 1 � t � rn, we have

T (t)
tsn

� T (r′n)
r′sn

n
�
(

rn

r′n

)sn T (rn)
rsn

n
� e

T (rn)
rsn

n
.

The desired sequence {rn} has been attained. ��

1.1.3 The Regularity of a Real Function

We first of all consider the density and the logarithmic density of a Lebesgue mea-
surable set on the positive real axis. However, we begin with a general case, which
will bring us some benefits.

An absolutely continuous function ψ(r) on an interval [a,b] has finite derivative
almost everywhere in the sense of Lebesgue and ψ ′(r) ∈ L1([a,b]) and for each
r ∈ [a,b]

ψ(r) = ψ(a)+
∫ r

a
ψ ′(t)dt

and an indefinite integral of a function in L1([a,b]) is absolutely continuous. A con-
vex function is absolutely continuous and its right (left) derivative is non-decreasing.
We say that an increasing function ψ(r) is a convex function of another increasing
ϕ(r) if the right (left) derivative dψ(t)/dϕ(t) exists and is non-decreasing.

We denote by m the Lebesgue measure on the positive real axis. Let E be a
Lebesgue measurable subset of the positive real axis and ψ(r) a positive and ab-
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solutely continuous function of r for r � r0. Following Barry [1], we define the
ψ-measure of E(r) = E ∩ [r0,r] by

ψ−m(E(r)) =
∫

E(r)
ψ ′(t)dt

and the upper and lower ψ-densities, respectively, of E by

ψ−densE = lim
r→∞

sup
inf

ψ−m(E(r))
ψ(r)

.

When ψ(r) is taken to be r, we obtain the definition of the upper and lower den-
sities of E, denoted by densE and densE and when ψ(r) is logr, we have the
upper and lower logarithmic densities of E, denoted by logdensE and logdensE.
When ψ−densE = ψ−densE, it is said that E has a ψ-density and we use nota-
tion ψ−densE to denote the common value and in this case, specially we have the
definition of the density and logarithmic density of a set.

It is easy to see that for a set E on the positive real axis with the finite logarith-
mic measure, i.e.,

∫
E t−1dt < ∞, we have densE = 0. Actually, it follows from the

following equation

m(E(r)) = m(E(
√

r))+m(E ∩ [
√

r,r]) �
√

r + r
∫

E∩[
√

r,r]
t−1dt = o(r).

The following is Lemma 1 of Barry [1].

Lemma 1.1.4. Let ψ(r) and ϕ(r) be positive, increasing, unbounded and absolutely
continuous functions of r, and ψ(r) a convex function of ϕ(r) for r � r0. Then

ψ−densE � ϕ−densE � ϕ−densE � ψ−densE.

Proof. According to the definition of the upper ψ-density of a set, given arbitrarily
ε > 0, for t � r1(ε) > r0, we have

ψ−m(E(t)) < (ψ−densE + ε)ψ(t).

Noticing that dψ(t)/dϕ(t) is non-decreasing in t, in view of the formula for inte-
gration by parts, we have for r > r1

ϕ−m(E(r)) =
∫

E(r)
dϕ(t) =

∫
E(r)

(
dψ(t)
dϕ(t)

)−1

dψ(t)

=
∫ r

r0

(
dψ(t)
dϕ(t)

)−1

dψ−m(E(t))

= ψ−m(E(t))
(

dψ(t)
dϕ(t)

)−1 ∣∣∣r
r0

+
∫ r

r0

ψ−m(E(t))d

[
−
(

dψ(t)
dϕ(t)

)−1
]
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< (ψ−densE + ε)ψ(r)
(

dψ(r)
dϕ(r)

)−1

+
∫ r1

r0

ψ−m(E(t))d

[
−
(

dψ(t)
dϕ(t)

)−1
]

+
∫ r

r1

(ψ−densE + ε)ψ(t)d

[
−
(

dψ(t)
dϕ(t)

)−1
]

= O(1)+(ψ−densE + ε)

[
ψ(r)

(
dψ(r)
dϕ(r)

)−1

−ψ(t)
(

dψ(t)
dϕ(t)

)−1 ∣∣∣r
r1

+
∫ r

r1

(
dψ(t)
dϕ(t)

)−1

dψ(t)

]
= O(1)+(ψ−densE + ε)(O(1)+ϕ(r)).

Thus

limsup
r→∞

ϕ−m(E(r))
ϕ(r)

� ψ−densE.

The remainder inequality follows from this by taking complements. ��
Specially, from Lemma 1.1.4 we get

densE � log− densE � log− densE � densE,

for r is a convex function of logr.
Generally, a monotone continuous function may be complicated in the sense of

its regular behavior and such an irregular behavior may cause difficulties to our
discussion. However, fortunately, after a small set is ignored, such a function pos-
sess some regularities which are sufficient in certain discussions. The following is a
fundamental lemma of E. Borel.

Lemma 1.1.5. Let T (r) be a non-decreasing continuous function in [r0,+∞) such
that T (r0) � 1. Then with possible exception of values of r in a set with measure at
most 2, we have

T
(

r +
1

T (r)

)
< 2T (r).

The following is Lemma 10.1 of Edrei and Fuchs [7], a modified version of the
Borel Lemma 1.1.5.

Lemma 1.1.6. Let ψ(r) and ϕ(r) be two positive functions on the positive
real axis. Assume that for r � r0 � 0, ψ(r) is non-decreasing while ϕ(r) is non-
increasing and that for some r1(> r0) and a given positive number c, ψ(r1) > r0 +c.
Set

E = {r � r1 : ψ(r +ϕ(ψ(r))) � ψ(r)+ c}.
Then we have
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m(E(a,A)) � 1
c

∫ ψ(A)

ψ(a)−c
ϕ(t)dt,

provided that r1 � a < A < +∞, where E(a,A) stands for the intersection of E with
the interval (a,A).

Proof. Under the assumption that ψ(r1) > r0 +c, it is easy to see that ψ(r)−c > r0
and ϕ(t) is non-increasing for t � ψ(r)− c and r � r1.

Assume conversely that Lemma 1.1.6 is false, that is,

m(E(a0,A)) � ε +
1
c

∫ ψ(A)

ψ(a0)−c
ϕ(t)dt, (1.1.6)

for three fixed numbers ε > 0, a0 and A with r1 � a0 < A < ∞.
Put

λ (x) = inf
r∈E(x,A)

{r}

and in view of the definition of the infimum we can find b1 ∈ E(a0,A) with λ (a0) �
b1 < λ (a0)+ ε

2 . Set a1 = b1 +ϕ(ψ(b1)) and since b1 ∈ E,

ψ(a1) � ψ(b1)+ c.

Next we want to get the similar estimate from below of m(E(a1,A)) to (1.1.6).
Notice that if a1 � A, m(E(a1,A)) = m(E(a0,A))−m(E(a0,a1)), and to the end
we respectively estimate m(E(a0,A)) and m(E(a0,a1)) as follows: as ϕ(r) is non-
increasing, we have

m(E(a0,a1)) � a1 −λ (a0) = (a1 −b1)+(b1 −λ (a0))

� ϕ(ψ(b1))+
ε
2

� 1
c

∫ ψ(b1)

ψ(b1)−c
ϕ(t)dt +

ε
2

and in view of (1.1.6) and A � b1 � a0, we have

m(E(a0,A)) � ε +
1
c

∫ ψ(A)

ψ(a0)−c
ϕ(t)dt

= ε +
1
c

∫ ψ(A)

ψ(b1)
ϕ(t)dt +

1
c

∫ ψ(b1)

ψ(a0)−c
ϕ(t)dt

� ε +
1
c

∫ ψ(A)

ψ(b1)
ϕ(t)dt +

1
c

∫ ψ(b1)

ψ(b1)−c
ϕ(t)dt

� ε
2

+
1
c

∫ ψ(A)

ψ(b1)
ϕ(t)dt +m(E(a0,a1)).

This implies that E(a1,A) is not empty and a1 < A so that,
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m(E(a1,A)) � ε
2

+
1
c

∫ ψ(A)

ψ(a1)−c
ϕ(t)dt > 0.

Starting from this inequality we may repeat our previous construction with a0 re-
placed by a1 and ε by ε/2 and thus such construction can be repeated infinitely to
obtain a sequence of intervals [bk,ak] such that

a0 � b1 < a1 � b2 < a2 � · · · < A

and bk ∈ E. Since ψ(r) is non-decreasing, we have

ψ(bk+1) � ψ(ak) > ψ(bk)+ c,

so that ψ(A) � ψ(bk+1) � ψ(b1) + kc. This is impossible and therefore Lemma
1.1.6 is proved. ��
Corollary 1.1.1. Under the same assumption as in Lemma 1.1.6, assume, in addi-
tion, that ∫ ∞

ϕ(t)dt < ∞.

Then E has only finite measure. In particular, let T (r) be a continuous non-
decreasing function of r with T (r) > 1. Then for ε > 0

T (reα(r)) � ecT (r), α(r) =
1

(logT (r))1+ε

holds for all r possibly outside a set of finite logarithmic measure.

Proof. The first part is obvious and we provide proof for the latter part only.
Set

ψ(r) = logT (er), ϕ(r) =
1

r1+ε .

It is obvious that ψ(r) and ϕ(r) satisfy the assumption of the first part. Since

ψ(logr +ϕ(ψ(logr))) = logT (reα(r)) and ψ(logr)+ c = logecT (r),

the first part implies that

E = {x = logr : T (reα(r)) � ecT (r)}

has finite measure and therefore F = {r : logr ∈ E} has finite logarithmic measure
by the formula for integration by substitution. Thus, the latter part has been proved.

��
In the theory of value distribution, we have to often avoid some exceptional sets

from the situation we consider, whence the following result is useful in treating this
case.
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Lemma 1.1.7. Let ψ(r) and ϕ(r) be non-decreasing positive functions. Assume
that

ψ(r) � ϕ(r)

for all r possibly outside a set E with densE < 1. Then for each k with
(1−densE)−1 < k < +∞, for all sufficiently large r we have

ψ(r) � ϕ(kr).

If E is of finite measure or of finite logarithmic measure, then for each k > 1 and all
sufficiently large r the above inequality is true.

Proof. Suppose for some (1− densE)−1 < k < +∞ there exists an unbounded
sequence {rn} such that ψ(rn) > ϕ(krn). Set F =

⋃∞
n=1[rn,krn]. Then

densF � limsup
n→∞

1
krn

m(F(krn)) � limsup
n→∞

1
krn

(krn − rn) =
k−1

k
> densE.

This asserts an existence of a r ∈ F \E and so for some n, rn � r � krn. Therefore
in view of the monotonicity of ψ and ϕ , we have

ψ(rn) � ψ(r) � ϕ(r) � ϕ(krn).

This contradicts the hypothesis about rn and Lemma 1.1.7 follows. ��
We remark that from Lemma 1.1.7 it follows that if log− densE < 1, then for

k > (1− log− densE)−1 and all sufficiently large r we have

ψ(r) � ϕ(rk).

The following is due to Hayman [9].

Lemma 1.1.8. Let T (r) be a non-negative, non-constant and non-decreasing con-
tinuous function for r � a with the order λ and lower order μ . Given two real
numbers C1 and C2 greater than 1, set

G = G(C1,C2) = {r : T (C1r) � C2T (r)}.

Then
logdensG � λ

logC1

logC2
and logdensG � μ

logC1

logC2
.

Proof. Set r1 = inf{r � 1 : r ∈ G}. Suppose that rn has been chosen. Take rn+1 =
inf{r �C1rn : r ∈G}, and thus we inductively obtain a sequence of positive numbers
{rn} such that G ⊂⋃∞

n=1[rn,C1rn]. For r � r1 with r ∈ G, we have rq � r < C1rq for
some q � 1. This implies that

log− m(G(r)) =
∫

G(r)

dt
t

�
q

∑
k=1

∫ C1rk

rk

dt
t

= q logC1.
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where G(r) = G∩ [1,r].
Now we want to estimate q. Generally it is easy to see that

T (rn+1) � T (C1rn) � C2T (rn)

so that
T (rn) � Cn−1

2 T (r1)

and therefore,

q � 1+
1

logC2
log

T (rq)
T (r1)

� 1+
1

logC2
log

T (r)
T (1)

.

This deduces that

log− m(G(r))
logr

� logC1

logr
+

logC1

logC2

logT (r)− logT (1)
logr

,

from which the desired inequalities follows directly by letting r → ∞. ��

1.1.4 Quasi-invariance of Inequalities

We begin the subsection with quasi-invariance of inequality under differentiation,
that is to say, establish the following, the first part of which was proved in Barry [1].

Lemma 1.1.9. Let ψ(r) be non-decreasing and ϕ(r) non-constant, non-decreasing
and convex for r � a. Assume that

0 � ψ(r) � ϕ(r), r �∈W

for a subset W of [a,∞) with τ = ϕ−densW < 1. Then for arbitrary K > 1/(1− τ),
we have

densE � K −1
K

− τ, E = {r : ψ ′(r) � Kϕ ′(r)}.
Further, if ψ(r) is convex, for all sufficiently large r we have

ψ ′(r) � Kϕ ′(dr), d >
K

(1− τ)K −1
> 0. (1.1.7)

Proof. From the convexity of ϕ(r), it is easy to see that ϕ(r) → ∞ as r → ∞ and
ϕ ′(r) is non-negative and monotone non-decreasing and ϕ(r) is absolutely continu-
ous. Set

F = {r : ψ ′(r) � Kϕ ′(r)}
and r′ = sup{x ∈ F \W : x � r} for r � a. Then, for r > a, we have
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F(r)

ϕ ′(t)dt =
∫

(F\W )(r)
ϕ ′(t)dt +

∫
W (r)

ϕ ′(t)dt

=
∫

(F\W )(r′)
ϕ ′(t)dt +

∫
W (r)

ϕ ′(t)dt

� K−1
∫

F(r′)
ψ ′(t)dt +

∫
W (r)

ϕ ′(t)dt

� K−1
∫ r′

a
ψ ′(t)dt +

∫
W (r)

ϕ ′(t)dt

� K−1(ψ(r′)−ψ(a))+
∫

W (r)
ϕ ′(t)dt

� K−1ϕ(r′)−K−1ψ(a)+
∫

W (r)
ϕ ′(t)dt

� K−1ϕ(r)−K−1ψ(a)+
∫

W (r)
ϕ ′(t)dt

and, thus, ϕ−densF � K−1 +τ and in view of Lemma 1.1.4 we get densF � K−1 +τ
and equivalently densE � 1−K−1 − τ .

(1.1.7) follows from application of Lemma 1.1.7, for ψ ′(r) is non-decreasing
under the assumption of convexity of ψ(r) and (1−densF)−1 < (1−K−1−τ)−1 =

K
(1−τ)K−1 . ��

Hayman and Stewart [10], and Hayman and Rossi [11] investigated the case of
any order derivatives. The following result was obtained in [10]: if ψ(r) and ϕ(r)
and their derivatives up to n−1 order are non-negative, non-decreasing and convex
for r � a, then from 0 � ψ(r) � ϕ(r) for all r � a, we have

ψ(n)(r) � Kn!
( e

n

)n
ϕ(n)(r) (1.1.8)

on a set E of r with positive lower density depending only on K, n and ϕ but not on
ψ and furthermore, Hayman and Rossi [11] proved that densE � ( n

√
K−1)/( n

√
K−

1 + n). What we should emphasize is that in Hayman and Stewart’s result, the in-
equality (1.1.8) holds on the above fixed set E for any function ψ(r) satisfying those
assumptions determined by a given function ϕ(r). Naturally we ask whether the set
E in Lemma 1.1.9 is independent of ψ(r), which concerns a question posed in page
256 of [10].

Finally, we consider quasi-invariance of inequality under integration. Here are
two non-negative, non-decreasing real functions A(r) and B(r). If for all r in
[r0,+∞) but outside a subset E, we have

A(r) � B(r), (1.1.9)

then could we compare
∫ r

r0
A(t)dt to

∫ r
r0

B(t)dt? This is an important question in the
value distribution of meromorphic functions. In terms of (1.1.9), we have
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r0

A(t)dt =
∫

[r0,r]\E
A(t)dt +

∫
E∩[r0,r]

A(t)dt

�
∫

[r0,r]\E
B(t)dt +

∫
E∩[r0,r]

A(t)dt

�
∫ r

r0

B(t)dt +
∫

E∩[r0,r]
A(t)dt.

Obviously, we cannot directly control
∫

E∩[r0,r] A(t)dt in terms of
∫ r

r0
B(t)dt, but we

can hope to use
∫ r

r0
A(t)dt to control it. The following result realizes this purpose,

which is a generalization of Lemma 9 of Eremenko and Sodin [8] but the basic idea
is due to them.

Lemma 1.1.10. Let E be a measurable subset of [r0,+∞) and ε > 0 and let ϕ(x)
be a positive non-increasing function in [r0,+∞) such that

∫ ∞ϕ(t)dt = +∞. Then
there exists a subset E∗ of [r0,+∞) with∫

E∗(r)
ϕ(t)dt � 2

ε

∫
E(r)

ϕ(t)dt (1.1.10)

such that for any non-negative, non-decreasing function ψ(x) and r �∈ E∗ and any
τ < r, we have ∫

E(τ,r)
ψ(t)dt < 2ε

∫ r

τ
ψ(t)dt. (1.1.11)

Proof. Define

E∗ =
{

r � r0 : ∃x = x(r) < r such that
∫

E(x,r)
ϕ(t)dt � ε

∫ 2r−x(r)

x(r)
ϕ(t)dt

}
.

It is obvious that s is the center point of the interval (x(s),2s−x(s)) and so for a fixed
r � r0, {(x(s),2s−x(s)) : s ∈ E∗(r)} is a covering of E∗(r). As E∗(r) is a bounded,
closed set, there exist finitely many intervals {(x(s j),2s j − x(s j)) : 1 � j � q} to
cover E∗(r) and each point in E∗(r) is covered at most two times. Thus, as s j ∈ E∗,
we have ∫

E∗(r)
ϕ(t)dt �

q

∑
j=1

∫ 2s j−x(s j)

x(s j)
ϕ(t)dt

� 1
ε

q

∑
j=1

∫
E(x(s j),s j)

ϕ(t)dt

� 2
ε

∫
E∩(∪q

j=1(x(s j),s j))
ϕ(t)dt

� 2
ε

∫
E(r)

ϕ(t)dt.

Now let us prove (1.1.11). For r �∈ E∗ and for all r0 � t � r, we set η(t) =∫
E(t,r)ϕ(t)dt and, then, have
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η(t) < ε
∫ 2r−t

t
ϕ(x)dx.

Noting that for t < r, ϕ(2r− t) � ϕ(t) and η(t) is non-increasing, but ψ(t)
ϕ(t) is non-

decreasing, we have

2ε
∫ r

τ
ψ(t)dt −

∫
E[τ,r]

ψ(t)dt

� ε
∫ r

τ

ψ(t)
ϕ(t)

(ϕ(2r− t)+ϕ(t))dt −
∫

E[τ,r]
ψ(t)dt

=
∫ r

τ

ψ(t)
ϕ(t)

d
(
−ε

∫ 2r−t

t
ϕ(x)dx

)
+
∫ r

τ

ψ(t)
ϕ(t)

dη(t)

=
∫ r

τ

ψ(t)
ϕ(t)

d
(
η(t)− ε

∫ 2r−t

t
ϕ(x)dx

)
� ψ(t)

ϕ(t)

(
η(t)− ε

∫ 2r−t

t
ϕ(x)dx

)r

τ
−
∫ r

τ

(
η(t)− ε

∫ 2r−t

t
ϕ(x)dx

)
d
ψ(t)
ϕ(t)

=
ψ(τ)
ϕ(τ)

(
ε
∫ 2r−τ

τ
ϕ(x)dx−η(τ)

)
+
∫ r

τ

(
ε
∫ 2r−t

t
ϕ(x)dx−η(t)

)
d
ψ(t)
ϕ(t)

� 0.

This yields (1.1.11). ��
We make a remark on Lemma 1.1.10. If

∫
E ϕ(t)dt < +∞, then

∫
E∗ ϕ(t)dt < +∞

and hence if ϕ(t) ≡ 1 or ϕ(t) = 1/t, that is to say, E is of finite measure or of finite
logarithmic measure, then so is E∗ in turn. Further, we can take into account the
density of E and E∗ in view of (1.1.10). Set φ(t) =

∫ t ϕ(x)dx. Then we have

φ−densE∗ � 2
ε
φ−densE

so that when φ−densE = 0, we have φ−densE∗ = 0. What we should stress is that
E∗ in Lemma 1.1.10 does not rely on ψ(r).

Now let us turn to answer the question mentioned before Lemma 1.1.10. Assume
(1.1.9) holds for all r outside a set E with the properties

∫
E ϕ(t)dt < +∞ for a

ϕ(x) stated in Lemma 1.1.10. Take a sequence of positive numbers {ε j} such that
0 < ε j � 1 and ε j → 0 as j → ∞. In view of Lemma 1.1.10, we have E∗

j for each ε j
such that

∫
E∗

j
ϕ(t)dt < +∞ and for r �∈ E∗

j∫
E(τ,r)

ψ(t)dt � ε j

∫ r

τ
ψ(t)dt (1.1.12)

for any non-negative, non-decreasing function ψ(x). There exist a sequence of pos-
itive numbers {r j} such that r j−1 < r j → ∞ and
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E∗

j ∩[r j ,∞)
ϕ(t)dt <

1
2 j .

Define

E∗ = (E∗
1 ∩ [r0,r1])∪

∞⋃
j=1

E∗
j ∩ [r j,r j+1]. (1.1.13)

Then we have ∫
E∗
ϕ(t)dt �

∫
E∗

1∩[r0,r1]
ϕ(t)dt +

∞

∑
j=1

∫
E∗

j ∩[r j ,r j+1]
ϕ(t)dt

<
∫

E∗
1∩[r0,r1]

ϕ(t)dt +1

< +∞.

Now define a function ε(r) by ε(r) = ε j for r j � r < r j+1 ( j = 1,2, · · ·) and ε(r) = ε1
for r0 � r < r1. Obviously, ε(r) → 0 as r → ∞. For r �∈ E∗, we have r j � r < r j+1
for some j ∈ N but r �∈ E∗

j and thus (1.1.12) holds. Further, in terms of (1.1.9), we
can get ∫ r

τ
A(t)dt =

∫
[τ,r]\E

A(t)dt +
∫

E∩[τ,r]
A(t)dt

�
∫

[τ,r]\E
B(t)dt + ε j

∫ r

τ
A(t)dt

so that
(1− ε(r))

∫ r

τ
A(t)dt �

∫ r

τ
B(t)dt. (1.1.14)

Now we consider the case when φ−densE = 0 and φ(r) → ∞ as r → ∞. Then
there exists a set E∗

j for each ε j such that φ−densE∗
j = 0 and for r �∈ E∗

j we have
(1.1.12). Take a r j by induction on j such that r j > r j−1 and for r � r j, we have

1
φ(r)

∫
E∗

j (r)
ϕ(t)dt <

ε j

2 j

and φ(r j−1)
φ(r) < ε j. Define E∗ by (1.1.13). Then for r �∈ E∗, (1.1.14) holds.

Below we prove φ−densE∗ = 0 for this case. For arbitrary ε > 0, there exists a
N ∈ N such that for all j > N, ε j < ε. For r � rN , we have rM � r < rM+1 for some
M ∈ N with M � N and therefore
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1
φ(r)

∫
E∗(r)

ϕ(t)dt =
1

φ(r)

M−1

∑
j=1

∫
E∗

j [r j ,r j+1])
ϕ(t)dt

+
1

φ(r)

(∫
E∗

1 (r1)
ϕ(t)dt +

∫
E∗

M [rM ,r]
ϕ(t)dt

)
<

M−1

∑
j=1

φ(r j+1)
φ(r)

ε j

2 j +
φ(r1)
φ(r)

ε1

2
+

εM

2M

<
M−2

∑
j=1

εM
ε j

2 j +
εM−1

2M−1 +
1
2
εM +

εM

2M

< εM +
εM−1

2M−1 +
1
2
εM +

εM

2M < 3ε

taking note that φ(r j+1)
φ(r) � φ(rM−1)

φ(r) < εM for 1 � j � M−2. This implies φ−densE∗ =
0.

For the case when φ−densE = 0, we can attain the corresponding result whose
proof is left to the reader. Let us formulate the above result as a lemma stated as
follows.

Lemma 1.1.11. Let E and ϕ(x) be given as in Lemma 1.1.10. Then there exists a
set E∗ such that if (1.1.9) holds for r �∈E, we have (1.1.14) for r �∈E∗ with properties
that:

(1) if
∫

E ϕ(t)dt < +∞, then
∫

E∗ ϕ(t)dt < +∞;
(2) if φ−densE = 0 (φ−densE = 0, respectively), then φ−densE∗ = 0 (φ−densE∗ =

0), where φ(t) =
∫ t ϕ(x)dx.

1.2 Integral Formula and Integral Inequalities

For completeness and in order to bring the reader convenience in their readings, this
section recall the Green formula and collect several integral inequalities. They are
useful in the sequel and certain proofs will be provided taking into account that they
are not easy to find or not well-known in the general literatures.

1.2.1 The Green Formula for Functions with Two Real Variables

Various characteristics, except the Ahlfors-Shimizu’s, of a meromorphic function,
we introduce in the next chapter, stem from the Green formula for functions with
two real variables.

Let U be a domain in C surrounded by finitely many piecewise differentiable
simple curves and let X(x,y) and Y (x,y) be two continuous differentiable functions
in the closure of U . Then we have the Green formula
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U

(
∂Y
∂x

− ∂X
∂y

)
dσ =

∫
∂U

Xdx+Y dy

where dσ is the area element. We mean by ds the arc element, and by n the inner
normal of ∂U with respect to U , and by Δ the Laplacian.

Assume further that X(x,y) and Y (x,y) are the second order continuous differ-
entiable functions in the closure of U . In view of the Green formula, we have the
following∫

∂U
Y
∂X
∂n

ds =
∫
∂U

Y
(
∂X
∂x

cosα +
∂X
∂y

cosβ
)

ds

= −
∫
∂U

(
Y
∂X
∂x

dy−Y
∂X
∂y

dx
)

= −
∫ ∫

U
YΔXdσ −

∫ ∫
U

(
∂X
∂x

∂Y
∂x

+
∂X
∂y

∂Y
∂y

)
dσ ,

where n = (cosα,cosβ ). Thus∫ ∫
U
(XΔY −YΔX)dσ =

∫
∂U

(
Y
∂X
∂n

−X
∂Y
∂n

)
ds. (1.2.1)

This formula is known as the second Green formula. We have two special formulae:
If X(x,y) and Y (x,y) are harmonic in U , that is, ΔX = 0 = ΔY , then∫

∂U

(
X
∂Y
∂n

−Y
∂X
∂n

)
ds = 0 (1.2.2)

and ∫
∂U

∂X
∂n

ds = 0. (1.2.3)

Furthermore, if U is doubly connected and Γ is the outer boundary and γ the inner
boundary, then ∮

Γ

(
X
∂Y
∂n

−Y
∂X
∂n

)
ds =

∮
γ

(
X
∂Y
∂n

−Y
∂X
∂n

)
ds. (1.2.4)

These formulae will be used often in the next chapter.

1.2.2 Several Integral Inequalities

Let (X ,A ,μ) be an arbitrary measure space. For a positive real number p, Lp(X ,A ,μ)
is the set of all real-valued A -measurable function f defined μ-a.e. on X such that∫

X | f (x)|pdμ(x) exists and is finite. We write Lp for Lp(X ,A ,μ) where confusion
seems impossible. Define for f ∈ Lp


